DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (a4ef4d6cdff0)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
// Copied from upstream at revision 195c13743fe0ebc658714e2a9567d86529f20443.
// mach_override.c semver:1.2.0
//   Copyright (c) 2003-2012 Jonathan 'Wolf' Rentzsch: http://rentzsch.com
//   Some rights reserved: http://opensource.org/licenses/mit
//   https://github.com/rentzsch/mach_override

#include "mach_override.h"

#include <mach-o/dyld.h>
#include <mach/mach_host.h>
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <sys/mman.h>

#include <CoreServices/CoreServices.h>

/**************************
*
*	Constants
*
**************************/
#pragma mark	-
#pragma mark	(Constants)

#define kPageSize 4096
#if defined(__ppc__) || defined(__POWERPC__)

long kIslandTemplate[] = {
	0x9001FFFC,	//	stw		r0,-4(SP)
	0x3C00DEAD,	//	lis		r0,0xDEAD
	0x6000BEEF,	//	ori		r0,r0,0xBEEF
	0x7C0903A6,	//	mtctr	r0
	0x8001FFFC,	//	lwz		r0,-4(SP)
	0x60000000,	//	nop		; optionally replaced
	0x4E800420 	//	bctr
};

#define kAddressHi			3
#define kAddressLo			5
#define kInstructionHi		10
#define kInstructionLo		11

#elif defined(__i386__)

#define kOriginalInstructionsSize 16
// On X86 we migh need to instert an add with a 32 bit immediate after the
// original instructions.
#define kMaxFixupSizeIncrease 5

unsigned char kIslandTemplate[] = {
	// kOriginalInstructionsSize nop instructions so that we
	// should have enough space to host original instructions
	0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
	0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
	// Now the real jump instruction
	0xE9, 0xEF, 0xBE, 0xAD, 0xDE
};

#define kInstructions	0
#define kJumpAddress    kInstructions + kOriginalInstructionsSize + 1
#elif defined(__x86_64__)

#define kOriginalInstructionsSize 32
// On X86-64 we never need to instert a new instruction.
#define kMaxFixupSizeIncrease 0

#define kJumpAddress    kOriginalInstructionsSize + 6

unsigned char kIslandTemplate[] = {
	// kOriginalInstructionsSize nop instructions so that we
	// should have enough space to host original instructions
	0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
	0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
	0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
	0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
	// Now the real jump instruction
	0xFF, 0x25, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00
};

#endif

/**************************
*
*	Data Types
*
**************************/
#pragma mark	-
#pragma mark	(Data Types)

typedef	struct	{
	char	instructions[sizeof(kIslandTemplate)];
}	BranchIsland;

/**************************
*
*	Funky Protos
*
**************************/
#pragma mark	-
#pragma mark	(Funky Protos)

static mach_error_t
allocateBranchIsland(
		BranchIsland	**island,
		void *originalFunctionAddress);

	mach_error_t
freeBranchIsland(
		BranchIsland	*island );

#if defined(__ppc__) || defined(__POWERPC__)
	mach_error_t
setBranchIslandTarget(
		BranchIsland	*island,
		const void		*branchTo,
		long			instruction );
#endif

#if defined(__i386__) || defined(__x86_64__)
mach_error_t
setBranchIslandTarget_i386(
						   BranchIsland	*island,
						   const void		*branchTo,
						   char*			instructions );
void
atomic_mov64(
		uint64_t *targetAddress,
		uint64_t value );

	static Boolean
eatKnownInstructions(
	unsigned char	*code,
	uint64_t		*newInstruction,
	int				*howManyEaten,
	char			*originalInstructions,
	int				*originalInstructionCount,
	uint8_t			*originalInstructionSizes );

	static void
fixupInstructions(
    uint32_t		offset,
    void		*instructionsToFix,
	int			instructionCount,
	uint8_t		*instructionSizes );
#endif

/*******************************************************************************
*
*	Interface
*
*******************************************************************************/
#pragma mark	-
#pragma mark	(Interface)

#if defined(__i386__) || defined(__x86_64__)
mach_error_t makeIslandExecutable(void *address) {
	mach_error_t err = err_none;
    uintptr_t page = (uintptr_t)address & ~(uintptr_t)(kPageSize-1);
    int e = err_none;
    e |= mprotect((void *)page, kPageSize, PROT_EXEC | PROT_READ | PROT_WRITE);
    e |= msync((void *)page, kPageSize, MS_INVALIDATE );
    if (e) {
        err = err_cannot_override;
    }
    return err;
}
#endif

    mach_error_t
mach_override_ptr(
	void *originalFunctionAddress,
    const void *overrideFunctionAddress,
    void **originalFunctionReentryIsland )
{
	assert( originalFunctionAddress );
	assert( overrideFunctionAddress );

	// this addresses overriding such functions as AudioOutputUnitStart()
	// test with modified DefaultOutputUnit project
#if defined(__x86_64__)
    for(;;){
        if(*(uint16_t*)originalFunctionAddress==0x25FF)    // jmp qword near [rip+0x????????]
            originalFunctionAddress=*(void**)((char*)originalFunctionAddress+6+*(int32_t *)((uint16_t*)originalFunctionAddress+1));
        else break;
    }
#elif defined(__i386__)
    for(;;){
        if(*(uint16_t*)originalFunctionAddress==0x25FF)    // jmp *0x????????
            originalFunctionAddress=**(void***)((uint16_t*)originalFunctionAddress+1);
        else break;
    }
#endif

	long	*originalFunctionPtr = (long*) originalFunctionAddress;
	mach_error_t	err = err_none;

#if defined(__ppc__) || defined(__POWERPC__)
	//	Ensure first instruction isn't 'mfctr'.
	#define	kMFCTRMask			0xfc1fffff
	#define	kMFCTRInstruction	0x7c0903a6

	long	originalInstruction = *originalFunctionPtr;
	if( !err && ((originalInstruction & kMFCTRMask) == kMFCTRInstruction) )
		err = err_cannot_override;
#elif defined(__i386__) || defined(__x86_64__)
	int eatenCount = 0;
	int originalInstructionCount = 0;
	char originalInstructions[kOriginalInstructionsSize];
	uint8_t originalInstructionSizes[kOriginalInstructionsSize];
	uint64_t jumpRelativeInstruction = 0; // JMP

	Boolean overridePossible = eatKnownInstructions ((unsigned char *)originalFunctionPtr,
										&jumpRelativeInstruction, &eatenCount,
										originalInstructions, &originalInstructionCount,
										originalInstructionSizes );
	if (eatenCount + kMaxFixupSizeIncrease > kOriginalInstructionsSize) {
		//printf ("Too many instructions eaten\n");
		overridePossible = false;
	}
	if (!overridePossible) err = err_cannot_override;
	if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);
#endif

	//	Make the original function implementation writable.
	if( !err ) {
		err = vm_protect( mach_task_self(),
				(vm_address_t) originalFunctionPtr, 8, false,
				(VM_PROT_ALL | VM_PROT_COPY) );
		if( err )
			err = vm_protect( mach_task_self(),
					(vm_address_t) originalFunctionPtr, 8, false,
					(VM_PROT_DEFAULT | VM_PROT_COPY) );
	}
	if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);

	//	Allocate and target the escape island to the overriding function.
	BranchIsland	*escapeIsland = NULL;
	if( !err )
		err = allocateBranchIsland( &escapeIsland, originalFunctionAddress );
		if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);


#if defined(__ppc__) || defined(__POWERPC__)
	if( !err )
		err = setBranchIslandTarget( escapeIsland, overrideFunctionAddress, 0 );

	//	Build the branch absolute instruction to the escape island.
	long	branchAbsoluteInstruction = 0; // Set to 0 just to silence warning.
	if( !err ) {
		long escapeIslandAddress = ((long) escapeIsland) & 0x3FFFFFF;
		branchAbsoluteInstruction = 0x48000002 | escapeIslandAddress;
	}
#elif defined(__i386__) || defined(__x86_64__)
        if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);

	if( !err )
		err = setBranchIslandTarget_i386( escapeIsland, overrideFunctionAddress, 0 );

	if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);
	// Build the jump relative instruction to the escape island
#endif


#if defined(__i386__) || defined(__x86_64__)
	if (!err) {
		uint32_t addressOffset = ((char*)escapeIsland - (char*)originalFunctionPtr - 5);
		addressOffset = OSSwapInt32(addressOffset);

		jumpRelativeInstruction |= 0xE900000000000000LL;
		jumpRelativeInstruction |= ((uint64_t)addressOffset & 0xffffffff) << 24;
		jumpRelativeInstruction = OSSwapInt64(jumpRelativeInstruction);
	}
#endif

	//	Optionally allocate & return the reentry island. This may contain relocated
	//  jmp instructions and so has all the same addressing reachability requirements
	//  the escape island has to the original function, except the escape island is
	//  technically our original function.
	BranchIsland	*reentryIsland = NULL;
	if( !err && originalFunctionReentryIsland ) {
		err = allocateBranchIsland( &reentryIsland, escapeIsland);
		if( !err )
			*originalFunctionReentryIsland = reentryIsland;
	}

#if defined(__ppc__) || defined(__POWERPC__)
	//	Atomically:
	//	o If the reentry island was allocated:
	//		o Insert the original instruction into the reentry island.
	//		o Target the reentry island at the 2nd instruction of the
	//		  original function.
	//	o Replace the original instruction with the branch absolute.
	if( !err ) {
		int escapeIslandEngaged = false;
		do {
			if( reentryIsland )
				err = setBranchIslandTarget( reentryIsland,
						(void*) (originalFunctionPtr+1), originalInstruction );
			if( !err ) {
				escapeIslandEngaged = CompareAndSwap( originalInstruction,
										branchAbsoluteInstruction,
										(UInt32*)originalFunctionPtr );
				if( !escapeIslandEngaged ) {
					//	Someone replaced the instruction out from under us,
					//	re-read the instruction, make sure it's still not
					//	'mfctr' and try again.
					originalInstruction = *originalFunctionPtr;
					if( (originalInstruction & kMFCTRMask) == kMFCTRInstruction)
						err = err_cannot_override;
				}
			}
		} while( !err && !escapeIslandEngaged );
	}
#elif defined(__i386__) || defined(__x86_64__)
	// Atomically:
	//	o If the reentry island was allocated:
	//		o Insert the original instructions into the reentry island.
	//		o Target the reentry island at the first non-replaced
	//        instruction of the original function.
	//	o Replace the original first instructions with the jump relative.
	//
	// Note that on i386, we do not support someone else changing the code under our feet
	if ( !err ) {
		uint32_t offset = (uintptr_t)originalFunctionPtr - (uintptr_t)reentryIsland;
		fixupInstructions(offset, originalInstructions,
					originalInstructionCount, originalInstructionSizes );

		if( reentryIsland )
			err = setBranchIslandTarget_i386( reentryIsland,
										 (void*) ((char *)originalFunctionPtr+eatenCount), originalInstructions );
		// try making islands executable before planting the jmp
#if defined(__x86_64__) || defined(__i386__)
        if( !err )
            err = makeIslandExecutable(escapeIsland);
        if( !err && reentryIsland )
            err = makeIslandExecutable(reentryIsland);
#endif
		if ( !err )
			atomic_mov64((uint64_t *)originalFunctionPtr, jumpRelativeInstruction);
	}
#endif

	//	Clean up on error.
	if( err ) {
		if( reentryIsland )
			freeBranchIsland( reentryIsland );
		if( escapeIsland )
			freeBranchIsland( escapeIsland );
	}

	return err;
}

/*******************************************************************************
*
*	Implementation
*
*******************************************************************************/
#pragma mark	-
#pragma mark	(Implementation)

static bool jump_in_range(intptr_t from, intptr_t to) {
  intptr_t field_value = to - from - 5;
  int32_t field_value_32 = field_value;
  return field_value == field_value_32;
}

/*******************************************************************************
	Implementation: Allocates memory for a branch island.

	@param	island			<-	The allocated island.
	@result					<-	mach_error_t

	***************************************************************************/

static mach_error_t
allocateBranchIslandAux(
		BranchIsland	**island,
		void *originalFunctionAddress,
		bool forward)
{
	assert( island );
	assert( sizeof( BranchIsland ) <= kPageSize );

	vm_map_t task_self = mach_task_self();
	vm_address_t original_address = (vm_address_t) originalFunctionAddress;
	vm_address_t address = original_address;

	for (;;) {
		vm_size_t vmsize = 0;
		memory_object_name_t object = 0;
		kern_return_t kr = 0;
		vm_region_flavor_t flavor = VM_REGION_BASIC_INFO;
		// Find the region the address is in.
#if __WORDSIZE == 32
		vm_region_basic_info_data_t info;
		mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
		kr = vm_region(task_self, &address, &vmsize, flavor,
			       (vm_region_info_t)&info, &info_count, &object);
#else
		vm_region_basic_info_data_64_t info;
		mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
		kr = vm_region_64(task_self, &address, &vmsize, flavor,
				  (vm_region_info_t)&info, &info_count, &object);
#endif
		if (kr != KERN_SUCCESS)
			return kr;
		assert((address & (kPageSize - 1)) == 0);

		// Go to the first page before or after this region
		vm_address_t new_address = forward ? address + vmsize : address - kPageSize;
#if __WORDSIZE == 64
		if(!jump_in_range(original_address, new_address))
			break;
#endif
		address = new_address;

		// Try to allocate this page.
		kr = vm_allocate(task_self, &address, kPageSize, 0);
		if (kr == KERN_SUCCESS) {
			*island = (BranchIsland*) address;
			return err_none;
		}
		if (kr != KERN_NO_SPACE)
			return kr;
	}

	return KERN_NO_SPACE;
}

static mach_error_t
allocateBranchIsland(
		BranchIsland	**island,
		void *originalFunctionAddress)
{
  mach_error_t err =
    allocateBranchIslandAux(island, originalFunctionAddress, true);
  if (!err)
    return err;
  return allocateBranchIslandAux(island, originalFunctionAddress, false);
}


/*******************************************************************************
	Implementation: Deallocates memory for a branch island.

	@param	island	->	The island to deallocate.
	@result			<-	mach_error_t

	***************************************************************************/

	mach_error_t
freeBranchIsland(
		BranchIsland	*island )
{
	assert( island );
	assert( (*(long*)&island->instructions[0]) == kIslandTemplate[0] );
	assert( sizeof( BranchIsland ) <= kPageSize );
	return vm_deallocate( mach_task_self(), (vm_address_t) island,
			      kPageSize );
}

/*******************************************************************************
	Implementation: Sets the branch island's target, with an optional
	instruction.

	@param	island		->	The branch island to insert target into.
	@param	branchTo	->	The address of the target.
	@param	instruction	->	Optional instruction to execute prior to branch. Set
							to zero for nop.
	@result				<-	mach_error_t

	***************************************************************************/
#if defined(__ppc__) || defined(__POWERPC__)
	mach_error_t
setBranchIslandTarget(
		BranchIsland	*island,
		const void		*branchTo,
		long			instruction )
{
	//	Copy over the template code.
    bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) );

    //	Fill in the address.
    ((short*)island->instructions)[kAddressLo] = ((long) branchTo) & 0x0000FFFF;
    ((short*)island->instructions)[kAddressHi]
    	= (((long) branchTo) >> 16) & 0x0000FFFF;

    //	Fill in the (optional) instuction.
    if( instruction != 0 ) {
        ((short*)island->instructions)[kInstructionLo]
        	= instruction & 0x0000FFFF;
        ((short*)island->instructions)[kInstructionHi]
        	= (instruction >> 16) & 0x0000FFFF;
    }

    //MakeDataExecutable( island->instructions, sizeof( kIslandTemplate ) );
	msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE );

    return err_none;
}
#endif

#if defined(__i386__)
	mach_error_t
setBranchIslandTarget_i386(
	BranchIsland	*island,
	const void		*branchTo,
	char*			instructions )
{

	//	Copy over the template code.
    bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) );

	// copy original instructions
	if (instructions) {
		bcopy (instructions, island->instructions + kInstructions, kOriginalInstructionsSize);
	}

    // Fill in the address.
    int32_t addressOffset = (char *)branchTo - (island->instructions + kJumpAddress + 4);
    *((int32_t *)(island->instructions + kJumpAddress)) = addressOffset;

    msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE );
    return err_none;
}

#elif defined(__x86_64__)
mach_error_t
setBranchIslandTarget_i386(
        BranchIsland	*island,
        const void		*branchTo,
        char*			instructions )
{
    // Copy over the template code.
    bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) );

    // Copy original instructions.
    if (instructions) {
        bcopy (instructions, island->instructions, kOriginalInstructionsSize);
    }

    //	Fill in the address.
    *((uint64_t *)(island->instructions + kJumpAddress)) = (uint64_t)branchTo;
    msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE );

    return err_none;
}
#endif


#if defined(__i386__) || defined(__x86_64__)
// simplistic instruction matching
typedef struct {
	unsigned int length; // max 15
	unsigned char mask[15]; // sequence of bytes in memory order
	unsigned char constraint[15]; // sequence of bytes in memory order
}	AsmInstructionMatch;

#if defined(__i386__)
static AsmInstructionMatch possibleInstructions[] = {
	// clang-format off
	{ 0x5, {0xFF, 0x00, 0x00, 0x00, 0x00}, {0xE9, 0x00, 0x00, 0x00, 0x00} },	// jmp 0x????????
	{ 0x5, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0x55, 0x89, 0xe5, 0xc9, 0xc3} },	// push %ebp; mov %esp,%ebp; leave; ret
	{ 0x1, {0xFF}, {0x90} },							// nop
	{ 0x1, {0xFF}, {0x55} },							// push %esp
	{ 0x2, {0xFF, 0xFF}, {0x89, 0xE5} },				                // mov %esp,%ebp
	{ 0x1, {0xFF}, {0x53} },							// push %ebx
	{ 0x3, {0xFF, 0xFF, 0x00}, {0x83, 0xEC, 0x00} },	                        // sub 0x??, %esp
	{ 0x6, {0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00}, {0x81, 0xEC, 0x00, 0x00, 0x00, 0x00} },	// sub 0x??, %esp with 32bit immediate
	{ 0x1, {0xFF}, {0x57} },							// push %edi
	{ 0x1, {0xFF}, {0x56} },							// push %esi
	{ 0x2, {0xFF, 0xFF}, {0x31, 0xC0} },						// xor %eax, %eax
	{ 0x3, {0xFF, 0x4F, 0x00}, {0x8B, 0x45, 0x00} },  // mov $imm(%ebp), %reg
	{ 0x3, {0xFF, 0x4C, 0x00}, {0x8B, 0x40, 0x00} },  // mov $imm(%eax-%edx), %reg
	{ 0x4, {0xFF, 0xFF, 0xFF, 0x00}, {0x8B, 0x4C, 0x24, 0x00} },  // mov $imm(%esp), %ecx
	{ 0x5, {0xFF, 0x00, 0x00, 0x00, 0x00}, {0xB8, 0x00, 0x00, 0x00, 0x00} },	// mov $imm, %eax
	{ 0x6, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0xE8, 0x00, 0x00, 0x00, 0x00, 0x58} },	// call $imm; pop %eax
	{ 0x0 }
	// clang-format on
};
#elif defined(__x86_64__)
static AsmInstructionMatch possibleInstructions[] = {
	// clang-format off
	{ 0x5, {0xFF, 0x00, 0x00, 0x00, 0x00}, {0xE9, 0x00, 0x00, 0x00, 0x00} },	// jmp 0x????????
	{ 0x1, {0xFF}, {0x90} },							// nop
	{ 0x1, {0xF8}, {0x50} },							// push %rX
	{ 0x3, {0xFF, 0xFF, 0xFF}, {0x48, 0x89, 0xE5} },				// mov %rsp,%rbp
	{ 0x4, {0xFF, 0xFF, 0xFF, 0x00}, {0x48, 0x83, 0xEC, 0x00} },	                // sub 0x??, %rsp
	{ 0x4, {0xFB, 0xFF, 0x00, 0x00}, {0x48, 0x89, 0x00, 0x00} },	                // move onto rbp
	{ 0x4, {0xFF, 0xFF, 0xFF, 0xFF}, {0x40, 0x0f, 0xbe, 0xce} },			// movsbl %sil, %ecx
	{ 0x2, {0xFF, 0x00}, {0x41, 0x00} },						// push %rXX
	{ 0x2, {0xFF, 0x00}, {0x85, 0x00} },						// test %rX,%rX
	{ 0x5, {0xF8, 0x00, 0x00, 0x00, 0x00}, {0xB8, 0x00, 0x00, 0x00, 0x00} },   // mov $imm, %reg
	{ 0x3, {0xFF, 0xFF, 0x00}, {0xFF, 0x77, 0x00} },  // pushq $imm(%rdi)
	{ 0x2, {0xFF, 0xFF}, {0x31, 0xC0} },						// xor %eax, %eax
	{ 0x2, {0xFF, 0xFF}, {0x89, 0xF8} },			// mov %edi, %eax

	//leaq offset(%rip),%rax
	{ 0x7, {0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00}, {0x48, 0x8d, 0x05, 0x00, 0x00, 0x00, 0x00} },

	{ 0x0 }
	// clang-format on
};
#endif

static Boolean codeMatchesInstruction(unsigned char *code, AsmInstructionMatch* instruction)
{
	Boolean match = true;

	size_t i;
	for (i=0; i<instruction->length; i++) {
		unsigned char mask = instruction->mask[i];
		unsigned char constraint = instruction->constraint[i];
		unsigned char codeValue = code[i];

		match = ((codeValue & mask) == constraint);
		if (!match) break;
	}

	return match;
}

#if defined(__i386__) || defined(__x86_64__)
	static Boolean
eatKnownInstructions(
	unsigned char	*code,
	uint64_t		*newInstruction,
	int				*howManyEaten,
	char			*originalInstructions,
	int				*originalInstructionCount,
	uint8_t			*originalInstructionSizes )
{
	Boolean allInstructionsKnown = true;
	int totalEaten = 0;
	unsigned char* ptr = code;
	int remainsToEat = 5; // a JMP instruction takes 5 bytes
	int instructionIndex = 0;

	if (howManyEaten) *howManyEaten = 0;
	if (originalInstructionCount) *originalInstructionCount = 0;
	while (remainsToEat > 0) {
		Boolean curInstructionKnown = false;

		// See if instruction matches one  we know
		AsmInstructionMatch* curInstr = possibleInstructions;
		do {
			if ((curInstructionKnown = codeMatchesInstruction(ptr, curInstr))) break;
			curInstr++;
		} while (curInstr->length > 0);

		// if all instruction matches failed, we don't know current instruction then, stop here
		if (!curInstructionKnown) {
			allInstructionsKnown = false;
			fprintf(stderr, "mach_override: some instructions unknown! Need to update mach_override.c\n");
			break;
		}

		// At this point, we've matched curInstr
		int eaten = curInstr->length;
		ptr += eaten;
		remainsToEat -= eaten;
		totalEaten += eaten;

		if (originalInstructionSizes) originalInstructionSizes[instructionIndex] = eaten;
		instructionIndex += 1;
		if (originalInstructionCount) *originalInstructionCount = instructionIndex;
	}


	if (howManyEaten) *howManyEaten = totalEaten;

	if (originalInstructions) {
		Boolean enoughSpaceForOriginalInstructions = (totalEaten < kOriginalInstructionsSize);

		if (enoughSpaceForOriginalInstructions) {
			memset(originalInstructions, 0x90 /* NOP */, kOriginalInstructionsSize); // fill instructions with NOP
			bcopy(code, originalInstructions, totalEaten);
		} else {
			// printf ("Not enough space in island to store original instructions. Adapt the island definition and kOriginalInstructionsSize\n");
			return false;
		}
	}

	if (allInstructionsKnown) {
		// save last 3 bytes of first 64bits of codre we'll replace
		uint64_t currentFirst64BitsOfCode = *((uint64_t *)code);
		currentFirst64BitsOfCode = OSSwapInt64(currentFirst64BitsOfCode); // back to memory representation
		currentFirst64BitsOfCode &= 0x0000000000FFFFFFLL;

		// keep only last 3 instructions bytes, first 5 will be replaced by JMP instr
		*newInstruction &= 0xFFFFFFFFFF000000LL; // clear last 3 bytes
		*newInstruction |= (currentFirst64BitsOfCode & 0x0000000000FFFFFFLL); // set last 3 bytes
	}

	return allInstructionsKnown;
}

	static void
fixupInstructions(
	uint32_t	offset,
    void		*instructionsToFix,
	int			instructionCount,
	uint8_t		*instructionSizes )
{
	// The start of "leaq offset(%rip),%rax"
	static const uint8_t LeaqHeader[] = {0x48, 0x8d, 0x05};

	int	index;
	for (index = 0;index < instructionCount;index += 1)
	{
		if (*(uint8_t*)instructionsToFix == 0xE9) // 32-bit jump relative
		{
			uint32_t *jumpOffsetPtr = (uint32_t*)((uintptr_t)instructionsToFix + 1);
			*jumpOffsetPtr += offset;
		}

		// leaq offset(%rip),%rax
		if (memcmp(instructionsToFix, LeaqHeader, 3) == 0) {
			uint32_t *LeaqOffsetPtr = (uint32_t*)((uintptr_t)instructionsToFix + 3);
			*LeaqOffsetPtr += offset;
		}

		// 32-bit call relative to the next addr; pop %eax
		if (*(uint8_t*)instructionsToFix == 0xE8)
		{
			// Just this call is larger than the jump we use, so we
			// know this is the last instruction.
			assert(index == (instructionCount - 1));
			assert(instructionSizes[index] == 6);

                        // Insert "addl $offset, %eax" in the end so that when
                        // we jump to the rest of the function %eax has the
                        // value it would have if eip had been pushed by the
                        // call in its original position.
			uint8_t *op = instructionsToFix;
			op += 6;
			*op = 0x05; // addl
			uint32_t *addImmPtr = (uint32_t*)(op + 1);
			*addImmPtr = offset;
		}

		instructionsToFix = (void*)((uintptr_t)instructionsToFix + instructionSizes[index]);
    }
}
#endif

#if defined(__i386__)
__asm(
			".text;"
			".align 2, 0x90;"
			"_atomic_mov64:;"
			"	pushl %ebp;"
			"	movl %esp, %ebp;"
			"	pushl %esi;"
			"	pushl %ebx;"
			"	pushl %ecx;"
			"	pushl %eax;"
			"	pushl %edx;"

			// atomic push of value to an address
			// we use cmpxchg8b, which compares content of an address with
			// edx:eax. If they are equal, it atomically puts 64bit value
			// ecx:ebx in address.
			// We thus put contents of address in edx:eax to force ecx:ebx
			// in address
			"	mov		8(%ebp), %esi;"  // esi contains target address
			"	mov		12(%ebp), %ebx;"
			"	mov		16(%ebp), %ecx;" // ecx:ebx now contains value to put in target address
			"	mov		(%esi), %eax;"
			"	mov		4(%esi), %edx;"  // edx:eax now contains value currently contained in target address
			"	lock; cmpxchg8b	(%esi);" // atomic move.

			// restore registers
			"	popl %edx;"
			"	popl %eax;"
			"	popl %ecx;"
			"	popl %ebx;"
			"	popl %esi;"
			"	popl %ebp;"
			"	ret"
);
#elif defined(__x86_64__)
void atomic_mov64(
		uint64_t *targetAddress,
		uint64_t value )
{
    *targetAddress = value;
}
#endif
#endif