Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ArrayUtils.h"
#include "mozilla/Unused.h"
#include "mozilla/TimeStamp.h"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "nsTArray.h"
#include "nsString.h"
#include "nsDirectoryServiceDefs.h"
#include "nsDirectoryServiceUtils.h"
#include "nsComponentManagerUtils.h"
#include "nsXPCOM.h"
#include "nsIFile.h"
#include "gtest/gtest.h"
#include "mozilla/gtest/MozAssertions.h"
using namespace mozilla;
namespace TestTArray {
// Define this so we can use test_basic_array in test_comptr_array
template <class T>
inline bool operator<(const nsCOMPtr<T>& lhs, const nsCOMPtr<T>& rhs) {
return lhs.get() < rhs.get();
}
//----
template <class ElementType>
static bool test_basic_array(ElementType* data, size_t dataLen,
const ElementType& extra) {
CopyableTArray<ElementType> ary;
const nsTArray<ElementType>& cary = ary;
ary.AppendElements(data, dataLen);
if (ary.Length() != dataLen) {
return false;
}
if (!(ary == ary)) {
return false;
}
size_t i;
for (i = 0; i < ary.Length(); ++i) {
if (ary[i] != data[i]) return false;
}
for (i = 0; i < ary.Length(); ++i) {
if (ary.SafeElementAt(i, extra) != data[i]) return false;
}
if (ary.SafeElementAt(ary.Length(), extra) != extra ||
ary.SafeElementAt(ary.Length() * 10, extra) != extra)
return false;
// ensure sort results in ascending order
ary.Sort();
size_t j = 0, k = ary.IndexOfFirstElementGt(extra);
if (k != 0 && ary[k - 1] == extra) return false;
for (i = 0; i < ary.Length(); ++i) {
k = ary.IndexOfFirstElementGt(ary[i]);
if (k == 0 || ary[k - 1] != ary[i]) return false;
if (k < j) return false;
j = k;
}
for (i = ary.Length(); --i;) {
if (ary[i] < ary[i - 1]) return false;
if (ary[i] == ary[i - 1]) ary.RemoveElementAt(i);
}
if (!(ary == ary)) {
return false;
}
for (i = 0; i < ary.Length(); ++i) {
if (ary.BinaryIndexOf(ary[i]) != i) return false;
}
if (ary.BinaryIndexOf(extra) != ary.NoIndex) return false;
size_t oldLen = ary.Length();
ary.RemoveElement(data[dataLen / 2]);
if (ary.Length() != (oldLen - 1)) return false;
if (!(ary == ary)) return false;
if (ary.ApplyIf(
extra, []() { return true; }, []() { return false; }))
return false;
if (ary.ApplyIf(
extra, [](size_t) { return true; }, []() { return false; }))
return false;
// On a non-const array, ApplyIf's first lambda may use either const or non-
// const element types.
if (ary.ApplyIf(
extra, [](ElementType&) { return true; }, []() { return false; }))
return false;
if (ary.ApplyIf(
extra, [](const ElementType&) { return true; },
[]() { return false; }))
return false;
if (ary.ApplyIf(
extra, [](size_t, ElementType&) { return true; },
[]() { return false; }))
return false;
if (ary.ApplyIf(
extra, [](size_t, const ElementType&) { return true; },
[]() { return false; }))
return false;
if (cary.ApplyIf(
extra, []() { return true; }, []() { return false; }))
if (cary.ApplyIf(
extra, [](size_t) { return true; }, []() { return false; }))
// On a const array, ApplyIf's first lambda must only use const element
// types.
if (cary.ApplyIf(
extra, [](const ElementType&) { return true; },
[]() { return false; }))
if (cary.ApplyIf(
extra, [](size_t, const ElementType&) { return true; },
[]() { return false; }))
return false;
size_t index = ary.Length() / 2;
ary.InsertElementAt(index, extra);
if (!(ary == ary)) return false;
if (ary[index] != extra) return false;
if (ary.IndexOf(extra) == ary.NoIndex) return false;
if (ary.LastIndexOf(extra) == ary.NoIndex) return false;
// ensure proper searching
if (ary.IndexOf(extra) > ary.LastIndexOf(extra)) return false;
if (ary.IndexOf(extra, index) != ary.LastIndexOf(extra, index)) return false;
if (!ary.ApplyIf(
extra,
[&](size_t i, const ElementType& e) {
return i == index && e == extra;
},
[]() { return false; }))
return false;
if (!cary.ApplyIf(
extra,
[&](size_t i, const ElementType& e) {
return i == index && e == extra;
},
[]() { return false; }))
return false;
nsTArray<ElementType> copy(ary.Clone());
if (!(ary == copy)) return false;
for (i = 0; i < copy.Length(); ++i) {
if (ary[i] != copy[i]) return false;
}
ary.AppendElements(copy);
size_t cap = ary.Capacity();
ary.RemoveElementsAt(copy.Length(), copy.Length());
ary.Compact();
if (ary.Capacity() == cap) return false;
ary.Clear();
if (ary.IndexOf(extra) != ary.NoIndex) return false;
if (ary.LastIndexOf(extra) != ary.NoIndex) return false;
if (ary.ApplyIf(
extra, []() { return true; }, []() { return false; }))
return false;
if (cary.ApplyIf(
extra, []() { return true; }, []() { return false; }))
return false;
ary.Clear();
if (!ary.IsEmpty()) return false;
if (!(ary == nsTArray<ElementType>())) return false;
if (ary == copy) return false;
if (ary.SafeElementAt(0, extra) != extra ||
ary.SafeElementAt(10, extra) != extra)
return false;
ary = copy;
if (!(ary == copy)) return false;
for (i = 0; i < copy.Length(); ++i) {
if (ary[i] != copy[i]) return false;
}
ary.InsertElementsAt(0, copy);
if (ary == copy) return false;
ary.RemoveElementsAt(0, copy.Length());
for (i = 0; i < copy.Length(); ++i) {
if (ary[i] != copy[i]) return false;
}
// These shouldn't crash!
nsTArray<ElementType> empty;
ary.AppendElements(reinterpret_cast<ElementType*>(0), 0);
ary.AppendElements(empty);
// See bug 324981
ary.RemoveElement(extra);
ary.RemoveElement(extra);
return true;
}
TEST(TArray, test_int_array)
{
int data[] = {4, 6, 8, 2, 4, 1, 5, 7, 3};
ASSERT_TRUE(test_basic_array(data, ArrayLength(data), int(14)));
}
TEST(TArray, test_int64_array)
{
int64_t data[] = {4, 6, 8, 2, 4, 1, 5, 7, 3};
ASSERT_TRUE(test_basic_array(data, ArrayLength(data), int64_t(14)));
}
TEST(TArray, test_char_array)
{
char data[] = {4, 6, 8, 2, 4, 1, 5, 7, 3};
ASSERT_TRUE(test_basic_array(data, ArrayLength(data), char(14)));
}
TEST(TArray, test_uint32_array)
{
uint32_t data[] = {4, 6, 8, 2, 4, 1, 5, 7, 3};
ASSERT_TRUE(test_basic_array(data, ArrayLength(data), uint32_t(14)));
}
//----
class Object {
public:
Object() : mNum(0) {}
Object(const char* str, uint32_t num) : mStr(str), mNum(num) {}
Object(const Object& other) = default;
~Object() = default;
Object& operator=(const Object& other) = default;
bool operator==(const Object& other) const {
return mStr == other.mStr && mNum == other.mNum;
}
bool operator<(const Object& other) const {
// sort based on mStr only
return Compare(mStr, other.mStr) < 0;
}
const char* Str() const { return mStr.get(); }
uint32_t Num() const { return mNum; }
private:
nsCString mStr;
uint32_t mNum;
};
TEST(TArray, test_object_array)
{
nsTArray<Object> objArray;
const char kdata[] = "hello world";
size_t i;
for (i = 0; i < ArrayLength(kdata); ++i) {
char x[] = {kdata[i], '\0'};
objArray.AppendElement(Object(x, i));
}
for (i = 0; i < ArrayLength(kdata); ++i) {
ASSERT_EQ(objArray[i].Str()[0], kdata[i]);
ASSERT_EQ(objArray[i].Num(), i);
}
objArray.Sort();
const char ksorted[] = "\0 dehllloorw";
for (i = 0; i < ArrayLength(kdata) - 1; ++i) {
ASSERT_EQ(objArray[i].Str()[0], ksorted[i]);
}
}
class Countable {
static int sCount;
public:
Countable() { sCount++; }
Countable(const Countable& aOther) { sCount++; }
static int Count() { return sCount; }
};
class Moveable {
static int sCount;
public:
Moveable() { sCount++; }
Moveable(const Moveable& aOther) { sCount++; }
Moveable(Moveable&& aOther) {
// Do not increment sCount
}
static int Count() { return sCount; }
};
class MoveOnly_RelocateUsingMemutils {
public:
MoveOnly_RelocateUsingMemutils() = default;
MoveOnly_RelocateUsingMemutils(const MoveOnly_RelocateUsingMemutils&) =
delete;
MoveOnly_RelocateUsingMemutils(MoveOnly_RelocateUsingMemutils&&) = default;
MoveOnly_RelocateUsingMemutils& operator=(
const MoveOnly_RelocateUsingMemutils&) = delete;
MoveOnly_RelocateUsingMemutils& operator=(MoveOnly_RelocateUsingMemutils&&) =
default;
};
static_assert(
std::is_move_constructible_v<nsTArray<MoveOnly_RelocateUsingMemutils>>);
static_assert(
std::is_move_assignable_v<nsTArray<MoveOnly_RelocateUsingMemutils>>);
static_assert(
!std::is_copy_constructible_v<nsTArray<MoveOnly_RelocateUsingMemutils>>);
static_assert(
!std::is_copy_assignable_v<nsTArray<MoveOnly_RelocateUsingMemutils>>);
class MoveOnly_RelocateUsingMoveConstructor {
public:
MoveOnly_RelocateUsingMoveConstructor() = default;
MoveOnly_RelocateUsingMoveConstructor(
const MoveOnly_RelocateUsingMoveConstructor&) = delete;
MoveOnly_RelocateUsingMoveConstructor(
MoveOnly_RelocateUsingMoveConstructor&&) = default;
MoveOnly_RelocateUsingMoveConstructor& operator=(
const MoveOnly_RelocateUsingMoveConstructor&) = delete;
MoveOnly_RelocateUsingMoveConstructor& operator=(
MoveOnly_RelocateUsingMoveConstructor&&) = default;
};
} // namespace TestTArray
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
TestTArray::MoveOnly_RelocateUsingMoveConstructor)
namespace TestTArray {
static_assert(std::is_move_constructible_v<
nsTArray<MoveOnly_RelocateUsingMoveConstructor>>);
static_assert(
std::is_move_assignable_v<nsTArray<MoveOnly_RelocateUsingMoveConstructor>>);
static_assert(!std::is_copy_constructible_v<
nsTArray<MoveOnly_RelocateUsingMoveConstructor>>);
static_assert(!std::is_copy_assignable_v<
nsTArray<MoveOnly_RelocateUsingMoveConstructor>>);
} // namespace TestTArray
namespace TestTArray {
/* static */
int Countable::sCount = 0;
/* static */
int Moveable::sCount = 0;
static nsTArray<int> returns_by_value() {
nsTArray<int> result;
return result;
}
TEST(TArray, test_return_by_value)
{
nsTArray<int> result = returns_by_value();
ASSERT_TRUE(true); // This is just a compilation test.
}
TEST(TArray, test_move_array)
{
nsTArray<Countable> countableArray;
uint32_t i;
for (i = 0; i < 4; ++i) {
countableArray.AppendElement(Countable());
}
ASSERT_EQ(Countable::Count(), 8);
const nsTArray<Countable>& constRefCountableArray = countableArray;
ASSERT_EQ(Countable::Count(), 8);
nsTArray<Countable> copyCountableArray(constRefCountableArray.Clone());
ASSERT_EQ(Countable::Count(), 12);
nsTArray<Countable>&& moveRefCountableArray = std::move(countableArray);
moveRefCountableArray.Length(); // Make compilers happy.
ASSERT_EQ(Countable::Count(), 12);
nsTArray<Countable> movedCountableArray(std::move(countableArray));
ASSERT_EQ(Countable::Count(), 12);
// Test ctor
FallibleTArray<Countable> differentAllocatorCountableArray(
std::move(copyCountableArray));
// operator=
copyCountableArray = std::move(differentAllocatorCountableArray);
differentAllocatorCountableArray = std::move(copyCountableArray);
// And the other ctor
nsTArray<Countable> copyCountableArray2(
std::move(differentAllocatorCountableArray));
// with auto
AutoTArray<Countable, 3> autoCountableArray(std::move(copyCountableArray2));
// operator=
copyCountableArray2 = std::move(autoCountableArray);
// Mix with FallibleTArray
FallibleTArray<Countable> differentAllocatorCountableArray2(
std::move(copyCountableArray2));
AutoTArray<Countable, 4> autoCountableArray2(
std::move(differentAllocatorCountableArray2));
differentAllocatorCountableArray2 = std::move(autoCountableArray2);
ASSERT_EQ(Countable::Count(), 12);
nsTArray<Moveable> moveableArray;
for (i = 0; i < 4; ++i) {
moveableArray.AppendElement(Moveable());
}
ASSERT_EQ(Moveable::Count(), 4);
const nsTArray<Moveable>& constRefMoveableArray = moveableArray;
ASSERT_EQ(Moveable::Count(), 4);
nsTArray<Moveable> copyMoveableArray(constRefMoveableArray.Clone());
ASSERT_EQ(Moveable::Count(), 8);
nsTArray<Moveable>&& moveRefMoveableArray = std::move(moveableArray);
moveRefMoveableArray.Length(); // Make compilers happy.
ASSERT_EQ(Moveable::Count(), 8);
nsTArray<Moveable> movedMoveableArray(std::move(moveableArray));
ASSERT_EQ(Moveable::Count(), 8);
// Test ctor
FallibleTArray<Moveable> differentAllocatorMoveableArray(
std::move(copyMoveableArray));
// operator=
copyMoveableArray = std::move(differentAllocatorMoveableArray);
differentAllocatorMoveableArray = std::move(copyMoveableArray);
// And the other ctor
nsTArray<Moveable> copyMoveableArray2(
std::move(differentAllocatorMoveableArray));
// with auto
AutoTArray<Moveable, 3> autoMoveableArray(std::move(copyMoveableArray2));
// operator=
copyMoveableArray2 = std::move(autoMoveableArray);
// Mix with FallibleTArray
FallibleTArray<Moveable> differentAllocatorMoveableArray2(
std::move(copyMoveableArray2));
AutoTArray<Moveable, 4> autoMoveableArray2(
std::move(differentAllocatorMoveableArray2));
differentAllocatorMoveableArray2 = std::move(autoMoveableArray2);
ASSERT_EQ(Moveable::Count(), 8);
AutoTArray<Moveable, 8> moveableAutoArray;
for (uint32_t i = 0; i < 4; ++i) {
moveableAutoArray.AppendElement(Moveable());
}
ASSERT_EQ(Moveable::Count(), 12);
const AutoTArray<Moveable, 8>& constRefMoveableAutoArray = moveableAutoArray;
ASSERT_EQ(Moveable::Count(), 12);
CopyableAutoTArray<Moveable, 8> copyMoveableAutoArray(
constRefMoveableAutoArray);
ASSERT_EQ(Moveable::Count(), 16);
AutoTArray<Moveable, 8> movedMoveableAutoArray(std::move(moveableAutoArray));
ASSERT_EQ(Moveable::Count(), 16);
}
template <typename TypeParam>
class TArray_MoveOnlyTest : public ::testing::Test {};
TYPED_TEST_SUITE_P(TArray_MoveOnlyTest);
static constexpr size_t kMoveOnlyTestArrayLength = 4;
template <typename ArrayType>
static auto MakeMoveOnlyArray() {
ArrayType moveOnlyArray;
for (size_t i = 0; i < kMoveOnlyTestArrayLength; ++i) {
EXPECT_TRUE(moveOnlyArray.AppendElement(typename ArrayType::value_type(),
fallible));
}
return moveOnlyArray;
}
TYPED_TEST_P(TArray_MoveOnlyTest, nsTArray_MoveConstruct) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
nsTArray<TypeParam> movedMoveOnlyArray(std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, movedMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, nsTArray_MoveAssign) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
nsTArray<TypeParam> movedMoveOnlyArray;
movedMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, movedMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, nsTArray_MoveReAssign) {
nsTArray<TypeParam> movedMoveOnlyArray;
movedMoveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
// Re-assign, to check that move-assign does not only work on an empty array.
movedMoveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
ASSERT_EQ(kMoveOnlyTestArrayLength, movedMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, nsTArray_to_FallibleTArray_MoveConstruct) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
FallibleTArray<TypeParam> differentAllocatorMoveOnlyArray(
std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, differentAllocatorMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, nsTArray_to_FallibleTArray_MoveAssign) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
FallibleTArray<TypeParam> differentAllocatorMoveOnlyArray;
differentAllocatorMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, differentAllocatorMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, FallibleTArray_to_nsTArray_MoveConstruct) {
auto moveOnlyArray = MakeMoveOnlyArray<FallibleTArray<TypeParam>>();
nsTArray<TypeParam> differentAllocatorMoveOnlyArray(std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, differentAllocatorMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, FallibleTArray_to_nsTArray_MoveAssign) {
auto moveOnlyArray = MakeMoveOnlyArray<FallibleTArray<TypeParam>>();
nsTArray<TypeParam> differentAllocatorMoveOnlyArray;
differentAllocatorMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, differentAllocatorMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, AutoTArray_AutoStorage_MoveConstruct) {
auto moveOnlyArray =
MakeMoveOnlyArray<AutoTArray<TypeParam, kMoveOnlyTestArrayLength>>();
AutoTArray<TypeParam, kMoveOnlyTestArrayLength> autoMoveOnlyArray(
std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest, AutoTArray_AutoStorage_MoveAssign) {
auto moveOnlyArray =
MakeMoveOnlyArray<AutoTArray<TypeParam, kMoveOnlyTestArrayLength>>();
AutoTArray<TypeParam, kMoveOnlyTestArrayLength> autoMoveOnlyArray;
autoMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest,
nsTArray_to_AutoTArray_AutoStorage_MoveConstruct) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
AutoTArray<TypeParam, kMoveOnlyTestArrayLength> autoMoveOnlyArray(
std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest,
nsTArray_to_AutoTArray_AutoStorage_MoveAssign) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
AutoTArray<TypeParam, kMoveOnlyTestArrayLength> autoMoveOnlyArray;
autoMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest,
nsTArray_to_AutoTArray_HeapStorage_MoveConstruct) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
AutoTArray<TypeParam, kMoveOnlyTestArrayLength - 1> autoMoveOnlyArray(
std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest,
nsTArray_to_AutoTArray_HeapStorage_MoveAssign) {
auto moveOnlyArray = MakeMoveOnlyArray<nsTArray<TypeParam>>();
AutoTArray<TypeParam, kMoveOnlyTestArrayLength - 1> autoMoveOnlyArray;
autoMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest,
FallibleTArray_to_AutoTArray_HeapStorage_MoveConstruct) {
auto moveOnlyArray = MakeMoveOnlyArray<FallibleTArray<TypeParam>>();
AutoTArray<TypeParam, 4> autoMoveOnlyArray(std::move(moveOnlyArray));
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
TYPED_TEST_P(TArray_MoveOnlyTest,
FallibleTArray_to_AutoTArray_HeapStorage_MoveAssign) {
auto moveOnlyArray = MakeMoveOnlyArray<FallibleTArray<TypeParam>>();
AutoTArray<TypeParam, 4> autoMoveOnlyArray;
autoMoveOnlyArray = std::move(moveOnlyArray);
ASSERT_EQ(0u, moveOnlyArray.Length());
ASSERT_EQ(kMoveOnlyTestArrayLength, autoMoveOnlyArray.Length());
}
REGISTER_TYPED_TEST_SUITE_P(
TArray_MoveOnlyTest, nsTArray_MoveConstruct, nsTArray_MoveAssign,
nsTArray_MoveReAssign, nsTArray_to_FallibleTArray_MoveConstruct,
nsTArray_to_FallibleTArray_MoveAssign,
FallibleTArray_to_nsTArray_MoveConstruct,
FallibleTArray_to_nsTArray_MoveAssign, AutoTArray_AutoStorage_MoveConstruct,
AutoTArray_AutoStorage_MoveAssign,
nsTArray_to_AutoTArray_AutoStorage_MoveConstruct,
nsTArray_to_AutoTArray_AutoStorage_MoveAssign,
nsTArray_to_AutoTArray_HeapStorage_MoveConstruct,
nsTArray_to_AutoTArray_HeapStorage_MoveAssign,
FallibleTArray_to_AutoTArray_HeapStorage_MoveConstruct,
FallibleTArray_to_AutoTArray_HeapStorage_MoveAssign);
using BothMoveOnlyTypes =
::testing::Types<MoveOnly_RelocateUsingMemutils,
MoveOnly_RelocateUsingMoveConstructor>;
INSTANTIATE_TYPED_TEST_SUITE_P(InstantiationOf, TArray_MoveOnlyTest,
BothMoveOnlyTypes);
//----
TEST(TArray, test_string_array)
{
nsTArray<nsCString> strArray;
const char kdata[] = "hello world";
size_t i;
for (i = 0; i < ArrayLength(kdata); ++i) {
nsCString str;
str.Assign(kdata[i]);
strArray.AppendElement(str);
}
for (i = 0; i < ArrayLength(kdata); ++i) {
ASSERT_EQ(strArray[i].CharAt(0), kdata[i]);
}
const char kextra[] = "foo bar";
size_t oldLen = strArray.Length();
strArray.AppendElement(kextra);
strArray.RemoveElement(kextra);
ASSERT_EQ(oldLen, strArray.Length());
ASSERT_EQ(strArray.IndexOf("e"), size_t(1));
ASSERT_TRUE(strArray.ApplyIf(
"e", [](size_t i, nsCString& s) { return i == 1 && s == "e"; },
[]() { return false; }));
strArray.Sort();
const char ksorted[] = "\0 dehllloorw";
for (i = ArrayLength(kdata); i--;) {
ASSERT_EQ(strArray[i].CharAt(0), ksorted[i]);
if (i > 0 && strArray[i] == strArray[i - 1]) strArray.RemoveElementAt(i);
}
for (i = 0; i < strArray.Length(); ++i) {
ASSERT_EQ(strArray.BinaryIndexOf(strArray[i]), i);
}
auto no_index = strArray.NoIndex; // Fixes gtest compilation error
ASSERT_EQ(strArray.BinaryIndexOf(""_ns), no_index);
nsCString rawArray[MOZ_ARRAY_LENGTH(kdata) - 1];
for (i = 0; i < ArrayLength(rawArray); ++i)
rawArray[i].Assign(kdata + i); // substrings of kdata
ASSERT_TRUE(
test_basic_array(rawArray, ArrayLength(rawArray), nsCString("foopy")));
}
//----
typedef nsCOMPtr<nsIFile> FilePointer;
class nsFileNameComparator {
public:
bool Equals(const FilePointer& a, const char* b) const {
nsAutoCString name;
a->GetNativeLeafName(name);
return name.Equals(b);
}
};
TEST(TArray, test_comptr_array)
{
FilePointer tmpDir;
NS_GetSpecialDirectory(NS_OS_TEMP_DIR, getter_AddRefs(tmpDir));
ASSERT_TRUE(tmpDir);
const char* kNames[] = {"foo.txt", "bar.html", "baz.gif"};
nsTArray<FilePointer> fileArray;
size_t i;
for (i = 0; i < ArrayLength(kNames); ++i) {
FilePointer f;
tmpDir->Clone(getter_AddRefs(f));
ASSERT_TRUE(f);
ASSERT_NS_SUCCEEDED(f->AppendNative(nsDependentCString(kNames[i])));
fileArray.AppendElement(f);
}
ASSERT_EQ(fileArray.IndexOf(kNames[1], 0, nsFileNameComparator()), size_t(1));
ASSERT_TRUE(fileArray.ApplyIf(
kNames[1], 0, nsFileNameComparator(), [](size_t i) { return i == 1; },
[]() { return false; }));
// It's unclear what 'operator<' means for nsCOMPtr, but whatever...
ASSERT_TRUE(
test_basic_array(fileArray.Elements(), fileArray.Length(), tmpDir));
}
//----
class RefcountedObject {
public:
RefcountedObject() : rc(0) { val = std::rand(); }
void AddRef() {
MOZ_DIAGNOSTIC_ASSERT(rcchangeallowed);
++rc;
}
void Release() {
MOZ_DIAGNOSTIC_ASSERT(rcchangeallowed);
if (--rc == 0) delete this;
}
~RefcountedObject() = default;
int32_t GetVal() const { return val; }
static void AllowRCChange() { rcchangeallowed = true; }
static void ForbidRCChange() { rcchangeallowed = false; }
bool operator<(const RefcountedObject& b) const {
return this->GetVal() < b.GetVal();
};
bool operator==(const RefcountedObject& b) const {
return this->GetVal() == b.GetVal();
};
private:
int rc;
int32_t val;
static bool rcchangeallowed;
};
bool RefcountedObject::rcchangeallowed = true;
class ObjectComparatorRaw {
public:
bool Equals(RefcountedObject* const& a, RefcountedObject* const& b) const {
return a->GetVal() == b->GetVal();
}
bool LessThan(RefcountedObject* const& a, RefcountedObject* const& b) const {
return a->GetVal() < b->GetVal();
}
};
class ObjectComparatorRefPtr {
public:
bool Equals(RefPtr<RefcountedObject> const& a,
RefPtr<RefcountedObject> const& b) const {
return a->GetVal() == b->GetVal();
}
bool LessThan(RefPtr<RefcountedObject> const& a,
RefPtr<RefcountedObject> const& b) const {
return a->GetVal() < b->GetVal();
}
};
TEST(TArray, test_refptr_array)
{
nsTArray<RefPtr<RefcountedObject>> objArray;
RefcountedObject* a = new RefcountedObject();
a->AddRef();
RefcountedObject* b = new RefcountedObject();
b->AddRef();
RefcountedObject* c = new RefcountedObject();
c->AddRef();
objArray.AppendElement(a);
objArray.AppendElement(b);
objArray.AppendElement(c);
ASSERT_EQ(objArray.IndexOf(b), size_t(1));
ASSERT_TRUE(objArray.ApplyIf(
b,
[&](size_t i, RefPtr<RefcountedObject>& r) { return i == 1 && r == b; },
[]() { return false; }));
a->Release();
b->Release();
c->Release();
}
TEST(TArray, test_sort_refptr)
{
int numobjects = 1111111;
std::vector<RefPtr<RefcountedObject>> myobjects;
for (int i = 0; i < numobjects; i++) {
auto* obj = new RefcountedObject();
myobjects.push_back(obj);
}
{
nsTArray<RefPtr<RefcountedObject>> objArray(numobjects);
std::vector<RefPtr<RefcountedObject>> plainRefPtrArray(numobjects, nullptr);
for (int i = 0; i < numobjects; i++) {
objArray.AppendElement(myobjects[i]);
plainRefPtrArray[i] = myobjects[i];
}
ASSERT_EQ(objArray.IndexOf(myobjects[1]), size_t(1));
ASSERT_TRUE(objArray.ApplyIf(
myobjects[1],
[&](size_t i, RefPtr<RefcountedObject>& r) {
return i == 1 && r == myobjects[1];
},
[]() { return false; }));
// Do not expect that sorting affects the reference counters of elements.
RefcountedObject::ForbidRCChange();
// Sort objArray with explicit, pointee value based comparator
objArray.Sort(ObjectComparatorRefPtr());
for (int i = 0; i < numobjects - 1; i++) {
ASSERT_TRUE(objArray[i]->GetVal() <= objArray[i + 1]->GetVal());
}
// std::sort plainRefPtrArray
auto comp = ObjectComparatorRefPtr();
std::sort(plainRefPtrArray.begin(), plainRefPtrArray.end(),
[&comp](auto const& left, auto const& right) {
return comp.LessThan(left, right);
});
// We expect the order to be the same.
for (int i = 0; i < numobjects; i++) {
ASSERT_TRUE(objArray[i]->GetVal() == plainRefPtrArray[i]->GetVal());
}
RefcountedObject::AllowRCChange();
// Destroy the arrays
}
for (int i = 0; i < numobjects; i++) {
myobjects.pop_back();
}
}
//----
TEST(TArray, test_ptrarray)
{
nsTArray<uint32_t*> ary;
ASSERT_EQ(ary.SafeElementAt(0), nullptr);
ASSERT_EQ(ary.SafeElementAt(1000), nullptr);
uint32_t a = 10;
ary.AppendElement(&a);
ASSERT_EQ(*ary[0], a);
ASSERT_EQ(*ary.SafeElementAt(0), a);
nsTArray<const uint32_t*> cary;
ASSERT_EQ(cary.SafeElementAt(0), nullptr);
ASSERT_EQ(cary.SafeElementAt(1000), nullptr);
const uint32_t b = 14;
cary.AppendElement(&a);
cary.AppendElement(&b);
ASSERT_EQ(*cary[0], a);
ASSERT_EQ(*cary[1], b);
ASSERT_EQ(*cary.SafeElementAt(0), a);
ASSERT_EQ(*cary.SafeElementAt(1), b);
}
//----
// This test relies too heavily on the existence of DebugGetHeader to be
// useful in non-debug builds.
#ifdef DEBUG
TEST(TArray, test_autoarray)
{
uint32_t data[] = {4, 6, 8, 2, 4, 1, 5, 7, 3};
AutoTArray<uint32_t, MOZ_ARRAY_LENGTH(data)> array;
void* hdr = array.DebugGetHeader();
ASSERT_NE(hdr, nsTArray<uint32_t>().DebugGetHeader());
ASSERT_NE(hdr,
(AutoTArray<uint32_t, MOZ_ARRAY_LENGTH(data)>().DebugGetHeader()));
array.AppendElement(1u);
ASSERT_EQ(hdr, array.DebugGetHeader());
array.RemoveElement(1u);
array.AppendElements(data, ArrayLength(data));
ASSERT_EQ(hdr, array.DebugGetHeader());
array.AppendElement(2u);
ASSERT_NE(hdr, array.DebugGetHeader());
array.Clear();
array.Compact();
ASSERT_EQ(hdr, array.DebugGetHeader());
array.AppendElements(data, ArrayLength(data));
ASSERT_EQ(hdr, array.DebugGetHeader());
nsTArray<uint32_t> array2;
void* emptyHdr = array2.DebugGetHeader();
array.SwapElements(array2);
ASSERT_NE(emptyHdr, array.DebugGetHeader());
ASSERT_NE(hdr, array2.DebugGetHeader());
size_t i;
for (i = 0; i < ArrayLength(data); ++i) {
ASSERT_EQ(array2[i], data[i]);
}
ASSERT_TRUE(array.IsEmpty());
array.Compact();
array.AppendElements(data, ArrayLength(data));
uint32_t data3[] = {5, 7, 11};
AutoTArray<uint32_t, MOZ_ARRAY_LENGTH(data3)> array3;
array3.AppendElements(data3, ArrayLength(data3));
array.SwapElements(array3);
for (i = 0; i < ArrayLength(data); ++i) {
ASSERT_EQ(array3[i], data[i]);
}
for (i = 0; i < ArrayLength(data3); ++i) {
ASSERT_EQ(array[i], data3[i]);
}
}
#endif
//----
// IndexOf used to potentially scan beyond the end of the array. Test for
// this incorrect behavior by adding a value (5), removing it, then seeing
// if IndexOf finds it.
TEST(TArray, test_indexof)
{
nsTArray<int> array;
array.AppendElement(0);
// add and remove the 5
array.AppendElement(5);
array.RemoveElementAt(1);
// we should not find the 5!
auto no_index = array.NoIndex; // Fixes gtest compilation error.
ASSERT_EQ(array.IndexOf(5, 1), no_index);
ASSERT_FALSE(array.ApplyIf(
5, 1, []() { return true; }, []() { return false; }));
}
//----
template <class Array>
static bool is_heap(const Array& ary, size_t len) {
size_t index = 1;
while (index < len) {
if (ary[index] > ary[(index - 1) >> 1]) return false;
index++;
}
return true;
}
//----
// An array |arr| is using its auto buffer if |&arr < arr.Elements()| and
// |arr.Elements() - &arr| is small.
#define IS_USING_AUTO(arr) \
((uintptr_t) & (arr) < (uintptr_t)(arr).Elements() && \
((ptrdiff_t)(arr).Elements() - (ptrdiff_t) & (arr)) <= 16)
#define CHECK_IS_USING_AUTO(arr) \
do { \
ASSERT_TRUE(IS_USING_AUTO(arr)); \
} while (0)
#define CHECK_NOT_USING_AUTO(arr) \
do { \
ASSERT_FALSE(IS_USING_AUTO(arr)); \
} while (0)
#define CHECK_USES_SHARED_EMPTY_HDR(arr) \
do { \
nsTArray<int> _empty; \
ASSERT_EQ(_empty.Elements(), (arr).Elements()); \
} while (0)
#define CHECK_EQ_INT(actual, expected) \
do { \
ASSERT_EQ((actual), (expected)); \
} while (0)
#define CHECK_ARRAY(arr, data) \
do { \
CHECK_EQ_INT((arr).Length(), (size_t)ArrayLength(data)); \
for (size_t _i = 0; _i < ArrayLength(data); _i++) { \
CHECK_EQ_INT((arr)[_i], (data)[_i]); \
} \
} while (0)
TEST(TArray, test_swap)
{
// Test nsTArray::SwapElements. Unfortunately there are many cases.
int data1[] = {8, 6, 7, 5};
int data2[] = {3, 0, 9};
// Swap two auto arrays.
{
AutoTArray<int, 8> a;
AutoTArray<int, 6> b;
a.AppendElements(data1, ArrayLength(data1));
b.AppendElements(data2, ArrayLength(data2));
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
CHECK_ARRAY(a, data2);
CHECK_ARRAY(b, data1);
}
// Swap two auto arrays -- one whose data lives on the heap, the other whose
// data lives on the stack -- which each fits into the other's auto storage.
{
AutoTArray<int, 3> a;
AutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
a.RemoveElementAt(3);
b.AppendElements(data2, ArrayLength(data2));
// Here and elsewhere, we assert that if we start with an auto array
// capable of storing N elements, we store N+1 elements into the array, and
// then we remove one element, that array is still not using its auto
// buffer.
//
// This isn't at all required by the TArray API. It would be fine if, when
// we shrink back to N elements, the TArray frees its heap storage and goes
// back to using its stack storage. But we assert here as a check that the
// test does what we expect. If the TArray implementation changes, just
// change the failing assertions.
CHECK_NOT_USING_AUTO(a);
// This check had better not change, though.
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_IS_USING_AUTO(b);
CHECK_ARRAY(a, data2);
int expectedB[] = {8, 6, 7};
CHECK_ARRAY(b, expectedB);
}
// Swap two auto arrays which are using heap storage such that one fits into
// the other's auto storage, but the other needs to stay on the heap.
{
AutoTArray<int, 3> a;
AutoTArray<int, 2> b;
a.AppendElements(data1, ArrayLength(data1));
a.RemoveElementAt(3);
b.AppendElements(data2, ArrayLength(data2));
b.RemoveElementAt(2);
CHECK_NOT_USING_AUTO(a);
CHECK_NOT_USING_AUTO(b);
a.SwapElements(b);
CHECK_NOT_USING_AUTO(b);
int expected1[] = {3, 0};
int expected2[] = {8, 6, 7};
CHECK_ARRAY(a, expected1);
CHECK_ARRAY(b, expected2);
}
// Swap two arrays, neither of which fits into the other's auto-storage.
{
AutoTArray<int, 1> a;
AutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
b.AppendElements(data2, ArrayLength(data2));
a.SwapElements(b);
CHECK_ARRAY(a, data2);
CHECK_ARRAY(b, data1);
}
// Swap an empty nsTArray with a non-empty AutoTArray.
{
nsTArray<int> a;
AutoTArray<int, 3> b;
b.AppendElements(data2, ArrayLength(data2));
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_ARRAY(a, data2);
CHECK_EQ_INT(b.Length(), size_t(0));
CHECK_IS_USING_AUTO(b);
}
// Swap two big auto arrays.
{
const unsigned size = 8192;
AutoTArray<unsigned, size> a;
AutoTArray<unsigned, size> b;
for (unsigned i = 0; i < size; i++) {
a.AppendElement(i);
b.AppendElement(i + 1);
}
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
CHECK_EQ_INT(a.Length(), size_t(size));
CHECK_EQ_INT(b.Length(), size_t(size));
for (unsigned i = 0; i < size; i++) {
CHECK_EQ_INT(a[i], i + 1);
CHECK_EQ_INT(b[i], i);
}
}
// Swap two arrays and make sure that their capacities don't increase
// unnecessarily.
{
nsTArray<int> a;
nsTArray<int> b;
b.AppendElements(data2, ArrayLength(data2));
CHECK_EQ_INT(a.Capacity(), size_t(0));
size_t bCapacity = b.Capacity();
a.SwapElements(b);
// Make sure that we didn't increase the capacity of either array.
CHECK_ARRAY(a, data2);
CHECK_EQ_INT(b.Length(), size_t(0));
CHECK_EQ_INT(b.Capacity(), size_t(0));
CHECK_EQ_INT(a.Capacity(), bCapacity);
}
// Swap an auto array with a TArray, then clear the auto array and make sure
// it doesn't forget the fact that it has an auto buffer.
{
nsTArray<int> a;
AutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
a.SwapElements(b);
CHECK_EQ_INT(a.Length(), size_t(0));
CHECK_ARRAY(b, data1);
b.Clear();
CHECK_USES_SHARED_EMPTY_HDR(a);
CHECK_IS_USING_AUTO(b);
}
// Same thing as the previous test, but with more auto arrays.
{
AutoTArray<int, 16> a;
AutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
a.SwapElements(b);
CHECK_EQ_INT(a.Length(), size_t(0));
CHECK_ARRAY(b, data1);
b.Clear();
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
}
// Swap an empty nsTArray and an empty AutoTArray.
{
AutoTArray<int, 8> a;
nsTArray<int> b;
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_NOT_USING_AUTO(b);
CHECK_EQ_INT(a.Length(), size_t(0));
CHECK_EQ_INT(b.Length(), size_t(0));
}
// Swap empty auto array with non-empty AutoTArray using malloc'ed storage.
// I promise, all these tests have a point.
{
AutoTArray<int, 2> a;
AutoTArray<int, 1> b;
a.AppendElements(data1, ArrayLength(data1));
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_NOT_USING_AUTO(b);
CHECK_ARRAY(b, data1);
CHECK_EQ_INT(a.Length(), size_t(0));
}
// Test fallible SwapElements of nsTArray.
{
nsTArray<int> a;
nsTArray<int> b;
a.AppendElements(data1, ArrayLength(data1));
ASSERT_TRUE(a.SwapElements(b, fallible));
CHECK_ARRAY(b, data1);
CHECK_EQ_INT(a.Length(), size_t(0));
}
// Test fallible SwapElements of FallibleTArray.
{
FallibleTArray<int> a;
FallibleTArray<int> b;
ASSERT_TRUE(a.AppendElements(data1, ArrayLength(data1), fallible));
ASSERT_TRUE(a.SwapElements(b, fallible));
CHECK_ARRAY(b, data1);
CHECK_EQ_INT(a.Length(), size_t(0));
}
// Test fallible SwapElements of FallibleTArray with large AutoTArray.
{
FallibleTArray<int> a;
AutoTArray<int, 8192> b;
ASSERT_TRUE(a.AppendElements(data1, ArrayLength(data1), fallible));
ASSERT_TRUE(a.SwapElements(b, fallible));
CHECK_IS_USING_AUTO(b);
CHECK_ARRAY(b, data1);
CHECK_EQ_INT(a.Length(), size_t(0));
}
}
// Bug 1171296: Disabled on andoid due to crashes.
#if !defined(ANDROID)
TEST(TArray, test_fallible)
{
// Test that FallibleTArray works properly; that is, it never OOMs, but
// instead eventually returns false.
//
// This test is only meaningful on 32-bit systems. On a 64-bit system, we
// might never OOM.
if (sizeof(void*) > 4) {
ASSERT_TRUE(true);
return;
}
// Allocate a bunch of 128MB arrays. Larger allocations will fail on some
// platforms without actually hitting OOM.
//
// 36 * 128MB > 4GB, so we should definitely OOM by the 36th array.
const unsigned numArrays = 36;
FallibleTArray<char> arrays[numArrays];
bool oomed = false;
for (size_t i = 0; i < numArrays; i++) {
// SetCapacity allocates the requested capacity + a header, and we want to
// avoid allocating more than 128MB overall because of the size padding it
// will cause, which depends on allocator behavior, so use 128MB - an
// arbitrary size larger than the array header, so that chances are good
// that allocations will always be 128MB.
bool success = arrays[i].SetCapacity(128 * 1024 * 1024 - 1024, fallible);
if (!success) {
// We got our OOM. Check that it didn't come too early.
oomed = true;
# ifdef XP_WIN
// 32-bit Windows sometimes OOMs on the 6th, 7th, or 8th. To keep the
// test green, choose the lower of those: the important thing here is
// that some allocations fail and some succeed. We're not too
// concerned about how many iterations it takes.
const size_t kOOMIterations = 6;
# else
const size_t kOOMIterations = 8;
# endif
ASSERT_GE(i, kOOMIterations)
<< "Got OOM on iteration " << i << ". Too early!";
}
}
ASSERT_TRUE(oomed)
<< "Didn't OOM or crash? nsTArray::SetCapacity"
"must be lying.";
}
#endif
TEST(TArray, test_conversion_operator)
{
FallibleTArray<int> f;
const FallibleTArray<int> fconst;
nsTArray<int> t;
const nsTArray<int> tconst;
AutoTArray<int, 8> tauto;
const AutoTArray<int, 8> tautoconst;
#define CHECK_ARRAY_CAST(type) \
do { \
const type<int>& z1 = f; \
ASSERT_EQ((void*)&z1, (void*)&f); \
const type<int>& z2 = fconst; \
ASSERT_EQ((void*)&z2, (void*)&fconst); \
const type<int>& z9 = t; \
ASSERT_EQ((void*)&z9, (void*)&t); \
const type<int>& z10 = tconst; \
ASSERT_EQ((void*)&z10, (void*)&tconst); \
const type<int>& z11 = tauto; \
ASSERT_EQ((void*)&z11, (void*)&tauto); \
const type<int>& z12 = tautoconst; \
ASSERT_EQ((void*)&z12, (void*)&tautoconst); \
} while (0)
CHECK_ARRAY_CAST(FallibleTArray);
CHECK_ARRAY_CAST(nsTArray);
#undef CHECK_ARRAY_CAST
}
template <class T>
struct BufAccessor : public T {
void* GetHdr() { return T::mHdr; }
};
TEST(TArray, test_SetLengthAndRetainStorage_no_ctor)
{
// 1050 because sizeof(int)*1050 is more than a page typically.
const int N = 1050;
FallibleTArray<int> f;
nsTArray<int> t;
AutoTArray<int, N> tauto;
#define LPAREN (
#define RPAREN )
#define FOR_EACH(pre, post) \
do { \
pre f post; \
pre t post; \
pre tauto post; \
} while (0)
// Setup test arrays.
FOR_EACH(; Unused <<, .SetLength(N, fallible));
for (int n = 0; n < N; ++n) {
FOR_EACH(;, [n] = n);
}
void* initial_Hdrs[] = {
static_cast<BufAccessor<FallibleTArray<int>>&>(f).GetHdr(),
static_cast<BufAccessor<nsTArray<int>>&>(t).GetHdr(),
static_cast<BufAccessor<AutoTArray<int, N>>&>(tauto).GetHdr(), nullptr};
// SetLengthAndRetainStorage(n), should NOT overwrite memory when T hasn't
// a default constructor.
FOR_EACH(;, .SetLengthAndRetainStorage(8));
FOR_EACH(;, .SetLengthAndRetainStorage(12));
for (int n = 0; n < 12; ++n) {
ASSERT_EQ(f[n], n);
ASSERT_EQ(t[n], n);
ASSERT_EQ(tauto[n], n);
}
FOR_EACH(;, .SetLengthAndRetainStorage(0));
FOR_EACH(;, .SetLengthAndRetainStorage(N));
for (int n = 0; n < N; ++n) {
ASSERT_EQ(f[n], n);
ASSERT_EQ(t[n], n);
ASSERT_EQ(tauto[n], n);
}
void* current_Hdrs[] = {
static_cast<BufAccessor<FallibleTArray<int>>&>(f).GetHdr(),
static_cast<BufAccessor<nsTArray<int>>&>(t).GetHdr(),
static_cast<BufAccessor<AutoTArray<int, N>>&>(tauto).GetHdr(), nullptr};
// SetLengthAndRetainStorage(n) should NOT have reallocated the internal
// memory.
ASSERT_EQ(sizeof(initial_Hdrs), sizeof(current_Hdrs));
for (size_t n = 0; n < sizeof(current_Hdrs) / sizeof(current_Hdrs[0]); ++n) {
ASSERT_EQ(current_Hdrs[n], initial_Hdrs[n]);
}
#undef FOR_EACH
#undef LPAREN
#undef RPAREN
}
template <typename Comparator>
bool TestCompareMethods(const Comparator& aComp) {
nsTArray<int> ary({57, 4, 16, 17, 3, 5, 96, 12});
ary.Sort(aComp);
const int sorted[] = {3, 4, 5, 12, 16, 17, 57, 96};
for (size_t i = 0; i < MOZ_ARRAY_LENGTH(sorted); i++) {
if (sorted[i] != ary[i]) {
return false;
}
}
if (!ary.ContainsSorted(5, aComp)) {
return false;
}
if (ary.ContainsSorted(42, aComp)) {
return false;
}
if (ary.BinaryIndexOf(16, aComp) != 4) {
return false;
}
return true;
}
struct IntComparator {
bool Equals(int aLeft, int aRight) const { return aLeft == aRight; }
bool LessThan(int aLeft, int aRight) const { return aLeft < aRight; }
};
TEST(TArray, test_comparator_objects)
{
ASSERT_TRUE(TestCompareMethods(IntComparator()));
ASSERT_TRUE(
TestCompareMethods([](int aLeft, int aRight) { return aLeft - aRight; }));
}
struct Big {
uint64_t size[40] = {};
};
TEST(TArray, test_AutoTArray_SwapElements)
{
AutoTArray<Big, 40> oneArray;
AutoTArray<Big, 40> another;
for (size_t i = 0; i < 8; ++i) {
oneArray.AppendElement(Big());
}
oneArray[0].size[10] = 1;
for (size_t i = 0; i < 9; ++i) {
another.AppendElement(Big());
}
oneArray.SwapElements(another);
ASSERT_EQ(oneArray.Length(), 9u);
ASSERT_EQ(another.Length(), 8u);
ASSERT_EQ(oneArray[0].size[10], 0u);
ASSERT_EQ(another[0].size[10], 1u);
}
} // namespace TestTArray