Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) 2013-2014 The Rust Project Developers.
// Copyright (c) 2015-2020 The rust-hex Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Encoding and decoding hex strings.
//!
//! For most cases, you can simply use the [`decode`], [`encode`] and
//! [`encode_upper`] functions. If you need a bit more control, use the traits
//! [`ToHex`] and [`FromHex`] instead.
//!
//! # Example
//!
//! ```
//! # #[cfg(not(feature = "alloc"))]
//! # let mut output = [0; 0x18];
//! #
//! # #[cfg(not(feature = "alloc"))]
//! # hex::encode_to_slice(b"Hello world!", &mut output).unwrap();
//! #
//! # #[cfg(not(feature = "alloc"))]
//! # let hex_string = ::core::str::from_utf8(&output).unwrap();
//! #
//! # #[cfg(feature = "alloc")]
//! let hex_string = hex::encode("Hello world!");
//!
//! println!("{}", hex_string); // Prints "48656c6c6f20776f726c6421"
//!
//! # assert_eq!(hex_string, "48656c6c6f20776f726c6421");
//! ```
#![doc(html_root_url = "https://docs.rs/hex/0.4.3")]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![allow(clippy::unreadable_literal)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::{string::String, vec::Vec};
use core::iter;
mod error;
pub use crate::error::FromHexError;
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
pub mod serde;
#[cfg(feature = "serde")]
pub use crate::serde::deserialize;
#[cfg(all(feature = "alloc", feature = "serde"))]
pub use crate::serde::{serialize, serialize_upper};
/// Encoding values as hex string.
///
/// This trait is implemented for all `T` which implement `AsRef<[u8]>`. This
/// includes `String`, `str`, `Vec<u8>` and `[u8]`.
///
/// # Example
///
/// ```
/// use hex::ToHex;
///
/// println!("{}", "Hello world!".encode_hex::<String>());
/// # assert_eq!("Hello world!".encode_hex::<String>(), "48656c6c6f20776f726c6421".to_string());
/// ```
///
/// *Note*: instead of using this trait, you might want to use [`encode()`].
pub trait ToHex {
/// Encode the hex strict representing `self` into the result. Lower case
/// letters are used (e.g. `f9b4ca`)
fn encode_hex<T: iter::FromIterator<char>>(&self) -> T;
/// Encode the hex strict representing `self` into the result. Upper case
/// letters are used (e.g. `F9B4CA`)
fn encode_hex_upper<T: iter::FromIterator<char>>(&self) -> T;
}
const HEX_CHARS_LOWER: &[u8; 16] = b"0123456789abcdef";
const HEX_CHARS_UPPER: &[u8; 16] = b"0123456789ABCDEF";
struct BytesToHexChars<'a> {
inner: ::core::slice::Iter<'a, u8>,
table: &'static [u8; 16],
next: Option<char>,
}
impl<'a> BytesToHexChars<'a> {
fn new(inner: &'a [u8], table: &'static [u8; 16]) -> BytesToHexChars<'a> {
BytesToHexChars {
inner: inner.iter(),
table,
next: None,
}
}
}
impl<'a> Iterator for BytesToHexChars<'a> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
match self.next.take() {
Some(current) => Some(current),
None => self.inner.next().map(|byte| {
let current = self.table[(byte >> 4) as usize] as char;
self.next = Some(self.table[(byte & 0x0F) as usize] as char);
current
}),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let length = self.len();
(length, Some(length))
}
}
impl<'a> iter::ExactSizeIterator for BytesToHexChars<'a> {
fn len(&self) -> usize {
let mut length = self.inner.len() * 2;
if self.next.is_some() {
length += 1;
}
length
}
}
#[inline]
fn encode_to_iter<T: iter::FromIterator<char>>(table: &'static [u8; 16], source: &[u8]) -> T {
BytesToHexChars::new(source, table).collect()
}
impl<T: AsRef<[u8]>> ToHex for T {
fn encode_hex<U: iter::FromIterator<char>>(&self) -> U {
encode_to_iter(HEX_CHARS_LOWER, self.as_ref())
}
fn encode_hex_upper<U: iter::FromIterator<char>>(&self) -> U {
encode_to_iter(HEX_CHARS_UPPER, self.as_ref())
}
}
/// Types that can be decoded from a hex string.
///
/// This trait is implemented for `Vec<u8>` and small `u8`-arrays.
///
/// # Example
///
/// ```
/// use core::str;
/// use hex::FromHex;
///
/// let buffer = <[u8; 12]>::from_hex("48656c6c6f20776f726c6421")?;
/// let string = str::from_utf8(&buffer).expect("invalid buffer length");
///
/// println!("{}", string); // prints "Hello world!"
/// # assert_eq!("Hello world!", string);
/// # Ok::<(), hex::FromHexError>(())
/// ```
pub trait FromHex: Sized {
type Error;
/// Creates an instance of type `Self` from the given hex string, or fails
/// with a custom error type.
///
/// Both, upper and lower case characters are valid and can even be
/// mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings).
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error>;
}
fn val(c: u8, idx: usize) -> Result<u8, FromHexError> {
match c {
b'A'..=b'F' => Ok(c - b'A' + 10),
b'a'..=b'f' => Ok(c - b'a' + 10),
b'0'..=b'9' => Ok(c - b'0'),
_ => Err(FromHexError::InvalidHexCharacter {
c: c as char,
index: idx,
}),
}
}
#[cfg(feature = "alloc")]
impl FromHex for Vec<u8> {
type Error = FromHexError;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let hex = hex.as_ref();
if hex.len() % 2 != 0 {
return Err(FromHexError::OddLength);
}
hex.chunks(2)
.enumerate()
.map(|(i, pair)| Ok(val(pair[0], 2 * i)? << 4 | val(pair[1], 2 * i + 1)?))
.collect()
}
}
// Helper macro to implement the trait for a few fixed sized arrays. Once Rust
// has type level integers, this should be removed.
macro_rules! from_hex_array_impl {
($($len:expr)+) => {$(
impl FromHex for [u8; $len] {
type Error = FromHexError;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut out = [0_u8; $len];
decode_to_slice(hex, &mut out as &mut [u8])?;
Ok(out)
}
}
)+}
}
from_hex_array_impl! {
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
160 192 200 224 256 384 512 768 1024 2048 4096 8192 16384 32768
}
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
from_hex_array_impl! {
65536 131072 262144 524288 1048576 2097152 4194304 8388608
16777216 33554432 67108864 134217728 268435456 536870912
1073741824 2147483648
}
#[cfg(target_pointer_width = "64")]
from_hex_array_impl! {
4294967296
}
/// Encodes `data` as hex string using lowercase characters.
///
/// Lowercase characters are used (e.g. `f9b4ca`). The resulting string's
/// length is always even, each byte in `data` is always encoded using two hex
/// digits. Thus, the resulting string contains exactly twice as many bytes as
/// the input data.
///
/// # Example
///
/// ```
/// assert_eq!(hex::encode("Hello world!"), "48656c6c6f20776f726c6421");
/// assert_eq!(hex::encode(vec![1, 2, 3, 15, 16]), "0102030f10");
/// ```
#[must_use]
#[cfg(feature = "alloc")]
pub fn encode<T: AsRef<[u8]>>(data: T) -> String {
data.encode_hex()
}
/// Encodes `data` as hex string using uppercase characters.
///
/// Apart from the characters' casing, this works exactly like `encode()`.
///
/// # Example
///
/// ```
/// assert_eq!(hex::encode_upper("Hello world!"), "48656C6C6F20776F726C6421");
/// assert_eq!(hex::encode_upper(vec![1, 2, 3, 15, 16]), "0102030F10");
/// ```
#[must_use]
#[cfg(feature = "alloc")]
pub fn encode_upper<T: AsRef<[u8]>>(data: T) -> String {
data.encode_hex_upper()
}
/// Decodes a hex string into raw bytes.
///
/// Both, upper and lower case characters are valid in the input string and can
/// even be mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings).
///
/// # Example
///
/// ```
/// assert_eq!(
/// hex::decode("48656c6c6f20776f726c6421"),
/// Ok("Hello world!".to_owned().into_bytes())
/// );
///
/// assert_eq!(hex::decode("123"), Err(hex::FromHexError::OddLength));
/// assert!(hex::decode("foo").is_err());
/// ```
#[cfg(feature = "alloc")]
pub fn decode<T: AsRef<[u8]>>(data: T) -> Result<Vec<u8>, FromHexError> {
FromHex::from_hex(data)
}
/// Decode a hex string into a mutable bytes slice.
///
/// Both, upper and lower case characters are valid in the input string and can
/// even be mixed (e.g. `f9b4ca`, `F9B4CA` and `f9B4Ca` are all valid strings).
///
/// # Example
///
/// ```
/// let mut bytes = [0u8; 4];
/// assert_eq!(hex::decode_to_slice("6b697769", &mut bytes as &mut [u8]), Ok(()));
/// assert_eq!(&bytes, b"kiwi");
/// ```
pub fn decode_to_slice<T: AsRef<[u8]>>(data: T, out: &mut [u8]) -> Result<(), FromHexError> {
let data = data.as_ref();
if data.len() % 2 != 0 {
return Err(FromHexError::OddLength);
}
if data.len() / 2 != out.len() {
return Err(FromHexError::InvalidStringLength);
}
for (i, byte) in out.iter_mut().enumerate() {
*byte = val(data[2 * i], 2 * i)? << 4 | val(data[2 * i + 1], 2 * i + 1)?;
}
Ok(())
}
// generates an iterator like this
// (0, 1)
// (2, 3)
// (4, 5)
// (6, 7)
// ...
#[inline]
fn generate_iter(len: usize) -> impl Iterator<Item = (usize, usize)> {
(0..len).step_by(2).zip((0..len).skip(1).step_by(2))
}
// the inverse of `val`.
#[inline]
#[must_use]
fn byte2hex(byte: u8, table: &[u8; 16]) -> (u8, u8) {
let high = table[((byte & 0xf0) >> 4) as usize];
let low = table[(byte & 0x0f) as usize];
(high, low)
}
/// Encodes some bytes into a mutable slice of bytes.
///
/// The output buffer, has to be able to hold at least `input.len() * 2` bytes,
/// otherwise this function will return an error.
///
/// # Example
///
/// ```
/// # use hex::FromHexError;
/// # fn main() -> Result<(), FromHexError> {
/// let mut bytes = [0u8; 4 * 2];
///
/// hex::encode_to_slice(b"kiwi", &mut bytes)?;
/// assert_eq!(&bytes, b"6b697769");
/// # Ok(())
/// # }
/// ```
pub fn encode_to_slice<T: AsRef<[u8]>>(input: T, output: &mut [u8]) -> Result<(), FromHexError> {
if input.as_ref().len() * 2 != output.len() {
return Err(FromHexError::InvalidStringLength);
}
for (byte, (i, j)) in input
.as_ref()
.iter()
.zip(generate_iter(input.as_ref().len() * 2))
{
let (high, low) = byte2hex(*byte, HEX_CHARS_LOWER);
output[i] = high;
output[j] = low;
}
Ok(())
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")]
use alloc::string::ToString;
use pretty_assertions::assert_eq;
#[test]
#[cfg(feature = "alloc")]
fn test_gen_iter() {
let result = vec![(0, 1), (2, 3)];
assert_eq!(generate_iter(5).collect::<Vec<_>>(), result);
}
#[test]
fn test_encode_to_slice() {
let mut output_1 = [0; 4 * 2];
encode_to_slice(b"kiwi", &mut output_1).unwrap();
assert_eq!(&output_1, b"6b697769");
let mut output_2 = [0; 5 * 2];
encode_to_slice(b"kiwis", &mut output_2).unwrap();
assert_eq!(&output_2, b"6b69776973");
let mut output_3 = [0; 100];
assert_eq!(
encode_to_slice(b"kiwis", &mut output_3),
Err(FromHexError::InvalidStringLength)
);
}
#[test]
fn test_decode_to_slice() {
let mut output_1 = [0; 4];
decode_to_slice(b"6b697769", &mut output_1).unwrap();
assert_eq!(&output_1, b"kiwi");
let mut output_2 = [0; 5];
decode_to_slice(b"6b69776973", &mut output_2).unwrap();
assert_eq!(&output_2, b"kiwis");
let mut output_3 = [0; 4];
assert_eq!(
decode_to_slice(b"6", &mut output_3),
Err(FromHexError::OddLength)
);
}
#[test]
#[cfg(feature = "alloc")]
fn test_encode() {
assert_eq!(encode("foobar"), "666f6f626172");
}
#[test]
#[cfg(feature = "alloc")]
fn test_decode() {
assert_eq!(
decode("666f6f626172"),
Ok(String::from("foobar").into_bytes())
);
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_from_hex_okay_str() {
assert_eq!(Vec::from_hex("666f6f626172").unwrap(), b"foobar");
assert_eq!(Vec::from_hex("666F6F626172").unwrap(), b"foobar");
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_from_hex_okay_bytes() {
assert_eq!(Vec::from_hex(b"666f6f626172").unwrap(), b"foobar");
assert_eq!(Vec::from_hex(b"666F6F626172").unwrap(), b"foobar");
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_invalid_length() {
assert_eq!(Vec::from_hex("1").unwrap_err(), FromHexError::OddLength);
assert_eq!(
Vec::from_hex("666f6f6261721").unwrap_err(),
FromHexError::OddLength
);
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_invalid_char() {
assert_eq!(
Vec::from_hex("66ag").unwrap_err(),
FromHexError::InvalidHexCharacter { c: 'g', index: 3 }
);
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_empty() {
assert_eq!(Vec::from_hex("").unwrap(), b"");
}
#[test]
#[cfg(feature = "alloc")]
pub fn test_from_hex_whitespace() {
assert_eq!(
Vec::from_hex("666f 6f62617").unwrap_err(),
FromHexError::InvalidHexCharacter { c: ' ', index: 4 }
);
}
#[test]
pub fn test_from_hex_array() {
assert_eq!(
<[u8; 6] as FromHex>::from_hex("666f6f626172"),
Ok([0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72])
);
assert_eq!(
<[u8; 5] as FromHex>::from_hex("666f6f626172"),
Err(FromHexError::InvalidStringLength)
);
}
#[test]
#[cfg(feature = "alloc")]
fn test_to_hex() {
assert_eq!(
[0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72].encode_hex::<String>(),
"666f6f626172".to_string(),
);
assert_eq!(
[0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72].encode_hex_upper::<String>(),
"666F6F626172".to_string(),
);
}
}