Source code

Revision control

Copy as Markdown

Other Tools

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedPtrField.
// IWYU pragma: private, include "net/proto2/public/repeated_field.h"
#ifndef GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
#include <utility>
#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/port.h>
#include <google/protobuf/message_lite.h>
// Must be included last.
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
class Reflection;
template <typename T>
struct WeakRepeatedPtrField;
namespace internal {
class MergePartialFromCodedStreamHelper;
class SwapFieldHelper;
} // namespace internal
namespace internal {
template <typename It>
class RepeatedPtrIterator;
template <typename It, typename VoidPtr>
class RepeatedPtrOverPtrsIterator;
} // namespace internal
namespace internal {
// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
// arena-related "copy if on different arena" behavior if the necessary methods
// exist on the contained type. In particular, we rely on MergeFrom() existing
// as a general proxy for the fact that a copy will work, and we also provide a
// specific override for std::string*.
template <typename T>
struct TypeImplementsMergeBehaviorProbeForMergeFrom {
typedef char HasMerge;
typedef long HasNoMerge;
// We accept either of:
// - void MergeFrom(const T& other)
// - bool MergeFrom(const T& other)
//
// We mangle these names a bit to avoid compatibility issues in 'unclean'
// include environments that may have, e.g., "#define test ..." (yes, this
// exists).
template <typename U, typename RetType, RetType (U::*)(const U& arg)>
struct CheckType;
template <typename U>
static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
template <typename U>
static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
template <typename U>
static HasNoMerge Check(...);
// Resolves to either std::true_type or std::false_type.
typedef std::integral_constant<bool,
(sizeof(Check<T>(0)) == sizeof(HasMerge))>
type;
};
template <typename T, typename = void>
struct TypeImplementsMergeBehavior
: TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};
template <>
struct TypeImplementsMergeBehavior<std::string> {
typedef std::true_type type;
};
template <typename T>
struct IsMovable
: std::integral_constant<bool, std::is_move_constructible<T>::value &&
std::is_move_assignable<T>::value> {};
// This is the common base class for RepeatedPtrFields. It deals only in void*
// pointers. Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler. Its signature is:
// class TypeHandler {
// public:
// typedef MyType Type;
// static Type* New();
// static Type* NewFromPrototype(const Type* prototype,
// Arena* arena);
// static void Delete(Type*);
// static void Clear(Type*);
// static void Merge(const Type& from, Type* to);
//
// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
// static int SpaceUsedLong(const Type&);
// };
class PROTOBUF_EXPORT RepeatedPtrFieldBase {
protected:
constexpr RepeatedPtrFieldBase()
: arena_(nullptr), current_size_(0), total_size_(0), rep_(nullptr) {}
explicit RepeatedPtrFieldBase(Arena* arena)
: arena_(arena), current_size_(0), total_size_(0), rep_(nullptr) {}
RepeatedPtrFieldBase(const RepeatedPtrFieldBase&) = delete;
RepeatedPtrFieldBase& operator=(const RepeatedPtrFieldBase&) = delete;
~RepeatedPtrFieldBase() {
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds. If arena_
// lifetime has ended before the destructor.
if (arena_) (void)arena_->SpaceAllocated();
#endif
}
bool empty() const { return current_size_ == 0; }
int size() const { return current_size_; }
int Capacity() const { return total_size_; }
template <typename TypeHandler>
const typename TypeHandler::Type& at(int index) const {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return *cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
typename TypeHandler::Type& at(int index) {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return *cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
typename TypeHandler::Type* Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
typename TypeHandler::Type* Add(
const typename TypeHandler::Type* prototype = nullptr) {
if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
return cast<TypeHandler>(rep_->elements[current_size_++]);
}
typename TypeHandler::Type* result =
TypeHandler::NewFromPrototype(prototype, arena_);
return reinterpret_cast<typename TypeHandler::Type*>(
AddOutOfLineHelper(result));
}
template <
typename TypeHandler,
typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
inline void Add(typename TypeHandler::Type&& value) {
if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
*cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
return;
}
if (!rep_ || rep_->allocated_size == total_size_) {
Reserve(total_size_ + 1);
}
++rep_->allocated_size;
typename TypeHandler::Type* result =
TypeHandler::New(arena_, std::move(value));
rep_->elements[current_size_++] = result;
}
template <typename TypeHandler>
void Delete(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
}
// Must be called from destructor.
template <typename TypeHandler>
void Destroy() {
if (rep_ != nullptr && arena_ == nullptr) {
int n = rep_->allocated_size;
void* const* elements = rep_->elements;
for (int i = 0; i < n; i++) {
TypeHandler::Delete(cast<TypeHandler>(elements[i]), nullptr);
}
const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
internal::SizedDelete(rep_, size);
}
rep_ = nullptr;
}
bool NeedsDestroy() const { return rep_ != nullptr && arena_ == nullptr; }
void DestroyProtos(); // implemented in the cc file
public:
// The next few methods are public so that they can be called from generated
// code when implicit weak fields are used, but they should never be called by
// application code.
template <typename TypeHandler>
const typename TypeHandler::Type& Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return *cast<TypeHandler>(rep_->elements[index]);
}
// Creates and adds an element using the given prototype, without introducing
// a link-time dependency on the concrete message type. This method is used to
// implement implicit weak fields. The prototype may be nullptr, in which case
// an ImplicitWeakMessage will be used as a placeholder.
MessageLite* AddWeak(const MessageLite* prototype);
template <typename TypeHandler>
void Clear() {
const int n = current_size_;
GOOGLE_DCHECK_GE(n, 0);
if (n > 0) {
void* const* elements = rep_->elements;
int i = 0;
do {
TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
} while (i < n);
current_size_ = 0;
}
}
template <typename TypeHandler>
void MergeFrom(const RepeatedPtrFieldBase& other) {
// To avoid unnecessary code duplication and reduce binary size, we use a
// layered approach to implementing MergeFrom(). The toplevel method is
// templated, so we get a small thunk per concrete message type in the
// binary. This calls a shared implementation with most of the logic,
// passing a function pointer to another type-specific piece of code that
// calls the object-allocate and merge handlers.
GOOGLE_DCHECK_NE(&other, this);
if (other.current_size_ == 0) return;
MergeFromInternal(other,
&RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
}
inline void InternalSwap(RepeatedPtrFieldBase* rhs) {
GOOGLE_DCHECK(this != rhs);
// Swap all fields at once.
auto temp = std::make_tuple(rhs->arena_, rhs->current_size_,
rhs->total_size_, rhs->rep_);
std::tie(rhs->arena_, rhs->current_size_, rhs->total_size_, rhs->rep_) =
std::make_tuple(arena_, current_size_, total_size_, rep_);
std::tie(arena_, current_size_, total_size_, rep_) = temp;
}
protected:
template <typename TypeHandler>
void RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
}
template <typename TypeHandler>
void CopyFrom(const RepeatedPtrFieldBase& other) {
if (&other == this) return;
RepeatedPtrFieldBase::Clear<TypeHandler>();
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
void CloseGap(int start, int num); // implemented in the cc file
void Reserve(int new_size); // implemented in the cc file
template <typename TypeHandler>
static inline typename TypeHandler::Type* copy(
typename TypeHandler::Type* value) {
auto* new_value = TypeHandler::NewFromPrototype(value, nullptr);
TypeHandler::Merge(*value, new_value);
return new_value;
}
// Used for constructing iterators.
void* const* raw_data() const { return rep_ ? rep_->elements : nullptr; }
void** raw_mutable_data() const {
return rep_ ? const_cast<void**>(rep_->elements) : nullptr;
}
template <typename TypeHandler>
typename TypeHandler::Type** mutable_data() {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
}
template <typename TypeHandler>
const typename TypeHandler::Type* const* data() const {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<const typename TypeHandler::Type* const*>(
raw_data());
}
template <typename TypeHandler>
PROTOBUF_NDEBUG_INLINE void Swap(RepeatedPtrFieldBase* other) {
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
if (GetOwningArena() != nullptr &&
GetOwningArena() == other->GetOwningArena())
#else // PROTOBUF_FORCE_COPY_IN_SWAP
if (GetOwningArena() == other->GetOwningArena())
#endif // !PROTOBUF_FORCE_COPY_IN_SWAP
{
InternalSwap(other);
} else {
SwapFallback<TypeHandler>(other);
}
}
void SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(rep_->elements[index1], rep_->elements[index2]);
}
template <typename TypeHandler>
size_t SpaceUsedExcludingSelfLong() const {
size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
if (rep_ != nullptr) {
for (int i = 0; i < rep_->allocated_size; ++i) {
allocated_bytes +=
TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
}
allocated_bytes += kRepHeaderSize;
}
return allocated_bytes;
}
// Advanced memory management --------------------------------------
// Like Add(), but if there are no cleared objects to use, returns nullptr.
template <typename TypeHandler>
typename TypeHandler::Type* AddFromCleared() {
if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
return cast<TypeHandler>(rep_->elements[current_size_++]);
} else {
return nullptr;
}
}
template <typename TypeHandler>
void AddAllocated(typename TypeHandler::Type* value) {
typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
AddAllocatedInternal<TypeHandler>(value, t);
}
template <typename TypeHandler>
void UnsafeArenaAddAllocated(typename TypeHandler::Type* value) {
// Make room for the new pointer.
if (!rep_ || current_size_ == total_size_) {
// The array is completely full with no cleared objects, so grow it.
Reserve(total_size_ + 1);
++rep_->allocated_size;
} else if (rep_->allocated_size == total_size_) {
// There is no more space in the pointer array because it contains some
// cleared objects awaiting reuse. We don't want to grow the array in
// this case because otherwise a loop calling AddAllocated() followed by
// Clear() would leak memory.
TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
arena_);
} else if (current_size_ < rep_->allocated_size) {
// We have some cleared objects. We don't care about their order, so we
// can just move the first one to the end to make space.
rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
++rep_->allocated_size;
} else {
// There are no cleared objects.
++rep_->allocated_size;
}
rep_->elements[current_size_++] = value;
}
template <typename TypeHandler>
PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseLast() {
typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
return ReleaseLastInternal<TypeHandler>(t);
}
// Releases and returns the last element, but does not do out-of-arena copy.
// Instead, just returns the raw pointer to the contained element in the
// arena.
template <typename TypeHandler>
typename TypeHandler::Type* UnsafeArenaReleaseLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
typename TypeHandler::Type* result =
cast<TypeHandler>(rep_->elements[--current_size_]);
--rep_->allocated_size;
if (current_size_ < rep_->allocated_size) {
// There are cleared elements on the end; replace the removed element
// with the last allocated element.
rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
}
return result;
}
int ClearedCount() const {
return rep_ ? (rep_->allocated_size - current_size_) : 0;
}
template <typename TypeHandler>
void AddCleared(typename TypeHandler::Type* value) {
GOOGLE_DCHECK(GetOwningArena() == nullptr) << "AddCleared() can only be used on a "
"RepeatedPtrField not on an arena.";
GOOGLE_DCHECK(TypeHandler::GetOwningArena(value) == nullptr)
<< "AddCleared() can only accept values not on an arena.";
if (!rep_ || rep_->allocated_size == total_size_) {
Reserve(total_size_ + 1);
}
rep_->elements[rep_->allocated_size++] = value;
}
template <typename TypeHandler>
PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseCleared() {
GOOGLE_DCHECK(GetOwningArena() == nullptr)
<< "ReleaseCleared() can only be used on a RepeatedPtrField not on "
<< "an arena.";
GOOGLE_DCHECK(GetOwningArena() == nullptr);
GOOGLE_DCHECK(rep_ != nullptr);
GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
}
template <typename TypeHandler>
void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type) {
// AddAllocated version that implements arena-safe copying behavior.
Arena* element_arena =
reinterpret_cast<Arena*>(TypeHandler::GetOwningArena(value));
Arena* arena = GetOwningArena();
if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
// Fast path: underlying arena representation (tagged pointer) is equal to
// our arena pointer, and we can add to array without resizing it (at
// least one slot that is not allocated).
void** elems = rep_->elements;
if (current_size_ < rep_->allocated_size) {
// Make space at [current] by moving first allocated element to end of
// allocated list.
elems[rep_->allocated_size] = elems[current_size_];
}
elems[current_size_] = value;
current_size_ = current_size_ + 1;
rep_->allocated_size = rep_->allocated_size + 1;
} else {
AddAllocatedSlowWithCopy<TypeHandler>(value, element_arena, arena);
}
}
template <typename TypeHandler>
void AddAllocatedInternal(
// AddAllocated version that does not implement arena-safe copying
// behavior.
typename TypeHandler::Type* value, std::false_type) {
if (rep_ && rep_->allocated_size < total_size_) {
// Fast path: underlying arena representation (tagged pointer) is equal to
// our arena pointer, and we can add to array without resizing it (at
// least one slot that is not allocated).
void** elems = rep_->elements;
if (current_size_ < rep_->allocated_size) {
// Make space at [current] by moving first allocated element to end of
// allocated list.
elems[rep_->allocated_size] = elems[current_size_];
}
elems[current_size_] = value;
current_size_ = current_size_ + 1;
++rep_->allocated_size;
} else {
UnsafeArenaAddAllocated<TypeHandler>(value);
}
}
// Slowpath handles all cases, copying if necessary.
template <typename TypeHandler>
PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
// Pass value_arena and my_arena to avoid duplicate virtual call (value)
// or load (mine).
typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
// Ensure that either the value is in the same arena, or if not, we do the
// appropriate thing: Own() it (if it's on heap and we're in an arena) or
// copy it to our arena/heap (otherwise).
if (my_arena != nullptr && value_arena == nullptr) {
my_arena->Own(value);
} else if (my_arena != value_arena) {
typename TypeHandler::Type* new_value =
TypeHandler::NewFromPrototype(value, my_arena);
TypeHandler::Merge(*value, new_value);
TypeHandler::Delete(value, value_arena);
value = new_value;
}
UnsafeArenaAddAllocated<TypeHandler>(value);
}
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLastInternal(std::true_type) {
// ReleaseLast() for types that implement merge/copy behavior.
// First, release an element.
typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
// Now perform a copy if we're on an arena.
Arena* arena = GetOwningArena();
typename TypeHandler::Type* new_result;
#ifdef PROTOBUF_FORCE_COPY_IN_RELEASE
new_result = copy<TypeHandler>(result);
if (arena == nullptr) delete result;
#else // PROTOBUF_FORCE_COPY_IN_RELEASE
new_result = (arena == nullptr) ? result : copy<TypeHandler>(result);
#endif // !PROTOBUF_FORCE_COPY_IN_RELEASE
return new_result;
}
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLastInternal(std::false_type) {
// ReleaseLast() for types that *do not* implement merge/copy behavior --
// this is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if
// we're on an arena, since the user really should implement the copy
// operation in this case.
GOOGLE_DCHECK(GetOwningArena() == nullptr)
<< "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
<< "with a type that does not implement MergeFrom. This is unsafe; "
<< "please implement MergeFrom for your type.";
return UnsafeArenaReleaseLast<TypeHandler>();
}
template <typename TypeHandler>
PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other) {
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
GOOGLE_DCHECK(GetOwningArena() == nullptr ||
other->GetOwningArena() != GetOwningArena());
#else // PROTOBUF_FORCE_COPY_IN_SWAP
GOOGLE_DCHECK(other->GetOwningArena() != GetOwningArena());
#endif // !PROTOBUF_FORCE_COPY_IN_SWAP
// Copy semantics in this case. We try to improve efficiency by placing the
// temporary on |other|'s arena so that messages are copied twice rather
// than three times.
RepeatedPtrFieldBase temp(other->GetOwningArena());
temp.MergeFrom<TypeHandler>(*this);
this->Clear<TypeHandler>();
this->MergeFrom<TypeHandler>(*other);
other->InternalSwap(&temp);
temp.Destroy<TypeHandler>(); // Frees rep_ if `other` had no arena.
}
inline Arena* GetArena() const { return arena_; }
protected:
inline Arena* GetOwningArena() const { return arena_; }
private:
template <typename T> friend class Arena::InternalHelper;
static constexpr int kInitialSize = 0;
// A few notes on internal representation:
//
// We use an indirected approach, with struct Rep, to keep
// sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
// was added; namely, 3 8-byte machine words on x86-64. An instance of Rep is
// allocated only when the repeated field is non-empty, and it is a
// dynamically-sized struct (the header is directly followed by elements[]).
// We place arena_ and current_size_ directly in the object to avoid cache
// misses due to the indirection, because these fields are checked frequently.
// Placing all fields directly in the RepeatedPtrFieldBase instance would cost
// significant performance for memory-sensitive workloads.
Arena* arena_;
int current_size_;
int total_size_;
struct Rep {
int allocated_size;
// Here we declare a huge array as a way of approximating C's "flexible
// array member" feature without relying on undefined behavior.
void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
sizeof(void*)];
};
static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
Rep* rep_;
template <typename TypeHandler>
static inline typename TypeHandler::Type* cast(void* element) {
return reinterpret_cast<typename TypeHandler::Type*>(element);
}
template <typename TypeHandler>
static inline const typename TypeHandler::Type* cast(const void* element) {
return reinterpret_cast<const typename TypeHandler::Type*>(element);
}
// Non-templated inner function to avoid code duplication. Takes a function
// pointer to the type-specific (templated) inner allocate/merge loop.
void MergeFromInternal(const RepeatedPtrFieldBase& other,
void (RepeatedPtrFieldBase::*inner_loop)(void**,
void**, int,
int)) {
// Note: wrapper has already guaranteed that other.rep_ != nullptr here.
int other_size = other.current_size_;
void** other_elements = other.rep_->elements;
void** new_elements = InternalExtend(other_size);
int allocated_elems = rep_->allocated_size - current_size_;
(this->*inner_loop)(new_elements, other_elements, other_size,
allocated_elems);
current_size_ += other_size;
if (rep_->allocated_size < current_size_) {
rep_->allocated_size = current_size_;
}
}
// Merges other_elems to our_elems.
template <typename TypeHandler>
PROTOBUF_NOINLINE void MergeFromInnerLoop(void** our_elems,
void** other_elems, int length,
int already_allocated) {
if (already_allocated < length) {
Arena* arena = GetOwningArena();
typename TypeHandler::Type* elem_prototype =
reinterpret_cast<typename TypeHandler::Type*>(other_elems[0]);
for (int i = already_allocated; i < length; i++) {
// Allocate a new empty element that we'll merge into below
typename TypeHandler::Type* new_elem =
TypeHandler::NewFromPrototype(elem_prototype, arena);
our_elems[i] = new_elem;
}
}
// Main loop that does the actual merging
for (int i = 0; i < length; i++) {
// Already allocated: use existing element.
typename TypeHandler::Type* other_elem =
reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
typename TypeHandler::Type* new_elem =
reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
TypeHandler::Merge(*other_elem, new_elem);
}
}
// Internal helper: extends array space if necessary to contain
// |extend_amount| more elements, and returns a pointer to the element
// immediately following the old list of elements. This interface factors out
// common behavior from Reserve() and MergeFrom() to reduce code size.
// |extend_amount| must be > 0.
void** InternalExtend(int extend_amount);
// Internal helper for Add: adds "obj" as the next element in the
// array, including potentially resizing the array with Reserve if
// needed
void* AddOutOfLineHelper(void* obj);
// The reflection implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
friend class ::PROTOBUF_NAMESPACE_ID::internal::SwapFieldHelper;
// ExtensionSet stores repeated message extensions as
// RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
// SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
// reinterpreting MessageLite as Message. ExtensionSet also needs to make use
// of AddFromCleared(), which is not part of the public interface.
friend class ExtensionSet;
// The MapFieldBase implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class MapFieldBase;
friend class MapFieldBaseStub;
// The table-driven MergePartialFromCodedStream implementation needs to
// operate on RepeatedPtrField<MessageLite>.
friend class MergePartialFromCodedStreamHelper;
friend class AccessorHelper;
template <typename T>
friend struct google::protobuf::WeakRepeatedPtrField;
friend class internal::TcParser; // TODO(jorg): Remove this friend.
};
template <typename GenericType>
class GenericTypeHandler {
public:
typedef GenericType Type;
using Movable = IsMovable<GenericType>;
static inline GenericType* New(Arena* arena) {
return Arena::CreateMaybeMessage<Type>(arena);
}
static inline GenericType* New(Arena* arena, GenericType&& value) {
return Arena::Create<GenericType>(arena, std::move(value));
}
static inline GenericType* NewFromPrototype(const GenericType* /*prototype*/,
Arena* arena = nullptr) {
return New(arena);
}
static inline void Delete(GenericType* value, Arena* arena) {
if (arena == nullptr) {
delete value;
}
}
static inline Arena* GetOwningArena(GenericType* value) {
return Arena::GetOwningArena<Type>(value);
}
static inline void Clear(GenericType* value) { value->Clear(); }
static void Merge(const GenericType& from, GenericType* to);
static inline size_t SpaceUsedLong(const GenericType& value) {
return value.SpaceUsedLong();
}
};
// NewFromPrototypeHelper() is not defined inline here, as we will need to do a
// virtual function dispatch anyways to go from Message* to call New/Merge. (The
// additional helper is needed as a workaround for MSVC.)
MessageLite* NewFromPrototypeHelper(const MessageLite* prototype, Arena* arena);
template <>
inline MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
const MessageLite* prototype, Arena* arena) {
return NewFromPrototypeHelper(prototype, arena);
}
template <>
inline Arena* GenericTypeHandler<MessageLite>::GetOwningArena(
MessageLite* value) {
return value->GetOwningArena();
}
template <typename GenericType>
PROTOBUF_NOINLINE inline void GenericTypeHandler<GenericType>::Merge(
const GenericType& from, GenericType* to) {
to->MergeFrom(from);
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
MessageLite* to);
template <>
inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
value->clear();
}
template <>
void GenericTypeHandler<std::string>::Merge(const std::string& from,
std::string* to);
// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
template <>
PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
const Message* prototype, Arena* arena);
template <>
PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetOwningArena(
Message* value);
class StringTypeHandler {
public:
typedef std::string Type;
using Movable = IsMovable<Type>;
static inline std::string* New(Arena* arena) {
return Arena::Create<std::string>(arena);
}
static inline std::string* New(Arena* arena, std::string&& value) {
return Arena::Create<std::string>(arena, std::move(value));
}
static inline std::string* NewFromPrototype(const std::string*,
Arena* arena) {
return New(arena);
}
static inline Arena* GetOwningArena(std::string*) { return nullptr; }
static inline void Delete(std::string* value, Arena* arena) {
if (arena == nullptr) {
delete value;
}
}
static inline void Clear(std::string* value) { value->clear(); }
static inline void Merge(const std::string& from, std::string* to) {
*to = from;
}
static size_t SpaceUsedLong(const std::string& value) {
return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
}
};
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
public:
constexpr RepeatedPtrField();
explicit RepeatedPtrField(Arena* arena);
RepeatedPtrField(const RepeatedPtrField& other);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedPtrField(Iter begin, Iter end);
~RepeatedPtrField();
RepeatedPtrField& operator=(const RepeatedPtrField& other);
RepeatedPtrField(RepeatedPtrField&& other) noexcept;
RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
// Unlike std::vector, adding an element to a RepeatedPtrField doesn't always
// make a new element; it might re-use an element left over from when the
// field was Clear()'d or reize()'d smaller. For this reason, Add() is the
// fastest API for adding a new element.
Element* Add();
// `Add(std::move(value));` is equivalent to `*Add() = std::move(value);`
// It will either move-construct to the end of this field, or swap value
// with the new-or-recycled element at the end of this field. Note that
// this operation is very slow if this RepeatedPtrField is not on the
// same Arena, if any, as `value`.
void Add(Element&& value);
// Copying to the end of this RepeatedPtrField is slowest of all; it can't
// reliably copy-construct to the last element of this RepeatedPtrField, for
// example (unlike std::vector).
// We currently block this API. The right way to add to the end is to call
// Add() and modify the element it points to.
// If you must add an existing value, call `*Add() = value;`
void Add(const Element& value) = delete;
// Append elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
const Element& operator[](int index) const { return Get(index); }
Element& operator[](int index) { return *Mutable(index); }
const Element& at(int index) const;
Element& at(int index);
// Removes the last element in the array.
// Ownership of the element is retained by the array.
void RemoveLast();
// Deletes elements with indices in the range [start .. start+num-1].
// Caution: moves all elements with indices [start+num .. ].
// Calling this routine inside a loop can cause quadratic behavior.
void DeleteSubrange(int start, int num);
PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear();
void MergeFrom(const RepeatedPtrField& other);
PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedPtrField& other);
// Replaces the contents with RepeatedPtrField(begin, end).
template <typename Iter>
PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
int Capacity() const;
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
//
// This API is deprecated. Instead of directly working with element array,
// use APIs in repeated_field_util.h; e.g. sorting, etc.
PROTOBUF_DEPRECATED_MSG("Use APIs in repeated_field_util.h")
Element** mutable_data();
const Element* const* data() const;
// Swaps entire contents with "other". If they are on separate arenas, then
// copies data.
void Swap(RepeatedPtrField* other);
// Swaps entire contents with "other". Caller should guarantee that either
// both fields are on the same arena or both are on the heap. Swapping between
// different arenas with this function is disallowed and is caught via
// GOOGLE_DCHECK.
void UnsafeArenaSwap(RepeatedPtrField* other);
// Swaps two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef internal::RepeatedPtrIterator<Element> iterator;
typedef internal::RepeatedPtrIterator<const Element> const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Custom STL-like iterator that iterates over and returns the underlying
// pointers to Element rather than Element itself.
typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
pointer_iterator;
typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
const void* const>
const_pointer_iterator;
pointer_iterator pointer_begin();
const_pointer_iterator pointer_begin() const;
pointer_iterator pointer_end();
const_pointer_iterator pointer_end() const;
// Returns (an estimate of) the number of bytes used by the repeated field,
// excluding sizeof(*this).
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Advanced memory management --------------------------------------
// When hardcore memory management becomes necessary -- as it sometimes
// does here at Google -- the following methods may be useful.
// Adds an already-allocated object, passing ownership to the
// RepeatedPtrField.
//
// Note that some special behavior occurs with respect to arenas:
//
// (i) if this field holds submessages, the new submessage will be copied if
// the original is in an arena and this RepeatedPtrField is either in a
// different arena, or on the heap.
// (ii) if this field holds strings, the passed-in string *must* be
// heap-allocated, not arena-allocated. There is no way to dynamically check
// this at runtime, so User Beware.
void AddAllocated(Element* value);
// Removes and returns the last element, passing ownership to the caller.
// Requires: size() > 0
//
// If this RepeatedPtrField is on an arena, an object copy is required to pass
// ownership back to the user (for compatible semantics). Use
// UnsafeArenaReleaseLast() if this behavior is undesired.
PROTOBUF_NODISCARD Element* ReleaseLast();
// Adds an already-allocated object, skipping arena-ownership checks. The user
// must guarantee that the given object is in the same arena as this
// RepeatedPtrField.
// It is also useful in legacy code that uses temporary ownership to avoid
// copies. Example:
// RepeatedPtrField<T> temp_field;
// temp_field.UnsafeArenaAddAllocated(new T);
// ... // Do something with temp_field
// temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
// If you put temp_field on the arena this fails, because the ownership
// transfers to the arena at the "AddAllocated" call and is not released
// anymore, causing a double delete. UnsafeArenaAddAllocated prevents this.
void UnsafeArenaAddAllocated(Element* value);
// Removes and returns the last element. Unlike ReleaseLast, the returned
// pointer is always to the original object. This may be in an arena, in
// which case it would have the arena's lifetime.
// Requires: current_size_ > 0
Element* UnsafeArenaReleaseLast();
// Extracts elements with indices in the range "[start .. start+num-1]".
// The caller assumes ownership of the extracted elements and is responsible
// for deleting them when they are no longer needed.
// If "elements" is non-nullptr, then pointers to the extracted elements
// are stored in "elements[0 .. num-1]" for the convenience of the caller.
// If "elements" is nullptr, then the caller must use some other mechanism
// to perform any further operations (like deletion) on these elements.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
//
// Memory copying behavior is identical to ReleaseLast(), described above: if
// this RepeatedPtrField is on an arena, an object copy is performed for each
// returned element, so that all returned element pointers are to
// heap-allocated copies. If this copy is not desired, the user should call
// UnsafeArenaExtractSubrange().
void ExtractSubrange(int start, int num, Element** elements);
// Identical to ExtractSubrange() described above, except that no object
// copies are ever performed. Instead, the raw object pointers are returned.
// Thus, if on an arena, the returned objects must not be freed, because they
// will not be heap-allocated objects.
void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
// When elements are removed by calls to RemoveLast() or Clear(), they
// are not actually freed. Instead, they are cleared and kept so that
// they can be reused later. This can save lots of CPU time when
// repeatedly reusing a protocol message for similar purposes.
//
// Hardcore programs may choose to manipulate these cleared objects
// to better optimize memory management using the following routines.
// Gets the number of cleared objects that are currently being kept
// around for reuse.
int ClearedCount() const;
#ifndef PROTOBUF_FUTURE_BREAKING_CHANGES
// Adds an element to the pool of cleared objects, passing ownership to
// the RepeatedPtrField. The element must be cleared prior to calling
// this method.
//
// This method cannot be called when either the repeated field or |value| is
// on an arena; both cases will trigger a GOOGLE_DCHECK-failure.
void AddCleared(Element* value);
// Removes and returns a single element from the cleared pool, passing
// ownership to the caller. The element is guaranteed to be cleared.
// Requires: ClearedCount() > 0
//
// This method cannot be called when the repeated field is on an arena; doing
// so will trigger a GOOGLE_DCHECK-failure.
PROTOBUF_NODISCARD Element* ReleaseCleared();
#endif // !PROTOBUF_FUTURE_BREAKING_CHANGES
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position);
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first, const_iterator last);
// Gets the arena on which this RepeatedPtrField stores its elements.
inline Arena* GetArena() const;
// For internal use only.
//
// This is public due to it being called by generated code.
void InternalSwap(RepeatedPtrField* other) {
internal::RepeatedPtrFieldBase::InternalSwap(other);
}
private:
// Note: RepeatedPtrField SHOULD NOT be subclassed by users.
class TypeHandler;
// Internal version of GetArena().
inline Arena* GetOwningArena() const;
// Implementations for ExtractSubrange(). The copying behavior must be
// included only if the type supports the necessary operations (e.g.,
// MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
// uses SFINAE to choose one of the below implementations.
void ExtractSubrangeInternal(int start, int num, Element** elements,
std::true_type);
void ExtractSubrangeInternal(int start, int num, Element** elements,
std::false_type);
friend class Arena;
template <typename T>
friend struct WeakRepeatedPtrField;
typedef void InternalArenaConstructable_;
};
// -------------------------------------------------------------------
template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
: public internal::GenericTypeHandler<Element> {};
template <>
class RepeatedPtrField<std::string>::TypeHandler
: public internal::StringTypeHandler {};
template <typename Element>
constexpr RepeatedPtrField<Element>::RepeatedPtrField()
: RepeatedPtrFieldBase() {}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
: RepeatedPtrFieldBase(arena) {}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
const RepeatedPtrField& other)
: RepeatedPtrFieldBase() {
MergeFrom(other);
}
template <typename Element>
template <typename Iter, typename>
inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin, Iter end) {
Add(begin, end);
}
template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
#ifdef __cpp_if_constexpr
if constexpr (std::is_base_of<MessageLite, Element>::value) {
#else
if (std::is_base_of<MessageLite, Element>::value) {
#endif
if (NeedsDestroy()) DestroyProtos();
} else {
Destroy<TypeHandler>();
}
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
const RepeatedPtrField& other) {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
RepeatedPtrField&& other) noexcept
: RepeatedPtrField() {
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
CopyFrom(other);
#else // PROTOBUF_FORCE_COPY_IN_MOVE
// We don't just call Swap(&other) here because it would perform 3 copies if
// other is on an arena. This field can't be on an arena because arena
// construction always uses the Arena* accepting constructor.
if (other.GetOwningArena()) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
RepeatedPtrField&& other) noexcept {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (GetOwningArena() != other.GetOwningArena()
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
|| GetOwningArena() == nullptr
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
return RepeatedPtrFieldBase::empty();
}
template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
return RepeatedPtrFieldBase::size();
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::at(int index) const {
return RepeatedPtrFieldBase::at<TypeHandler>(index);
}
template <typename Element>
inline Element& RepeatedPtrField<Element>::at(int index) {
return RepeatedPtrFieldBase::at<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
return RepeatedPtrFieldBase::Add<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Add(Element&& value) {
RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
}
template <typename Element>
template <typename Iter>
inline void RepeatedPtrField<Element>::Add(Iter begin, Iter end) {
if (std::is_base_of<
std::forward_iterator_tag,
typename std::iterator_traits<Iter>::iterator_category>::value) {
int reserve = std::distance(begin, end);
Reserve(size() + reserve);
}
for (; begin != end; ++begin) {
*Add() = *begin;
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
for (int i = 0; i < num; ++i) {
RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
}
UnsafeArenaExtractSubrange(start, num, nullptr);
}
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
Element** elements) {
typename internal::TypeImplementsMergeBehavior<
typename TypeHandler::Type>::type t;
ExtractSubrangeInternal(start, num, elements, t);
}
// ExtractSubrange() implementation for types that implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
int start, int num, Element** elements, std::true_type) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
if (num == 0) return;
GOOGLE_DCHECK_NE(elements, nullptr)
<< "Releasing elements without transferring ownership is an unsafe "
"operation. Use UnsafeArenaExtractSubrange.";
if (elements == nullptr) {
CloseGap(start, num);
return;
}
Arena* arena = GetOwningArena();
#ifdef PROTOBUF_FORCE_COPY_IN_RELEASE
// Always copy.
for (int i = 0; i < num; ++i) {
elements[i] = copy<TypeHandler>(
RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start));
}
if (arena == nullptr) {
for (int i = 0; i < num; ++i) {
delete RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
}
#else // PROTOBUF_FORCE_COPY_IN_RELEASE
// If we're on an arena, we perform a copy for each element so that the
// returned elements are heap-allocated. Otherwise, just forward it.
if (arena != nullptr) {
for (int i = 0; i < num; ++i) {
elements[i] = copy<TypeHandler>(
RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start));
}
} else {
for (int i = 0; i < num; ++i) {
elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
}
#endif // !PROTOBUF_FORCE_COPY_IN_RELEASE
CloseGap(start, num);
}
// ExtractSubrange() implementation for types that do not implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
int start, int num, Element** elements, std::false_type) {
// This case is identical to UnsafeArenaExtractSubrange(). However, since
// ExtractSubrange() must return heap-allocated objects by contract, and we
// cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
// we are not on an arena.
GOOGLE_DCHECK(GetOwningArena() == nullptr)
<< "ExtractSubrange() when arena is non-nullptr is only supported when "
<< "the Element type supplies a MergeFrom() operation to make copies.";
UnsafeArenaExtractSubrange(start, num, elements);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
int start, int num, Element** elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
if (num > 0) {
// Save the values of the removed elements if requested.
if (elements != nullptr) {
for (int i = 0; i < num; ++i) {
elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
}
CloseGap(start, num);
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
RepeatedPtrFieldBase::Clear<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
const RepeatedPtrField& other) {
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}
template <typename Element>
template <typename Iter>
inline void RepeatedPtrField<Element>::Assign(Iter begin, Iter end) {
Clear();
Add(begin, end);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator position) {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
size_type pos_offset = std::distance(cbegin(), first);
size_type last_offset = std::distance(cbegin(), last);
DeleteSubrange(pos_offset, last_offset - pos_offset);
return begin() + pos_offset;
}
template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}
template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
return RepeatedPtrFieldBase::data<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
if (this == other) return;
RepeatedPtrFieldBase::Swap<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
RepeatedPtrField* other) {
if (this == other) return;
GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena());
RepeatedPtrFieldBase::InternalSwap(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
RepeatedPtrFieldBase::SwapElements(index1, index2);
}
template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetArena() const {
return RepeatedPtrFieldBase::GetArena();
}
template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetOwningArena() const {
return RepeatedPtrFieldBase::GetOwningArena();
}
template <typename Element>
inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
}
template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
return RepeatedPtrFieldBase::ClearedCount();
}
#ifndef PROTOBUF_FUTURE_BREAKING_CHANGES
template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}
#endif // !PROTOBUF_FUTURE_BREAKING_CHANGES
template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
return RepeatedPtrFieldBase::Reserve(new_size);
}
template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
return RepeatedPtrFieldBase::Capacity();
}
// -------------------------------------------------------------------
namespace internal {
// STL-like iterator implementation for RepeatedPtrField. You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template <typename Element>
class RepeatedPtrIterator {
public:
using iterator = RepeatedPtrIterator<Element>;
using iterator_category = std::random_access_iterator_tag;
using value_type = typename std::remove_const<Element>::type;
using difference_type = std::ptrdiff_t;
using pointer = Element*;
using reference = Element&;
RepeatedPtrIterator() : it_(nullptr) {}
explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
// Allows "upcasting" from RepeatedPtrIterator<T**> to
// RepeatedPtrIterator<const T*const*>.
template <typename OtherElement,
typename std::enable_if<std::is_convertible<
OtherElement*, pointer>::value>::type* = nullptr>
RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
: it_(other.it_) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() {
++it_;
return *this;
}
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() {
--it_;
return *this;
}
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
friend bool operator==(const iterator& x, const iterator& y) {
return x.it_ == y.it_;
}
friend bool operator!=(const iterator& x, const iterator& y) {
return x.it_ != y.it_;
}
// less_than_comparable
friend bool operator<(const iterator& x, const iterator& y) {
return x.it_ < y.it_;
}
friend bool operator<=(const iterator& x, const iterator& y) {
return x.it_ <= y.it_;
}
friend bool operator>(const iterator& x, const iterator& y) {
return x.it_ > y.it_;
}
friend bool operator>=(const iterator& x, const iterator& y) {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, const difference_type d) {
it += d;
return it;
}
friend iterator operator+(const difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
friend difference_type operator-(iterator it1, iterator it2) {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
void* const* it_;
};
// Provides an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator. It should either be "void *" for a mutable
// iterator, or "const void* const" for a constant iterator.
template <typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator {
public:
using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
using iterator_category = std::random_access_iterator_tag;
using value_type = typename std::remove_const<Element>::type;
using difference_type = std::ptrdiff_t;
using pointer = Element*;
using reference = Element&;
RepeatedPtrOverPtrsIterator() : it_(nullptr) {}
explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
// Allows "upcasting" from RepeatedPtrOverPtrsIterator<T**> to
// RepeatedPtrOverPtrsIterator<const T*const*>.
template <
typename OtherElement, typename OtherVoidPtr,
typename std::enable_if<
std::is_convertible<OtherElement*, pointer>::value &&
std::is_convertible<OtherVoidPtr*, VoidPtr>::value>::type* = nullptr>
RepeatedPtrOverPtrsIterator(
const RepeatedPtrOverPtrsIterator<OtherElement, OtherVoidPtr>& other)
: it_(other.it_) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() {
++it_;
return *this;
}
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() {
--it_;
return *this;
}
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
friend bool operator==(const iterator& x, const iterator& y) {
return x.it_ == y.it_;
}
friend bool operator!=(const iterator& x, const iterator& y) {
return x.it_ != y.it_;
}
// less_than_comparable
friend bool operator<(const iterator& x, const iterator& y) {
return x.it_ < y.it_;
}
friend bool operator<=(const iterator& x, const iterator& y) {
return x.it_ <= y.it_;
}
friend bool operator>(const iterator& x, const iterator& y) {
return x.it_ > y.it_;
}
friend bool operator>=(const iterator& x, const iterator& y) {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
friend difference_type operator-(iterator it1, iterator it2) {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement, typename OtherVoidPtr>
friend class RepeatedPtrOverPtrsIterator;
// The internal iterator.
VoidPtr* it_;
};
} // namespace internal
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cbegin() const {
return begin();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cend() const {
return end();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
return const_pointer_iterator(
const_cast<const void* const*>(raw_data() + size()));
}
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// A back inserter for RepeatedPtrField objects.
template <typename T>
class RepeatedPtrFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
*field_->Add() = value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(
const T* const ptr_to_value) {
*field_->Add() = *ptr_to_value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
*field_->Add() = std::move(value);
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// A back inserter for RepeatedPtrFields that inserts by transferring ownership
// of a pointer.
template <typename T>
class AllocatedRepeatedPtrFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit AllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T* const ptr_to_value) {
field_->AddAllocated(ptr_to_value);
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
// uses the UnsafeArenaAddAllocated instead.
template <typename T>
class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T const* const ptr_to_value) {
field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template <typename T>
internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
// Similar to AllocatedRepeatedPtrFieldBackInserter, using
// UnsafeArenaAddAllocated instead of AddAllocated.
// This is slightly faster if that matters. It is also useful in legacy code
// that uses temporary ownership to avoid copies. Example:
// RepeatedPtrField<T> temp_field;
// temp_field.UnsafeArenaAddAllocated(new T);
// ... // Do something with temp_field
// temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
// Putting temp_field on the arena fails because the ownership transfers to the
// arena at the "AddAllocated" call and is not released anymore causing a
// double delete. This function uses UnsafeArenaAddAllocated to prevent this.
template <typename T>
internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
RepeatedPtrField<std::string>;
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__