Source code

Revision control

Copy as Markdown

Other Tools

// (C) Copyright 2016 Jethro G. Beekman
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Parsing C literals from byte slices.
//!
//! This will parse a representation of a C literal into a Rust type.
//!
//! # characters
//! Character literals are stored into the `CChar` type, which can hold values
//! that are not valid Unicode code points. ASCII characters are represented as
//! `char`, literal bytes with the high byte set are converted into the raw
//! representation. Escape sequences are supported. If hex and octal escapes
//! map to an ASCII character, that is used, otherwise, the raw encoding is
//! used, including for values over 255. Unicode escapes are checked for
//! validity and mapped to `char`. Character sequences are not supported. Width
//! prefixes are ignored.
//!
//! # strings
//! Strings are interpreted as byte vectors. Escape sequences are supported. If
//! hex and octal escapes map onto multi-byte characters, they are truncated to
//! one 8-bit character. Unicode escapes are converted into their UTF-8
//! encoding. Width prefixes are ignored.
//!
//! # integers
//! Integers are read into `i64`. Binary, octal, decimal and hexadecimal are
//! all supported. If the literal value is between `i64::MAX` and `u64::MAX`,
//! it is bit-cast to `i64`. Values over `u64::MAX` cannot be parsed. Width and
//! sign suffixes are ignored. Sign prefixes are not supported.
//!
//! # real numbers
//! Reals are read into `f64`. Width suffixes are ignored. Sign prefixes are
//! not supported in the significand. Hexadecimal floating points are not
//! supported.
use std::char;
use std::str::{self, FromStr};
use nom::branch::alt;
use nom::bytes::complete::is_not;
use nom::bytes::complete::tag;
use nom::character::complete::{char, one_of};
use nom::combinator::{complete, map, map_opt, opt, recognize};
use nom::multi::{fold_many0, many0, many1, many_m_n};
use nom::sequence::{delimited, pair, preceded, terminated, tuple};
use nom::*;
use crate::expr::EvalResult;
use crate::ToCexprResult;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// Representation of a C character
pub enum CChar {
/// A character that can be represented as a `char`
Char(char),
/// Any other character (8-bit characters, unicode surrogates, etc.)
Raw(u64),
}
impl From<u8> for CChar {
fn from(i: u8) -> CChar {
match i {
0..=0x7f => CChar::Char(i as u8 as char),
_ => CChar::Raw(i as u64),
}
}
}
// A non-allocating version of this would be nice...
impl std::convert::Into<Vec<u8>> for CChar {
fn into(self) -> Vec<u8> {
match self {
CChar::Char(c) => {
let mut s = String::with_capacity(4);
s.extend(&[c]);
s.into_bytes()
}
CChar::Raw(i) => {
let mut v = Vec::with_capacity(1);
v.push(i as u8);
v
}
}
}
}
/// ensures the child parser consumes the whole input
pub fn full<I: Clone, O, F>(
f: F,
) -> impl Fn(I) -> nom::IResult<I, O>
where
I: nom::InputLength,
F: Fn(I) -> nom::IResult<I, O>,
{
move |input| {
let res = f(input);
match res {
Ok((i, o)) => {
if i.input_len() == 0 {
Ok((i, o))
} else {
Err(nom::Err::Error(nom::error::Error::new(i, nom::error::ErrorKind::Complete)))
}
}
r => r,
}
}
}
// =================================
// ======== matching digits ========
// =================================
macro_rules! byte {
($($p: pat)|* ) => {{
fn parser(i: &[u8]) -> crate::nom::IResult<&[u8], u8> {
match i.split_first() {
$(Some((&c @ $p,rest)))|* => Ok((rest,c)),
Some(_) => Err(nom::Err::Error(nom::error::Error::new(i, nom::error::ErrorKind::OneOf))),
None => Err(nom::Err::Incomplete(Needed::new(1))),
}
}
parser
}}
}
fn binary(i: &[u8]) -> nom::IResult<&[u8], u8> {
byte!(b'0'..=b'1')(i)
}
fn octal(i: &[u8]) -> nom::IResult<&[u8], u8> {
byte!(b'0'..=b'7')(i)
}
fn decimal(i: &[u8]) -> nom::IResult<&[u8], u8> {
byte!(b'0'..=b'9')(i)
}
fn hexadecimal(i: &[u8]) -> nom::IResult<&[u8], u8> {
byte!(b'0' ..= b'9' | b'a' ..= b'f' | b'A' ..= b'F')(i)
}
// ========================================
// ======== characters and strings ========
// ========================================
fn escape2char(c: char) -> CChar {
CChar::Char(match c {
'a' => '\x07',
'b' => '\x08',
'f' => '\x0c',
'n' => '\n',
'r' => '\r',
't' => '\t',
'v' => '\x0b',
_ => unreachable!("invalid escape {}", c),
})
}
fn c_raw_escape(n: Vec<u8>, radix: u32) -> Option<CChar> {
str::from_utf8(&n)
.ok()
.and_then(|i| u64::from_str_radix(i, radix).ok())
.map(|i| match i {
0..=0x7f => CChar::Char(i as u8 as char),
_ => CChar::Raw(i),
})
}
fn c_unicode_escape(n: Vec<u8>) -> Option<CChar> {
str::from_utf8(&n)
.ok()
.and_then(|i| u32::from_str_radix(i, 16).ok())
.and_then(char::from_u32)
.map(CChar::Char)
}
fn escaped_char(i: &[u8]) -> nom::IResult<&[u8], CChar> {
preceded(
char('\\'),
alt((
map(one_of(r#"'"?\"#), CChar::Char),
map(one_of("abfnrtv"), escape2char),
map_opt(many_m_n(1, 3, octal), |v| c_raw_escape(v, 8)),
map_opt(preceded(char('x'), many1(hexadecimal)), |v| {
c_raw_escape(v, 16)
}),
map_opt(
preceded(char('u'), many_m_n(4, 4, hexadecimal)),
c_unicode_escape,
),
map_opt(
preceded(char('U'), many_m_n(8, 8, hexadecimal)),
c_unicode_escape,
),
)),
)(i)
}
fn c_width_prefix(i: &[u8]) -> nom::IResult<&[u8], &[u8]> {
alt((tag("u8"), tag("u"), tag("U"), tag("L")))(i)
}
fn c_char(i: &[u8]) -> nom::IResult<&[u8], CChar> {
delimited(
terminated(opt(c_width_prefix), char('\'')),
alt((
escaped_char,
map(byte!(0 ..= 91 /* \=92 */ | 93 ..= 255), CChar::from),
)),
char('\''),
)(i)
}
fn c_string(i: &[u8]) -> nom::IResult<&[u8], Vec<u8>> {
delimited(
alt((preceded(c_width_prefix, char('"')), char('"'))),
fold_many0(
alt((
map(escaped_char, |c: CChar| c.into()),
map(is_not([b'\\', b'"']), |c: &[u8]| c.into()),
)),
Vec::new,
|mut v: Vec<u8>, res: Vec<u8>| {
v.extend_from_slice(&res);
v
},
),
char('"'),
)(i)
}
// ================================
// ======== parse integers ========
// ================================
fn c_int_radix(n: Vec<u8>, radix: u32) -> Option<u64> {
str::from_utf8(&n)
.ok()
.and_then(|i| u64::from_str_radix(i, radix).ok())
}
fn take_ul(input: &[u8]) -> IResult<&[u8], &[u8]> {
let r = input.split_at_position(|c| c != b'u' && c != b'U' && c != b'l' && c != b'L');
match r {
Err(Err::Incomplete(_)) => Ok((&input[input.len()..], input)),
res => res,
}
}
fn c_int(i: &[u8]) -> nom::IResult<&[u8], i64> {
map(
terminated(
alt((
map_opt(preceded(tag("0x"), many1(complete(hexadecimal))), |v| {
c_int_radix(v, 16)
}),
map_opt(preceded(tag("0X"), many1(complete(hexadecimal))), |v| {
c_int_radix(v, 16)
}),
map_opt(preceded(tag("0b"), many1(complete(binary))), |v| {
c_int_radix(v, 2)
}),
map_opt(preceded(tag("0B"), many1(complete(binary))), |v| {
c_int_radix(v, 2)
}),
map_opt(preceded(char('0'), many1(complete(octal))), |v| {
c_int_radix(v, 8)
}),
map_opt(many1(complete(decimal)), |v| c_int_radix(v, 10)),
|input| Err(crate::nom::Err::Error(nom::error::Error::new(input, crate::nom::ErrorKind::Fix))),
)),
opt(take_ul),
),
|i| i as i64,
)(i)
}
// ==============================
// ======== parse floats ========
// ==============================
fn float_width(i: &[u8]) -> nom::IResult<&[u8], u8> {
nom::combinator::complete(byte!(b'f' | b'l' | b'F' | b'L'))(i)
}
fn float_exp(i: &[u8]) -> nom::IResult<&[u8], (Option<u8>, Vec<u8>)> {
preceded(
byte!(b'e' | b'E'),
pair(opt(byte!(b'-' | b'+')), many1(complete(decimal))),
)(i)
}
fn c_float(i: &[u8]) -> nom::IResult<&[u8], f64> {
map_opt(
alt((
terminated(
recognize(tuple((
many1(complete(decimal)),
byte!(b'.'),
many0(complete(decimal)),
))),
opt(float_width),
),
terminated(
recognize(tuple((
many0(complete(decimal)),
byte!(b'.'),
many1(complete(decimal)),
))),
opt(float_width),
),
terminated(
recognize(tuple((
many0(complete(decimal)),
opt(byte!(b'.')),
many1(complete(decimal)),
float_exp,
))),
opt(float_width),
),
terminated(
recognize(tuple((
many1(complete(decimal)),
opt(byte!(b'.')),
many0(complete(decimal)),
float_exp,
))),
opt(float_width),
),
terminated(recognize(many1(complete(decimal))), float_width),
)),
|v| str::from_utf8(v).ok().and_then(|i| f64::from_str(i).ok()),
)(i)
}
// ================================
// ======== main interface ========
// ================================
fn one_literal(input: &[u8]) -> nom::IResult<&[u8], EvalResult, crate::Error<&[u8]>> {
alt((
map(full(c_char), EvalResult::Char),
map(full(c_int), |i| EvalResult::Int(::std::num::Wrapping(i))),
map(full(c_float), EvalResult::Float),
map(full(c_string), EvalResult::Str),
))(input)
.to_cexpr_result()
}
/// Parse a C literal.
///
/// The input must contain exactly the representation of a single literal
/// token, and in particular no whitespace or sign prefixes.
pub fn parse(input: &[u8]) -> IResult<&[u8], EvalResult, crate::Error<&[u8]>> {
crate::assert_full_parse(one_literal(input))
}