Source code

Revision control

Copy as Markdown

Other Tools

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <google/protobuf/wire_format_lite.h>
#include <limits>
#include <stack>
#include <string>
#include <vector>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>
#include <google/protobuf/stubs/stringprintf.h>
// Must be included last.
#include <google/protobuf/port_def.inc>
namespace google {
namespace protobuf {
namespace internal {
#if !defined(_MSC_VER) || (_MSC_VER >= 1900 && _MSC_VER < 1912)
// Old version of MSVC doesn't like definitions of inline constants, GCC
// requires them.
const int WireFormatLite::kMessageSetItemStartTag;
const int WireFormatLite::kMessageSetItemEndTag;
const int WireFormatLite::kMessageSetTypeIdTag;
const int WireFormatLite::kMessageSetMessageTag;
#endif
// IBM xlC requires prefixing constants with WireFormatLite::
const size_t WireFormatLite::kMessageSetItemTagsSize =
io::CodedOutputStream::StaticVarintSize32<
WireFormatLite::kMessageSetItemStartTag>::value +
io::CodedOutputStream::StaticVarintSize32<
WireFormatLite::kMessageSetItemEndTag>::value +
io::CodedOutputStream::StaticVarintSize32<
WireFormatLite::kMessageSetTypeIdTag>::value +
io::CodedOutputStream::StaticVarintSize32<
WireFormatLite::kMessageSetMessageTag>::value;
const WireFormatLite::CppType
WireFormatLite::kFieldTypeToCppTypeMap[MAX_FIELD_TYPE + 1] = {
static_cast<CppType>(0), // 0 is reserved for errors
CPPTYPE_DOUBLE, // TYPE_DOUBLE
CPPTYPE_FLOAT, // TYPE_FLOAT
CPPTYPE_INT64, // TYPE_INT64
CPPTYPE_UINT64, // TYPE_UINT64
CPPTYPE_INT32, // TYPE_INT32
CPPTYPE_UINT64, // TYPE_FIXED64
CPPTYPE_UINT32, // TYPE_FIXED32
CPPTYPE_BOOL, // TYPE_BOOL
CPPTYPE_STRING, // TYPE_STRING
CPPTYPE_MESSAGE, // TYPE_GROUP
CPPTYPE_MESSAGE, // TYPE_MESSAGE
CPPTYPE_STRING, // TYPE_BYTES
CPPTYPE_UINT32, // TYPE_UINT32
CPPTYPE_ENUM, // TYPE_ENUM
CPPTYPE_INT32, // TYPE_SFIXED32
CPPTYPE_INT64, // TYPE_SFIXED64
CPPTYPE_INT32, // TYPE_SINT32
CPPTYPE_INT64, // TYPE_SINT64
};
const WireFormatLite::WireType
WireFormatLite::kWireTypeForFieldType[MAX_FIELD_TYPE + 1] = {
static_cast<WireFormatLite::WireType>(-1), // invalid
WireFormatLite::WIRETYPE_FIXED64, // TYPE_DOUBLE
WireFormatLite::WIRETYPE_FIXED32, // TYPE_FLOAT
WireFormatLite::WIRETYPE_VARINT, // TYPE_INT64
WireFormatLite::WIRETYPE_VARINT, // TYPE_UINT64
WireFormatLite::WIRETYPE_VARINT, // TYPE_INT32
WireFormatLite::WIRETYPE_FIXED64, // TYPE_FIXED64
WireFormatLite::WIRETYPE_FIXED32, // TYPE_FIXED32
WireFormatLite::WIRETYPE_VARINT, // TYPE_BOOL
WireFormatLite::WIRETYPE_LENGTH_DELIMITED, // TYPE_STRING
WireFormatLite::WIRETYPE_START_GROUP, // TYPE_GROUP
WireFormatLite::WIRETYPE_LENGTH_DELIMITED, // TYPE_MESSAGE
WireFormatLite::WIRETYPE_LENGTH_DELIMITED, // TYPE_BYTES
WireFormatLite::WIRETYPE_VARINT, // TYPE_UINT32
WireFormatLite::WIRETYPE_VARINT, // TYPE_ENUM
WireFormatLite::WIRETYPE_FIXED32, // TYPE_SFIXED32
WireFormatLite::WIRETYPE_FIXED64, // TYPE_SFIXED64
WireFormatLite::WIRETYPE_VARINT, // TYPE_SINT32
WireFormatLite::WIRETYPE_VARINT, // TYPE_SINT64
};
bool WireFormatLite::SkipField(io::CodedInputStream* input, uint32_t tag) {
// Field number 0 is illegal.
if (WireFormatLite::GetTagFieldNumber(tag) == 0) return false;
switch (WireFormatLite::GetTagWireType(tag)) {
case WireFormatLite::WIRETYPE_VARINT: {
uint64_t value;
if (!input->ReadVarint64(&value)) return false;
return true;
}
case WireFormatLite::WIRETYPE_FIXED64: {
uint64_t value;
if (!input->ReadLittleEndian64(&value)) return false;
return true;
}
case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
if (!input->Skip(length)) return false;
return true;
}
case WireFormatLite::WIRETYPE_START_GROUP: {
if (!input->IncrementRecursionDepth()) return false;
if (!SkipMessage(input)) return false;
input->DecrementRecursionDepth();
// Check that the ending tag matched the starting tag.
if (!input->LastTagWas(
WireFormatLite::MakeTag(WireFormatLite::GetTagFieldNumber(tag),
WireFormatLite::WIRETYPE_END_GROUP))) {
return false;
}
return true;
}
case WireFormatLite::WIRETYPE_END_GROUP: {
return false;
}
case WireFormatLite::WIRETYPE_FIXED32: {
uint32_t value;
if (!input->ReadLittleEndian32(&value)) return false;
return true;
}
default: {
return false;
}
}
}
bool WireFormatLite::SkipField(io::CodedInputStream* input, uint32_t tag,
io::CodedOutputStream* output) {
// Field number 0 is illegal.
if (WireFormatLite::GetTagFieldNumber(tag) == 0) return false;
switch (WireFormatLite::GetTagWireType(tag)) {
case WireFormatLite::WIRETYPE_VARINT: {
uint64_t value;
if (!input->ReadVarint64(&value)) return false;
output->WriteVarint32(tag);
output->WriteVarint64(value);
return true;
}
case WireFormatLite::WIRETYPE_FIXED64: {
uint64_t value;
if (!input->ReadLittleEndian64(&value)) return false;
output->WriteVarint32(tag);
output->WriteLittleEndian64(value);
return true;
}
case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
output->WriteVarint32(tag);
output->WriteVarint32(length);
// TODO(mkilavuz): Provide API to prevent extra string copying.
std::string temp;
if (!input->ReadString(&temp, length)) return false;
output->WriteString(temp);
return true;
}
case WireFormatLite::WIRETYPE_START_GROUP: {
output->WriteVarint32(tag);
if (!input->IncrementRecursionDepth()) return false;
if (!SkipMessage(input, output)) return false;
input->DecrementRecursionDepth();
// Check that the ending tag matched the starting tag.
if (!input->LastTagWas(
WireFormatLite::MakeTag(WireFormatLite::GetTagFieldNumber(tag),
WireFormatLite::WIRETYPE_END_GROUP))) {
return false;
}
return true;
}
case WireFormatLite::WIRETYPE_END_GROUP: {
return false;
}
case WireFormatLite::WIRETYPE_FIXED32: {
uint32_t value;
if (!input->ReadLittleEndian32(&value)) return false;
output->WriteVarint32(tag);
output->WriteLittleEndian32(value);
return true;
}
default: {
return false;
}
}
}
bool WireFormatLite::SkipMessage(io::CodedInputStream* input) {
while (true) {
uint32_t tag = input->ReadTag();
if (tag == 0) {
// End of input. This is a valid place to end, so return true.
return true;
}
WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag);
if (wire_type == WireFormatLite::WIRETYPE_END_GROUP) {
// Must be the end of the message.
return true;
}
if (!SkipField(input, tag)) return false;
}
}
bool WireFormatLite::SkipMessage(io::CodedInputStream* input,
io::CodedOutputStream* output) {
while (true) {
uint32_t tag = input->ReadTag();
if (tag == 0) {
// End of input. This is a valid place to end, so return true.
return true;
}
WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag);
if (wire_type == WireFormatLite::WIRETYPE_END_GROUP) {
output->WriteVarint32(tag);
// Must be the end of the message.
return true;
}
if (!SkipField(input, tag, output)) return false;
}
}
bool FieldSkipper::SkipField(io::CodedInputStream* input, uint32_t tag) {
return WireFormatLite::SkipField(input, tag);
}
bool FieldSkipper::SkipMessage(io::CodedInputStream* input) {
return WireFormatLite::SkipMessage(input);
}
void FieldSkipper::SkipUnknownEnum(int /* field_number */, int /* value */) {
// Nothing.
}
bool CodedOutputStreamFieldSkipper::SkipField(io::CodedInputStream* input,
uint32_t tag) {
return WireFormatLite::SkipField(input, tag, unknown_fields_);
}
bool CodedOutputStreamFieldSkipper::SkipMessage(io::CodedInputStream* input) {
return WireFormatLite::SkipMessage(input, unknown_fields_);
}
void CodedOutputStreamFieldSkipper::SkipUnknownEnum(int field_number,
int value) {
unknown_fields_->WriteVarint32(field_number);
unknown_fields_->WriteVarint64(value);
}
bool WireFormatLite::ReadPackedEnumPreserveUnknowns(
io::CodedInputStream* input, int field_number, bool (*is_valid)(int),
io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values) {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
io::CodedInputStream::Limit limit = input->PushLimit(length);
while (input->BytesUntilLimit() > 0) {
int value;
if (!ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(input, &value)) {
return false;
}
if (is_valid == nullptr || is_valid(value)) {
values->Add(value);
} else {
uint32_t tag = WireFormatLite::MakeTag(field_number,
WireFormatLite::WIRETYPE_VARINT);
unknown_fields_stream->WriteVarint32(tag);
unknown_fields_stream->WriteVarint32(value);
}
}
input->PopLimit(limit);
return true;
}
#if !defined(PROTOBUF_LITTLE_ENDIAN)
namespace {
void EncodeFixedSizeValue(float v, uint8_t* dest) {
WireFormatLite::WriteFloatNoTagToArray(v, dest);
}
void EncodeFixedSizeValue(double v, uint8_t* dest) {
WireFormatLite::WriteDoubleNoTagToArray(v, dest);
}
void EncodeFixedSizeValue(uint32_t v, uint8_t* dest) {
WireFormatLite::WriteFixed32NoTagToArray(v, dest);
}
void EncodeFixedSizeValue(uint64_t v, uint8_t* dest) {
WireFormatLite::WriteFixed64NoTagToArray(v, dest);
}
void EncodeFixedSizeValue(int32_t v, uint8_t* dest) {
WireFormatLite::WriteSFixed32NoTagToArray(v, dest);
}
void EncodeFixedSizeValue(int64_t v, uint8_t* dest) {
WireFormatLite::WriteSFixed64NoTagToArray(v, dest);
}
void EncodeFixedSizeValue(bool v, uint8_t* dest) {
WireFormatLite::WriteBoolNoTagToArray(v, dest);
}
} // anonymous namespace
#endif // !defined(PROTOBUF_LITTLE_ENDIAN)
template <typename CType>
static void WriteArray(const CType* a, int n, io::CodedOutputStream* output) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
output->WriteRaw(reinterpret_cast<const char*>(a), n * sizeof(a[0]));
#else
const int kAtATime = 128;
uint8_t buf[sizeof(CType) * kAtATime];
for (int i = 0; i < n; i += kAtATime) {
int to_do = std::min(kAtATime, n - i);
uint8_t* ptr = buf;
for (int j = 0; j < to_do; j++) {
EncodeFixedSizeValue(a[i + j], ptr);
ptr += sizeof(a[0]);
}
output->WriteRaw(buf, to_do * sizeof(a[0]));
}
#endif
}
void WireFormatLite::WriteFloatArray(const float* a, int n,
io::CodedOutputStream* output) {
WriteArray<float>(a, n, output);
}
void WireFormatLite::WriteDoubleArray(const double* a, int n,
io::CodedOutputStream* output) {
WriteArray<double>(a, n, output);
}
void WireFormatLite::WriteFixed32Array(const uint32_t* a, int n,
io::CodedOutputStream* output) {
WriteArray<uint32_t>(a, n, output);
}
void WireFormatLite::WriteFixed64Array(const uint64_t* a, int n,
io::CodedOutputStream* output) {
WriteArray<uint64_t>(a, n, output);
}
void WireFormatLite::WriteSFixed32Array(const int32_t* a, int n,
io::CodedOutputStream* output) {
WriteArray<int32_t>(a, n, output);
}
void WireFormatLite::WriteSFixed64Array(const int64_t* a, int n,
io::CodedOutputStream* output) {
WriteArray<int64_t>(a, n, output);
}
void WireFormatLite::WriteBoolArray(const bool* a, int n,
io::CodedOutputStream* output) {
WriteArray<bool>(a, n, output);
}
void WireFormatLite::WriteInt32(int field_number, int32_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteInt32NoTag(value, output);
}
void WireFormatLite::WriteInt64(int field_number, int64_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteInt64NoTag(value, output);
}
void WireFormatLite::WriteUInt32(int field_number, uint32_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteUInt32NoTag(value, output);
}
void WireFormatLite::WriteUInt64(int field_number, uint64_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteUInt64NoTag(value, output);
}
void WireFormatLite::WriteSInt32(int field_number, int32_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteSInt32NoTag(value, output);
}
void WireFormatLite::WriteSInt64(int field_number, int64_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteSInt64NoTag(value, output);
}
void WireFormatLite::WriteFixed32(int field_number, uint32_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_FIXED32, output);
WriteFixed32NoTag(value, output);
}
void WireFormatLite::WriteFixed64(int field_number, uint64_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_FIXED64, output);
WriteFixed64NoTag(value, output);
}
void WireFormatLite::WriteSFixed32(int field_number, int32_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_FIXED32, output);
WriteSFixed32NoTag(value, output);
}
void WireFormatLite::WriteSFixed64(int field_number, int64_t value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_FIXED64, output);
WriteSFixed64NoTag(value, output);
}
void WireFormatLite::WriteFloat(int field_number, float value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_FIXED32, output);
WriteFloatNoTag(value, output);
}
void WireFormatLite::WriteDouble(int field_number, double value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_FIXED64, output);
WriteDoubleNoTag(value, output);
}
void WireFormatLite::WriteBool(int field_number, bool value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteBoolNoTag(value, output);
}
void WireFormatLite::WriteEnum(int field_number, int value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_VARINT, output);
WriteEnumNoTag(value, output);
}
constexpr size_t kInt32MaxSize = std::numeric_limits<int32_t>::max();
void WireFormatLite::WriteString(int field_number, const std::string& value,
io::CodedOutputStream* output) {
// String is for UTF-8 text only
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
GOOGLE_CHECK_LE(value.size(), kInt32MaxSize);
output->WriteVarint32(value.size());
output->WriteString(value);
}
void WireFormatLite::WriteStringMaybeAliased(int field_number,
const std::string& value,
io::CodedOutputStream* output) {
// String is for UTF-8 text only
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
GOOGLE_CHECK_LE(value.size(), kInt32MaxSize);
output->WriteVarint32(value.size());
output->WriteRawMaybeAliased(value.data(), value.size());
}
void WireFormatLite::WriteBytes(int field_number, const std::string& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
GOOGLE_CHECK_LE(value.size(), kInt32MaxSize);
output->WriteVarint32(value.size());
output->WriteString(value);
}
void WireFormatLite::WriteBytesMaybeAliased(int field_number,
const std::string& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
GOOGLE_CHECK_LE(value.size(), kInt32MaxSize);
output->WriteVarint32(value.size());
output->WriteRawMaybeAliased(value.data(), value.size());
}
void WireFormatLite::WriteGroup(int field_number, const MessageLite& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_START_GROUP, output);
value.SerializeWithCachedSizes(output);
WriteTag(field_number, WIRETYPE_END_GROUP, output);
}
void WireFormatLite::WriteMessage(int field_number, const MessageLite& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
const int size = value.GetCachedSize();
output->WriteVarint32(size);
value.SerializeWithCachedSizes(output);
}
uint8_t* WireFormatLite::InternalWriteGroup(int field_number,
const MessageLite& value,
uint8_t* target,
io::EpsCopyOutputStream* stream) {
target = stream->EnsureSpace(target);
target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target);
target = value._InternalSerialize(target, stream);
target = stream->EnsureSpace(target);
return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target);
}
uint8_t* WireFormatLite::InternalWriteMessage(int field_number,
const MessageLite& value,
int cached_size, uint8_t* target,
io::EpsCopyOutputStream* stream) {
target = stream->EnsureSpace(target);
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
target = io::CodedOutputStream::WriteVarint32ToArray(
static_cast<uint32_t>(cached_size), target);
return value._InternalSerialize(target, stream);
}
void WireFormatLite::WriteSubMessageMaybeToArray(
int /*size*/, const MessageLite& value, io::CodedOutputStream* output) {
output->SetCur(value._InternalSerialize(output->Cur(), output->EpsCopy()));
}
void WireFormatLite::WriteGroupMaybeToArray(int field_number,
const MessageLite& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_START_GROUP, output);
const int size = value.GetCachedSize();
WriteSubMessageMaybeToArray(size, value, output);
WriteTag(field_number, WIRETYPE_END_GROUP, output);
}
void WireFormatLite::WriteMessageMaybeToArray(int field_number,
const MessageLite& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
const int size = value.GetCachedSize();
output->WriteVarint32(size);
WriteSubMessageMaybeToArray(size, value, output);
}
PROTOBUF_NDEBUG_INLINE static bool ReadBytesToString(
io::CodedInputStream* input, std::string* value);
inline static bool ReadBytesToString(io::CodedInputStream* input,
std::string* value) {
uint32_t length;
return input->ReadVarint32(&length) && input->ReadString(value, length);
}
bool WireFormatLite::ReadBytes(io::CodedInputStream* input,
std::string* value) {
return ReadBytesToString(input, value);
}
bool WireFormatLite::ReadBytes(io::CodedInputStream* input, std::string** p) {
if (*p == &GetEmptyStringAlreadyInited()) {
*p = new std::string();
}
return ReadBytesToString(input, *p);
}
void PrintUTF8ErrorLog(StringPiece message_name,
StringPiece field_name, const char* operation_str,
bool emit_stacktrace) {
std::string stacktrace;
(void)emit_stacktrace; // Parameter is used by Google-internal code.
std::string quoted_field_name = "";
if (!field_name.empty()) {
if (!message_name.empty()) {
quoted_field_name =
StrCat(" '", message_name, ".", field_name, "'");
} else {
quoted_field_name = StrCat(" '", field_name, "'");
}
}
std::string error_message =
StrCat("String field", quoted_field_name,
" contains invalid UTF-8 data "
"when ",
operation_str,
" a protocol buffer. Use the 'bytes' type if you intend to "
"send raw bytes. ",
stacktrace);
GOOGLE_LOG(ERROR) << error_message;
}
bool WireFormatLite::VerifyUtf8String(const char* data, int size, Operation op,
const char* field_name) {
if (!IsStructurallyValidUTF8(data, size)) {
const char* operation_str = nullptr;
switch (op) {
case PARSE:
operation_str = "parsing";
break;
case SERIALIZE:
operation_str = "serializing";
break;
// no default case: have the compiler warn if a case is not covered.
}
PrintUTF8ErrorLog("", field_name, operation_str, false);
return false;
}
return true;
}
// this code is deliberately written such that clang makes it into really
// efficient SSE code.
template <bool ZigZag, bool SignExtended, typename T>
static size_t VarintSize(const T* data, const int n) {
static_assert(sizeof(T) == 4, "This routine only works for 32 bit integers");
// is_unsigned<T> => !ZigZag
static_assert(
(std::is_unsigned<T>::value ^ ZigZag) || std::is_signed<T>::value,
"Cannot ZigZag encode unsigned types");
// is_unsigned<T> => !SignExtended
static_assert(
(std::is_unsigned<T>::value ^ SignExtended) || std::is_signed<T>::value,
"Cannot SignExtended unsigned types");
static_assert(!(SignExtended && ZigZag),
"Cannot SignExtended and ZigZag on the same type");
uint32_t sum = n;
uint32_t msb_sum = 0;
for (int i = 0; i < n; i++) {
uint32_t x = data[i];
if (ZigZag) {
x = WireFormatLite::ZigZagEncode32(x);
} else if (SignExtended) {
msb_sum += x >> 31;
}
// clang is so smart that it produces optimal SSE sequence unrolling
// the loop 8 ints at a time. With a sequence of 4
// cmpres = cmpgt x, sizeclass ( -1 or 0)
// sum = sum - cmpres
if (x > 0x7F) sum++;
if (x > 0x3FFF) sum++;
if (x > 0x1FFFFF) sum++;
if (x > 0xFFFFFFF) sum++;
}
if (SignExtended) sum += msb_sum * 5;
return sum;
}
template <bool ZigZag, typename T>
static size_t VarintSize64(const T* data, const int n) {
static_assert(sizeof(T) == 8, "This routine only works for 64 bit integers");
// is_unsigned<T> => !ZigZag
static_assert(!ZigZag || !std::is_unsigned<T>::value,
"Cannot ZigZag encode unsigned types");
uint64_t sum = n;
for (int i = 0; i < n; i++) {
uint64_t x = data[i];
if (ZigZag) {
x = WireFormatLite::ZigZagEncode64(x);
}
// First step is a binary search, we can't branch in sse so we use the
// result of the compare to adjust sum and appropriately. This code is
// written to make clang recognize the vectorization.
uint64_t tmp = x >= (static_cast<uint64_t>(1) << 35) ? -1 : 0;
sum += 5 & tmp;
x >>= 35 & tmp;
if (x > 0x7F) sum++;
if (x > 0x3FFF) sum++;
if (x > 0x1FFFFF) sum++;
if (x > 0xFFFFFFF) sum++;
}
return sum;
}
// GCC does not recognize the vectorization opportunity
// and other platforms are untested, in those cases using the optimized
// varint size routine for each element is faster.
// Hence we enable it only for clang
#if defined(__SSE__) && defined(__clang__)
size_t WireFormatLite::Int32Size(const RepeatedField<int32_t>& value) {
return VarintSize<false, true>(value.data(), value.size());
}
size_t WireFormatLite::UInt32Size(const RepeatedField<uint32_t>& value) {
return VarintSize<false, false>(value.data(), value.size());
}
size_t WireFormatLite::SInt32Size(const RepeatedField<int32_t>& value) {
return VarintSize<true, false>(value.data(), value.size());
}
size_t WireFormatLite::EnumSize(const RepeatedField<int>& value) {
// On ILP64, sizeof(int) == 8, which would require a different template.
return VarintSize<false, true>(value.data(), value.size());
}
#else // !(defined(__SSE4_1__) && defined(__clang__))
size_t WireFormatLite::Int32Size(const RepeatedField<int32_t>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += Int32Size(value.Get(i));
}
return out;
}
size_t WireFormatLite::UInt32Size(const RepeatedField<uint32_t>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += UInt32Size(value.Get(i));
}
return out;
}
size_t WireFormatLite::SInt32Size(const RepeatedField<int32_t>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += SInt32Size(value.Get(i));
}
return out;
}
size_t WireFormatLite::EnumSize(const RepeatedField<int>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += EnumSize(value.Get(i));
}
return out;
}
#endif
// Micro benchmarks show that the SSE improved loop only starts beating
// the normal loop on Haswell platforms and then only for >32 ints. We
// disable this for now. Some specialized users might find it worthwhile to
// enable this.
#define USE_SSE_FOR_64_BIT_INTEGER_ARRAYS 0
#if USE_SSE_FOR_64_BIT_INTEGER_ARRAYS
size_t WireFormatLite::Int64Size(const RepeatedField<int64_t>& value) {
return VarintSize64<false>(value.data(), value.size());
}
size_t WireFormatLite::UInt64Size(const RepeatedField<uint64_t>& value) {
return VarintSize64<false>(value.data(), value.size());
}
size_t WireFormatLite::SInt64Size(const RepeatedField<int64_t>& value) {
return VarintSize64<true>(value.data(), value.size());
}
#else
size_t WireFormatLite::Int64Size(const RepeatedField<int64_t>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += Int64Size(value.Get(i));
}
return out;
}
size_t WireFormatLite::UInt64Size(const RepeatedField<uint64_t>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += UInt64Size(value.Get(i));
}
return out;
}
size_t WireFormatLite::SInt64Size(const RepeatedField<int64_t>& value) {
size_t out = 0;
const int n = value.size();
for (int i = 0; i < n; i++) {
out += SInt64Size(value.Get(i));
}
return out;
}
#endif
} // namespace internal
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>