Source code

Revision control

Copy as Markdown

Other Tools

//! # Overview
//!
//! `once_cell` provides two new cell-like types, [`unsync::OnceCell`] and
//! [`sync::OnceCell`]. A `OnceCell` might store arbitrary non-`Copy` types, can
//! be assigned to at most once and provides direct access to the stored
//! contents. The core API looks *roughly* like this (and there's much more
//! inside, read on!):
//!
//! ```rust,ignore
//! impl<T> OnceCell<T> {
//! const fn new() -> OnceCell<T> { ... }
//! fn set(&self, value: T) -> Result<(), T> { ... }
//! fn get(&self) -> Option<&T> { ... }
//! }
//! ```
//!
//! Note that, like with [`RefCell`] and [`Mutex`], the `set` method requires
//! only a shared reference. Because of the single assignment restriction `get`
//! can return a `&T` instead of `Ref<T>` or `MutexGuard<T>`.
//!
//! The `sync` flavor is thread-safe (that is, implements the [`Sync`] trait),
//! while the `unsync` one is not.
//!
//! [`unsync::OnceCell`]: unsync/struct.OnceCell.html
//! [`sync::OnceCell`]: sync/struct.OnceCell.html
//!
//! # Recipes
//!
//! `OnceCell` might be useful for a variety of patterns.
//!
//! ## Safe Initialization of Global Data
//!
//! ```rust
//! use std::{env, io};
//!
//! use once_cell::sync::OnceCell;
//!
//! #[derive(Debug)]
//! pub struct Logger {
//! // ...
//! }
//! static INSTANCE: OnceCell<Logger> = OnceCell::new();
//!
//! impl Logger {
//! pub fn global() -> &'static Logger {
//! INSTANCE.get().expect("logger is not initialized")
//! }
//!
//! fn from_cli(args: env::Args) -> Result<Logger, std::io::Error> {
//! // ...
//! # Ok(Logger {})
//! }
//! }
//!
//! fn main() {
//! let logger = Logger::from_cli(env::args()).unwrap();
//! INSTANCE.set(logger).unwrap();
//! // use `Logger::global()` from now on
//! }
//! ```
//!
//! ## Lazy Initialized Global Data
//!
//! This is essentially the `lazy_static!` macro, but without a macro.
//!
//! ```rust
//! use std::{sync::Mutex, collections::HashMap};
//!
//! use once_cell::sync::OnceCell;
//!
//! fn global_data() -> &'static Mutex<HashMap<i32, String>> {
//! static INSTANCE: OnceCell<Mutex<HashMap<i32, String>>> = OnceCell::new();
//! INSTANCE.get_or_init(|| {
//! let mut m = HashMap::new();
//! m.insert(13, "Spica".to_string());
//! m.insert(74, "Hoyten".to_string());
//! Mutex::new(m)
//! })
//! }
//! ```
//!
//! There are also the [`sync::Lazy`] and [`unsync::Lazy`] convenience types to
//! streamline this pattern:
//!
//! ```rust
//! use std::{sync::Mutex, collections::HashMap};
//! use once_cell::sync::Lazy;
//!
//! static GLOBAL_DATA: Lazy<Mutex<HashMap<i32, String>>> = Lazy::new(|| {
//! let mut m = HashMap::new();
//! m.insert(13, "Spica".to_string());
//! m.insert(74, "Hoyten".to_string());
//! Mutex::new(m)
//! });
//!
//! fn main() {
//! println!("{:?}", GLOBAL_DATA.lock().unwrap());
//! }
//! ```
//!
//! Note that the variable that holds `Lazy` is declared as `static`, *not*
//! `const`. This is important: using `const` instead compiles, but works wrong.
//!
//! [`sync::Lazy`]: sync/struct.Lazy.html
//! [`unsync::Lazy`]: unsync/struct.Lazy.html
//!
//! ## General purpose lazy evaluation
//!
//! Unlike `lazy_static!`, `Lazy` works with local variables.
//!
//! ```rust
//! use once_cell::unsync::Lazy;
//!
//! fn main() {
//! let ctx = vec![1, 2, 3];
//! let thunk = Lazy::new(|| {
//! ctx.iter().sum::<i32>()
//! });
//! assert_eq!(*thunk, 6);
//! }
//! ```
//!
//! If you need a lazy field in a struct, you probably should use `OnceCell`
//! directly, because that will allow you to access `self` during
//! initialization.
//!
//! ```rust
//! use std::{fs, path::PathBuf};
//!
//! use once_cell::unsync::OnceCell;
//!
//! struct Ctx {
//! config_path: PathBuf,
//! config: OnceCell<String>,
//! }
//!
//! impl Ctx {
//! pub fn get_config(&self) -> Result<&str, std::io::Error> {
//! let cfg = self.config.get_or_try_init(|| {
//! fs::read_to_string(&self.config_path)
//! })?;
//! Ok(cfg.as_str())
//! }
//! }
//! ```
//!
//! ## Lazily Compiled Regex
//!
//! This is a `regex!` macro which takes a string literal and returns an
//! *expression* that evaluates to a `&'static Regex`:
//!
//! ```
//! macro_rules! regex {
//! ($re:literal $(,)?) => {{
//! static RE: once_cell::sync::OnceCell<regex::Regex> = once_cell::sync::OnceCell::new();
//! RE.get_or_init(|| regex::Regex::new($re).unwrap())
//! }};
//! }
//! ```
//!
//! This macro can be useful to avoid the "compile regex on every loop
//! iteration" problem.
//!
//! ## Runtime `include_bytes!`
//!
//! The `include_bytes` macro is useful to include test resources, but it slows
//! down test compilation a lot. An alternative is to load the resources at
//! runtime:
//!
//! ```
//! use std::path::Path;
//!
//! use once_cell::sync::OnceCell;
//!
//! pub struct TestResource {
//! path: &'static str,
//! cell: OnceCell<Vec<u8>>,
//! }
//!
//! impl TestResource {
//! pub const fn new(path: &'static str) -> TestResource {
//! TestResource { path, cell: OnceCell::new() }
//! }
//! pub fn bytes(&self) -> &[u8] {
//! self.cell.get_or_init(|| {
//! let dir = std::env::var("CARGO_MANIFEST_DIR").unwrap();
//! let path = Path::new(dir.as_str()).join(self.path);
//! std::fs::read(&path).unwrap_or_else(|_err| {
//! panic!("failed to load test resource: {}", path.display())
//! })
//! }).as_slice()
//! }
//! }
//!
//! static TEST_IMAGE: TestResource = TestResource::new("test_data/lena.png");
//!
//! #[test]
//! fn test_sobel_filter() {
//! let rgb: &[u8] = TEST_IMAGE.bytes();
//! // ...
//! # drop(rgb);
//! }
//! ```
//!
//! ## `lateinit`
//!
//! `LateInit` type for delayed initialization. It is reminiscent of Kotlin's
//! `lateinit` keyword and allows construction of cyclic data structures:
//!
//!
//! ```
//! use once_cell::sync::OnceCell;
//!
//! pub struct LateInit<T> { cell: OnceCell<T> }
//!
//! impl<T> LateInit<T> {
//! pub fn init(&self, value: T) {
//! assert!(self.cell.set(value).is_ok())
//! }
//! }
//!
//! impl<T> Default for LateInit<T> {
//! fn default() -> Self { LateInit { cell: OnceCell::default() } }
//! }
//!
//! impl<T> std::ops::Deref for LateInit<T> {
//! type Target = T;
//! fn deref(&self) -> &T {
//! self.cell.get().unwrap()
//! }
//! }
//!
//! #[derive(Default)]
//! struct A<'a> {
//! b: LateInit<&'a B<'a>>,
//! }
//!
//! #[derive(Default)]
//! struct B<'a> {
//! a: LateInit<&'a A<'a>>
//! }
//!
//!
//! fn build_cycle() {
//! let a = A::default();
//! let b = B::default();
//! a.b.init(&b);
//! b.a.init(&a);
//!
//! let _a = &a.b.a.b.a;
//! }
//! ```
//!
//! # Comparison with std
//!
//! |`!Sync` types | Access Mode | Drawbacks |
//! |----------------------|------------------------|-----------------------------------------------|
//! |`Cell<T>` | `T` | requires `T: Copy` for `get` |
//! |`RefCell<T>` | `RefMut<T>` / `Ref<T>` | may panic at runtime |
//! |`unsync::OnceCell<T>` | `&T` | assignable only once |
//!
//! |`Sync` types | Access Mode | Drawbacks |
//! |----------------------|------------------------|-----------------------------------------------|
//! |`AtomicT` | `T` | works only with certain `Copy` types |
//! |`Mutex<T>` | `MutexGuard<T>` | may deadlock at runtime, may block the thread |
//! |`sync::OnceCell<T>` | `&T` | assignable only once, may block the thread |
//!
//! Technically, calling `get_or_init` will also cause a panic or a deadlock if
//! it recursively calls itself. However, because the assignment can happen only
//! once, such cases should be more rare than equivalents with `RefCell` and
//! `Mutex`.
//!
//! # Minimum Supported `rustc` Version
//!
//! If only the `std`, `alloc`, or `race` features are enabled, MSRV will be
//! updated conservatively, supporting at least latest 8 versions of the compiler.
//! When using other features, like `parking_lot`, MSRV might be updated more
//! frequently, up to the latest stable. In both cases, increasing MSRV is *not*
//! considered a semver-breaking change and requires only a minor version bump.
//!
//! # Implementation details
//!
//! The implementation is based on the
//! [`lazy_cell`](https://github.com/indiv0/lazycell/) crates and
//! [`std::sync::Once`]. In some sense, `once_cell` just streamlines and unifies
//! those APIs.
//!
//! To implement a sync flavor of `OnceCell`, this crates uses either a custom
//! re-implementation of `std::sync::Once` or `parking_lot::Mutex`. This is
//! controlled by the `parking_lot` feature (disabled by default). Performance
//! is the same for both cases, but the `parking_lot` based `OnceCell<T>` is
//! smaller by up to 16 bytes.
//!
//! This crate uses `unsafe`.
//!
//!
//! # F.A.Q.
//!
//! **Should I use the sync or unsync flavor?**
//!
//! Because Rust compiler checks thread safety for you, it's impossible to
//! accidentally use `unsync` where `sync` is required. So, use `unsync` in
//! single-threaded code and `sync` in multi-threaded. It's easy to switch
//! between the two if code becomes multi-threaded later.
//!
//! At the moment, `unsync` has an additional benefit that reentrant
//! initialization causes a panic, which might be easier to debug than a
//! deadlock.
//!
//! **Does this crate support async?**
//!
//! No, but you can use
//! [`async_once_cell`](https://crates.io/crates/async_once_cell) instead.
//!
//! **Does this crate support `no_std`?**
//!
//! Yes, but with caveats. `OnceCell` is a synchronization primitive which
//! _semantically_ relies on blocking. `OnceCell` guarantees that at most one
//! `f` will be called to compute the value. If two threads of execution call
//! `get_or_init` concurrently, one of them has to wait.
//!
//! Waiting fundamentally requires OS support. Execution environment needs to
//! understand who waits on whom to prevent deadlocks due to priority inversion.
//! You _could_ make code to compile by blindly using pure spinlocks, but the
//! runtime behavior would be subtly wrong.
//!
//! Given these constraints, `once_cell` provides the following options:
//!
//! - The `race` module provides similar, but distinct synchronization primitive
//! which is compatible with `no_std`. With `race`, the `f` function can be
//! called multiple times by different threads, but only one thread will win
//! to install the value.
//! - `critical-section` feature (with a `-`, not `_`) uses `critical_section`
//! to implement blocking.
//!
//! **Can I bring my own mutex?**
//!
//! There is [generic_once_cell](https://crates.io/crates/generic_once_cell) to
//! allow just that.
//!
//! **Should I use `std::cell::OnceCell`, `once_cell`, or `lazy_static`?**
//!
//! If you can use `std` version (your MSRV is at least 1.70, and you don't need
//! extra features `once_cell` provides), use `std`. Otherwise, use `once_cell`.
//! Don't use `lazy_static`.
//!
//! # Related crates
//!
//! * Most of this crate's functionality is available in `std` starting with
//! Rust 1.70. See `std::cell::OnceCell` and `std::sync::OnceLock`.
//! * [double-checked-cell](https://github.com/niklasf/double-checked-cell)
//! * [async_once_cell](https://crates.io/crates/async_once_cell)
//! * [generic_once_cell](https://crates.io/crates/generic_once_cell) (bring
//! your own mutex)
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(all(feature = "critical-section", not(feature = "std")))]
#[path = "imp_cs.rs"]
mod imp;
#[cfg(all(feature = "std", feature = "parking_lot"))]
#[path = "imp_pl.rs"]
mod imp;
#[cfg(all(feature = "std", not(feature = "parking_lot")))]
#[path = "imp_std.rs"]
mod imp;
/// Single-threaded version of `OnceCell`.
pub mod unsync {
use core::{
cell::{Cell, UnsafeCell},
fmt, mem,
ops::{Deref, DerefMut},
panic::{RefUnwindSafe, UnwindSafe},
};
/// A cell which can be written to only once. It is not thread safe.
///
/// Unlike [`std::cell::RefCell`], a `OnceCell` provides simple `&`
/// references to the contents.
///
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// let value: &String = cell.get_or_init(|| {
/// "Hello, World!".to_string()
/// });
/// assert_eq!(value, "Hello, World!");
/// assert!(cell.get().is_some());
/// ```
pub struct OnceCell<T> {
// Invariant: written to at most once.
inner: UnsafeCell<Option<T>>,
}
// Similarly to a `Sync` bound on `sync::OnceCell`, we can use
// `&unsync::OnceCell` to sneak a `T` through `catch_unwind`,
// by initializing the cell in closure and extracting the value in the
// `Drop`.
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}
impl<T> Default for OnceCell<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.get() {
Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
None => f.write_str("OnceCell(Uninit)"),
}
}
}
impl<T: Clone> Clone for OnceCell<T> {
fn clone(&self) -> OnceCell<T> {
match self.get() {
Some(value) => OnceCell::with_value(value.clone()),
None => OnceCell::new(),
}
}
fn clone_from(&mut self, source: &Self) {
match (self.get_mut(), source.get()) {
(Some(this), Some(source)) => this.clone_from(source),
_ => *self = source.clone(),
}
}
}
impl<T: PartialEq> PartialEq for OnceCell<T> {
fn eq(&self, other: &Self) -> bool {
self.get() == other.get()
}
}
impl<T: Eq> Eq for OnceCell<T> {}
impl<T> From<T> for OnceCell<T> {
fn from(value: T) -> Self {
OnceCell::with_value(value)
}
}
impl<T> OnceCell<T> {
/// Creates a new empty cell.
pub const fn new() -> OnceCell<T> {
OnceCell { inner: UnsafeCell::new(None) }
}
/// Creates a new initialized cell.
pub const fn with_value(value: T) -> OnceCell<T> {
OnceCell { inner: UnsafeCell::new(Some(value)) }
}
/// Gets a reference to the underlying value.
///
/// Returns `None` if the cell is empty.
#[inline]
pub fn get(&self) -> Option<&T> {
// Safe due to `inner`'s invariant of being written to at most once.
// Had multiple writes to `inner` been allowed, a reference to the
// value we return now would become dangling by a write of a
// different value later.
unsafe { &*self.inner.get() }.as_ref()
}
/// Gets a mutable reference to the underlying value.
///
/// Returns `None` if the cell is empty.
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// *cell.get_mut().unwrap() = 93;
/// assert_eq!(cell.get(), Some(&93));
/// ```
#[inline]
pub fn get_mut(&mut self) -> Option<&mut T> {
// Safe because we have unique access
unsafe { &mut *self.inner.get() }.as_mut()
}
/// Sets the contents of this cell to `value`.
///
/// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
/// full.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// assert_eq!(cell.set(92), Ok(()));
/// assert_eq!(cell.set(62), Err(62));
///
/// assert!(cell.get().is_some());
/// ```
pub fn set(&self, value: T) -> Result<(), T> {
match self.try_insert(value) {
Ok(_) => Ok(()),
Err((_, value)) => Err(value),
}
}
/// Like [`set`](Self::set), but also returns a reference to the final cell value.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// assert_eq!(cell.try_insert(92), Ok(&92));
/// assert_eq!(cell.try_insert(62), Err((&92, 62)));
///
/// assert!(cell.get().is_some());
/// ```
pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> {
if let Some(old) = self.get() {
return Err((old, value));
}
let slot = unsafe { &mut *self.inner.get() };
// This is the only place where we set the slot, no races
// due to reentrancy/concurrency are possible, and we've
// checked that slot is currently `None`, so this write
// maintains the `inner`'s invariant.
*slot = Some(value);
Ok(unsafe { slot.as_ref().unwrap_unchecked() })
}
/// Gets the contents of the cell, initializing it with `f`
/// if the cell was empty.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and the cell
/// remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`. Doing
/// so results in a panic.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// let value = cell.get_or_init(|| 92);
/// assert_eq!(value, &92);
/// let value = cell.get_or_init(|| unreachable!());
/// assert_eq!(value, &92);
/// ```
pub fn get_or_init<F>(&self, f: F) -> &T
where
F: FnOnce() -> T,
{
enum Void {}
match self.get_or_try_init(|| Ok::<T, Void>(f())) {
Ok(val) => val,
Err(void) => match void {},
}
}
/// Gets the contents of the cell, initializing it with `f` if
/// the cell was empty. If the cell was empty and `f` failed, an
/// error is returned.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and the cell
/// remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`. Doing
/// so results in a panic.
///
/// # Example
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
/// assert!(cell.get().is_none());
/// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
/// Ok(92)
/// });
/// assert_eq!(value, Ok(&92));
/// assert_eq!(cell.get(), Some(&92))
/// ```
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
where
F: FnOnce() -> Result<T, E>,
{
if let Some(val) = self.get() {
return Ok(val);
}
let val = f()?;
// Note that *some* forms of reentrant initialization might lead to
// UB (see `reentrant_init` test). I believe that just removing this
// `assert`, while keeping `set/get` would be sound, but it seems
// better to panic, rather than to silently use an old value.
assert!(self.set(val).is_ok(), "reentrant init");
Ok(unsafe { self.get().unwrap_unchecked() })
}
/// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
///
/// Has no effect and returns `None` if the `OnceCell` hasn't been initialized.
///
/// # Examples
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let mut cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.take(), None);
///
/// let mut cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.take(), Some("hello".to_string()));
/// assert_eq!(cell.get(), None);
/// ```
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// cell = OnceCell::new();
/// ```
pub fn take(&mut self) -> Option<T> {
mem::take(self).into_inner()
}
/// Consumes the `OnceCell`, returning the wrapped value.
///
/// Returns `None` if the cell was empty.
///
/// # Examples
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.into_inner(), None);
///
/// let cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.into_inner(), Some("hello".to_string()));
/// ```
pub fn into_inner(self) -> Option<T> {
// Because `into_inner` takes `self` by value, the compiler statically verifies
// that it is not currently borrowed. So it is safe to move out `Option<T>`.
self.inner.into_inner()
}
}
/// A value which is initialized on the first access.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let lazy: Lazy<i32> = Lazy::new(|| {
/// println!("initializing");
/// 92
/// });
/// println!("ready");
/// println!("{}", *lazy);
/// println!("{}", *lazy);
///
/// // Prints:
/// // ready
/// // initializing
/// // 92
/// // 92
/// ```
pub struct Lazy<T, F = fn() -> T> {
cell: OnceCell<T>,
init: Cell<Option<F>>,
}
impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {}
impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
}
}
impl<T, F> Lazy<T, F> {
/// Creates a new lazy value with the given initializing function.
///
/// # Example
/// ```
/// # fn main() {
/// use once_cell::unsync::Lazy;
///
/// let hello = "Hello, World!".to_string();
///
/// let lazy = Lazy::new(|| hello.to_uppercase());
///
/// assert_eq!(&*lazy, "HELLO, WORLD!");
/// # }
/// ```
pub const fn new(init: F) -> Lazy<T, F> {
Lazy { cell: OnceCell::new(), init: Cell::new(Some(init)) }
}
/// Consumes this `Lazy` returning the stored value.
///
/// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
pub fn into_value(this: Lazy<T, F>) -> Result<T, F> {
let cell = this.cell;
let init = this.init;
cell.into_inner().ok_or_else(|| {
init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned"))
})
}
}
impl<T, F: FnOnce() -> T> Lazy<T, F> {
/// Forces the evaluation of this lazy value and returns a reference to
/// the result.
///
/// This is equivalent to the `Deref` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force(&lazy), &92);
/// assert_eq!(&*lazy, &92);
/// ```
pub fn force(this: &Lazy<T, F>) -> &T {
this.cell.get_or_init(|| match this.init.take() {
Some(f) => f(),
None => panic!("Lazy instance has previously been poisoned"),
})
}
/// Forces the evaluation of this lazy value and returns a mutable reference to
/// the result.
///
/// This is equivalent to the `DerefMut` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force_mut(&mut lazy), &92);
/// assert_eq!(*lazy, 92);
/// ```
pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T {
if this.cell.get_mut().is_none() {
let value = match this.init.get_mut().take() {
Some(f) => f(),
None => panic!("Lazy instance has previously been poisoned"),
};
this.cell = OnceCell::with_value(value);
}
this.cell.get_mut().unwrap_or_else(|| unreachable!())
}
/// Gets the reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get(&lazy), None);
/// assert_eq!(&*lazy, &92);
/// assert_eq!(Lazy::get(&lazy), Some(&92));
/// ```
pub fn get(this: &Lazy<T, F>) -> Option<&T> {
this.cell.get()
}
/// Gets the mutable reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::unsync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get_mut(&mut lazy), None);
/// assert_eq!(*lazy, 92);
/// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92));
/// ```
pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> {
this.cell.get_mut()
}
}
impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
type Target = T;
fn deref(&self) -> &T {
Lazy::force(self)
}
}
impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> {
fn deref_mut(&mut self) -> &mut T {
Lazy::force_mut(self)
}
}
impl<T: Default> Default for Lazy<T> {
/// Creates a new lazy value using `Default` as the initializing function.
fn default() -> Lazy<T> {
Lazy::new(T::default)
}
}
}
/// Thread-safe, blocking version of `OnceCell`.
#[cfg(any(feature = "std", feature = "critical-section"))]
pub mod sync {
use core::{
cell::Cell,
fmt, mem,
ops::{Deref, DerefMut},
panic::RefUnwindSafe,
};
use super::imp::OnceCell as Imp;
/// A thread-safe cell which can be written to only once.
///
/// `OnceCell` provides `&` references to the contents without RAII guards.
///
/// Reading a non-`None` value out of `OnceCell` establishes a
/// happens-before relationship with a corresponding write. For example, if
/// thread A initializes the cell with `get_or_init(f)`, and thread B
/// subsequently reads the result of this call, B also observes all the side
/// effects of `f`.
///
/// # Example
/// ```
/// use once_cell::sync::OnceCell;
///
/// static CELL: OnceCell<String> = OnceCell::new();
/// assert!(CELL.get().is_none());
///
/// std::thread::spawn(|| {
/// let value: &String = CELL.get_or_init(|| {
/// "Hello, World!".to_string()
/// });
/// assert_eq!(value, "Hello, World!");
/// }).join().unwrap();
///
/// let value: Option<&String> = CELL.get();
/// assert!(value.is_some());
/// assert_eq!(value.unwrap().as_str(), "Hello, World!");
/// ```
pub struct OnceCell<T>(Imp<T>);
impl<T> Default for OnceCell<T> {
fn default() -> OnceCell<T> {
OnceCell::new()
}
}
impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.get() {
Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
None => f.write_str("OnceCell(Uninit)"),
}
}
}
impl<T: Clone> Clone for OnceCell<T> {
fn clone(&self) -> OnceCell<T> {
match self.get() {
Some(value) => Self::with_value(value.clone()),
None => Self::new(),
}
}
fn clone_from(&mut self, source: &Self) {
match (self.get_mut(), source.get()) {
(Some(this), Some(source)) => this.clone_from(source),
_ => *self = source.clone(),
}
}
}
impl<T> From<T> for OnceCell<T> {
fn from(value: T) -> Self {
Self::with_value(value)
}
}
impl<T: PartialEq> PartialEq for OnceCell<T> {
fn eq(&self, other: &OnceCell<T>) -> bool {
self.get() == other.get()
}
}
impl<T: Eq> Eq for OnceCell<T> {}
impl<T> OnceCell<T> {
/// Creates a new empty cell.
pub const fn new() -> OnceCell<T> {
OnceCell(Imp::new())
}
/// Creates a new initialized cell.
pub const fn with_value(value: T) -> OnceCell<T> {
OnceCell(Imp::with_value(value))
}
/// Gets the reference to the underlying value.
///
/// Returns `None` if the cell is empty, or being initialized. This
/// method never blocks.
pub fn get(&self) -> Option<&T> {
if self.0.is_initialized() {
// Safe b/c value is initialized.
Some(unsafe { self.get_unchecked() })
} else {
None
}
}
/// Gets the reference to the underlying value, blocking the current
/// thread until it is set.
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell = std::sync::Arc::new(OnceCell::new());
/// let t = std::thread::spawn({
/// let cell = std::sync::Arc::clone(&cell);
/// move || cell.set(92).unwrap()
/// });
///
/// // Returns immediately, but might return None.
/// let _value_or_none = cell.get();
///
/// // Will return 92, but might block until the other thread does `.set`.
/// let value: &u32 = cell.wait();
/// assert_eq!(*value, 92);
/// t.join().unwrap();
/// ```
#[cfg(feature = "std")]
pub fn wait(&self) -> &T {
if !self.0.is_initialized() {
self.0.wait()
}
debug_assert!(self.0.is_initialized());
// Safe b/c of the wait call above and the fact that we didn't
// relinquish our borrow.
unsafe { self.get_unchecked() }
}
/// Gets the mutable reference to the underlying value.
///
/// Returns `None` if the cell is empty.
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// cell = OnceCell::new();
/// ```
#[inline]
pub fn get_mut(&mut self) -> Option<&mut T> {
self.0.get_mut()
}
/// Get the reference to the underlying value, without checking if the
/// cell is initialized.
///
/// # Safety
///
/// Caller must ensure that the cell is in initialized state, and that
/// the contents are acquired by (synchronized to) this thread.
#[inline]
pub unsafe fn get_unchecked(&self) -> &T {
self.0.get_unchecked()
}
/// Sets the contents of this cell to `value`.
///
/// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
/// full.
///
/// # Example
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// static CELL: OnceCell<i32> = OnceCell::new();
///
/// fn main() {
/// assert!(CELL.get().is_none());
///
/// std::thread::spawn(|| {
/// assert_eq!(CELL.set(92), Ok(()));
/// }).join().unwrap();
///
/// assert_eq!(CELL.set(62), Err(62));
/// assert_eq!(CELL.get(), Some(&92));
/// }
/// ```
pub fn set(&self, value: T) -> Result<(), T> {
match self.try_insert(value) {
Ok(_) => Ok(()),
Err((_, value)) => Err(value),
}
}
/// Like [`set`](Self::set), but also returns a reference to the final cell value.
///
/// # Example
///
/// ```
/// use once_cell::unsync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert!(cell.get().is_none());
///
/// assert_eq!(cell.try_insert(92), Ok(&92));
/// assert_eq!(cell.try_insert(62), Err((&92, 62)));
///
/// assert!(cell.get().is_some());
/// ```
pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> {
let mut value = Some(value);
let res = self.get_or_init(|| unsafe { value.take().unwrap_unchecked() });
match value {
None => Ok(res),
Some(value) => Err((res, value)),
}
}
/// Gets the contents of the cell, initializing it with `f` if the cell
/// was empty.
///
/// Many threads may call `get_or_init` concurrently with different
/// initializing functions, but it is guaranteed that only one function
/// will be executed.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and the cell
/// remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`. The
/// exact outcome is unspecified. Current implementation deadlocks, but
/// this may be changed to a panic in the future.
///
/// # Example
/// ```
/// use once_cell::sync::OnceCell;
///
/// let cell = OnceCell::new();
/// let value = cell.get_or_init(|| 92);
/// assert_eq!(value, &92);
/// let value = cell.get_or_init(|| unreachable!());
/// assert_eq!(value, &92);
/// ```
pub fn get_or_init<F>(&self, f: F) -> &T
where
F: FnOnce() -> T,
{
enum Void {}
match self.get_or_try_init(|| Ok::<T, Void>(f())) {
Ok(val) => val,
Err(void) => match void {},
}
}
/// Gets the contents of the cell, initializing it with `f` if
/// the cell was empty. If the cell was empty and `f` failed, an
/// error is returned.
///
/// # Panics
///
/// If `f` panics, the panic is propagated to the caller, and
/// the cell remains uninitialized.
///
/// It is an error to reentrantly initialize the cell from `f`.
/// The exact outcome is unspecified. Current implementation
/// deadlocks, but this may be changed to a panic in the future.
///
/// # Example
/// ```
/// use once_cell::sync::OnceCell;
///
/// let cell = OnceCell::new();
/// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
/// assert!(cell.get().is_none());
/// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
/// Ok(92)
/// });
/// assert_eq!(value, Ok(&92));
/// assert_eq!(cell.get(), Some(&92))
/// ```
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
where
F: FnOnce() -> Result<T, E>,
{
// Fast path check
if let Some(value) = self.get() {
return Ok(value);
}
self.0.initialize(f)?;
// Safe b/c value is initialized.
debug_assert!(self.0.is_initialized());
Ok(unsafe { self.get_unchecked() })
}
/// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
///
/// Has no effect and returns `None` if the `OnceCell` hasn't been initialized.
///
/// # Examples
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.take(), None);
///
/// let mut cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.take(), Some("hello".to_string()));
/// assert_eq!(cell.get(), None);
/// ```
///
/// This method is allowed to violate the invariant of writing to a `OnceCell`
/// at most once because it requires `&mut` access to `self`. As with all
/// interior mutability, `&mut` access permits arbitrary modification:
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let mut cell: OnceCell<u32> = OnceCell::new();
/// cell.set(92).unwrap();
/// cell = OnceCell::new();
/// ```
pub fn take(&mut self) -> Option<T> {
mem::take(self).into_inner()
}
/// Consumes the `OnceCell`, returning the wrapped value. Returns
/// `None` if the cell was empty.
///
/// # Examples
///
/// ```
/// use once_cell::sync::OnceCell;
///
/// let cell: OnceCell<String> = OnceCell::new();
/// assert_eq!(cell.into_inner(), None);
///
/// let cell = OnceCell::new();
/// cell.set("hello".to_string()).unwrap();
/// assert_eq!(cell.into_inner(), Some("hello".to_string()));
/// ```
#[inline]
pub fn into_inner(self) -> Option<T> {
self.0.into_inner()
}
}
/// A value which is initialized on the first access.
///
/// This type is thread-safe and can be used in statics.
///
/// # Example
///
/// ```
/// use std::collections::HashMap;
///
/// use once_cell::sync::Lazy;
///
/// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| {
/// println!("initializing");
/// let mut m = HashMap::new();
/// m.insert(13, "Spica".to_string());
/// m.insert(74, "Hoyten".to_string());
/// m
/// });
///
/// fn main() {
/// println!("ready");
/// std::thread::spawn(|| {
/// println!("{:?}", HASHMAP.get(&13));
/// }).join().unwrap();
/// println!("{:?}", HASHMAP.get(&74));
///
/// // Prints:
/// // ready
/// // initializing
/// // Some("Spica")
/// // Some("Hoyten")
/// }
/// ```
pub struct Lazy<T, F = fn() -> T> {
cell: OnceCell<T>,
init: Cell<Option<F>>,
}
impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
}
}
// We never create a `&F` from a `&Lazy<T, F>` so it is fine to not impl
// `Sync` for `F`. We do create a `&mut Option<F>` in `force`, but this is
// properly synchronized, so it only happens once so it also does not
// contribute to this impl.
unsafe impl<T, F: Send> Sync for Lazy<T, F> where OnceCell<T>: Sync {}
// auto-derived `Send` impl is OK.
impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {}
impl<T, F> Lazy<T, F> {
/// Creates a new lazy value with the given initializing
/// function.
pub const fn new(f: F) -> Lazy<T, F> {
Lazy { cell: OnceCell::new(), init: Cell::new(Some(f)) }
}
/// Consumes this `Lazy` returning the stored value.
///
/// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
pub fn into_value(this: Lazy<T, F>) -> Result<T, F> {
let cell = this.cell;
let init = this.init;
cell.into_inner().ok_or_else(|| {
init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned"))
})
}
}
impl<T, F: FnOnce() -> T> Lazy<T, F> {
/// Forces the evaluation of this lazy value and
/// returns a reference to the result. This is equivalent
/// to the `Deref` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force(&lazy), &92);
/// assert_eq!(&*lazy, &92);
/// ```
pub fn force(this: &Lazy<T, F>) -> &T {
this.cell.get_or_init(|| match this.init.take() {
Some(f) => f(),
None => panic!("Lazy instance has previously been poisoned"),
})
}
/// Forces the evaluation of this lazy value and
/// returns a mutable reference to the result. This is equivalent
/// to the `Deref` impl, but is explicit.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::force_mut(&mut lazy), &mut 92);
/// ```
pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T {
if this.cell.get_mut().is_none() {
let value = match this.init.get_mut().take() {
Some(f) => f(),
None => panic!("Lazy instance has previously been poisoned"),
};
this.cell = OnceCell::with_value(value);
}
this.cell.get_mut().unwrap_or_else(|| unreachable!())
}
/// Gets the reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get(&lazy), None);
/// assert_eq!(&*lazy, &92);
/// assert_eq!(Lazy::get(&lazy), Some(&92));
/// ```
pub fn get(this: &Lazy<T, F>) -> Option<&T> {
this.cell.get()
}
/// Gets the reference to the result of this lazy value if
/// it was initialized, otherwise returns `None`.
///
/// # Example
/// ```
/// use once_cell::sync::Lazy;
///
/// let mut lazy = Lazy::new(|| 92);
///
/// assert_eq!(Lazy::get_mut(&mut lazy), None);
/// assert_eq!(&*lazy, &92);
/// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92));
/// ```
pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> {
this.cell.get_mut()
}
}
impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
type Target = T;
fn deref(&self) -> &T {
Lazy::force(self)
}
}
impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> {
fn deref_mut(&mut self) -> &mut T {
Lazy::force_mut(self)
}
}
impl<T: Default> Default for Lazy<T> {
/// Creates a new lazy value using `Default` as the initializing function.
fn default() -> Lazy<T> {
Lazy::new(T::default)
}
}
/// ```compile_fail
/// struct S(*mut ());
/// unsafe impl Sync for S {}
///
/// fn share<T: Sync>(_: &T) {}
/// share(&once_cell::sync::OnceCell::<S>::new());
/// ```
///
/// ```compile_fail
/// struct S(*mut ());
/// unsafe impl Sync for S {}
///
/// fn share<T: Sync>(_: &T) {}
/// share(&once_cell::sync::Lazy::<S>::new(|| unimplemented!()));
/// ```
fn _dummy() {}
}
#[cfg(feature = "race")]
pub mod race;