Source code

Revision control

Copy as Markdown

Other Tools

use std::{
io::{self, Result},
slice,
};
use crate::ByteOrder;
/// Extends [`Read`] with methods for reading numbers. (For `std::io`.)
///
/// Most of the methods defined here have an unconstrained type parameter that
/// must be explicitly instantiated. Typically, it is instantiated with either
/// the [`BigEndian`] or [`LittleEndian`] types defined in this crate.
///
/// # Examples
///
/// Read unsigned 16 bit big-endian integers from a [`Read`]:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
/// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap());
/// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap());
/// ```
///
/// [`BigEndian`]: enum.BigEndian.html
/// [`LittleEndian`]: enum.LittleEndian.html
pub trait ReadBytesExt: io::Read {
/// Reads an unsigned 8 bit integer from the underlying reader.
///
/// Note that since this reads a single byte, no byte order conversions
/// are used. It is included for completeness.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read unsigned 8 bit integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::ReadBytesExt;
///
/// let mut rdr = Cursor::new(vec![2, 5]);
/// assert_eq!(2, rdr.read_u8().unwrap());
/// assert_eq!(5, rdr.read_u8().unwrap());
/// ```
#[inline]
fn read_u8(&mut self) -> Result<u8> {
let mut buf = [0; 1];
self.read_exact(&mut buf)?;
Ok(buf[0])
}
/// Reads a signed 8 bit integer from the underlying reader.
///
/// Note that since this reads a single byte, no byte order conversions
/// are used. It is included for completeness.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read signed 8 bit integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::ReadBytesExt;
///
/// let mut rdr = Cursor::new(vec![0x02, 0xfb]);
/// assert_eq!(2, rdr.read_i8().unwrap());
/// assert_eq!(-5, rdr.read_i8().unwrap());
/// ```
#[inline]
fn read_i8(&mut self) -> Result<i8> {
let mut buf = [0; 1];
self.read_exact(&mut buf)?;
Ok(buf[0] as i8)
}
/// Reads an unsigned 16 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read unsigned 16 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
/// assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap());
/// assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_u16<T: ByteOrder>(&mut self) -> Result<u16> {
let mut buf = [0; 2];
self.read_exact(&mut buf)?;
Ok(T::read_u16(&buf))
}
/// Reads a signed 16 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read signed 16 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x00, 0xc1, 0xff, 0x7c]);
/// assert_eq!(193, rdr.read_i16::<BigEndian>().unwrap());
/// assert_eq!(-132, rdr.read_i16::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_i16<T: ByteOrder>(&mut self) -> Result<i16> {
let mut buf = [0; 2];
self.read_exact(&mut buf)?;
Ok(T::read_i16(&buf))
}
/// Reads an unsigned 24 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read unsigned 24 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x00, 0x01, 0x0b]);
/// assert_eq!(267, rdr.read_u24::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_u24<T: ByteOrder>(&mut self) -> Result<u32> {
let mut buf = [0; 3];
self.read_exact(&mut buf)?;
Ok(T::read_u24(&buf))
}
/// Reads a signed 24 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read signed 24 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0xff, 0x7a, 0x33]);
/// assert_eq!(-34253, rdr.read_i24::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_i24<T: ByteOrder>(&mut self) -> Result<i32> {
let mut buf = [0; 3];
self.read_exact(&mut buf)?;
Ok(T::read_i24(&buf))
}
/// Reads an unsigned 32 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read unsigned 32 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x00, 0x00, 0x01, 0x0b]);
/// assert_eq!(267, rdr.read_u32::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_u32<T: ByteOrder>(&mut self) -> Result<u32> {
let mut buf = [0; 4];
self.read_exact(&mut buf)?;
Ok(T::read_u32(&buf))
}
/// Reads a signed 32 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read signed 32 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0xff, 0xff, 0x7a, 0x33]);
/// assert_eq!(-34253, rdr.read_i32::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_i32<T: ByteOrder>(&mut self) -> Result<i32> {
let mut buf = [0; 4];
self.read_exact(&mut buf)?;
Ok(T::read_i32(&buf))
}
/// Reads an unsigned 48 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read unsigned 48 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0xb6, 0x71, 0x6b, 0xdc, 0x2b, 0x31]);
/// assert_eq!(200598257150769, rdr.read_u48::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_u48<T: ByteOrder>(&mut self) -> Result<u64> {
let mut buf = [0; 6];
self.read_exact(&mut buf)?;
Ok(T::read_u48(&buf))
}
/// Reads a signed 48 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read signed 48 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x9d, 0x71, 0xab, 0xe7, 0x97, 0x8f]);
/// assert_eq!(-108363435763825, rdr.read_i48::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_i48<T: ByteOrder>(&mut self) -> Result<i64> {
let mut buf = [0; 6];
self.read_exact(&mut buf)?;
Ok(T::read_i48(&buf))
}
/// Reads an unsigned 64 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read an unsigned 64 bit big-endian integer from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83]);
/// assert_eq!(918733457491587, rdr.read_u64::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_u64<T: ByteOrder>(&mut self) -> Result<u64> {
let mut buf = [0; 8];
self.read_exact(&mut buf)?;
Ok(T::read_u64(&buf))
}
/// Reads a signed 64 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a signed 64 bit big-endian integer from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x80, 0, 0, 0, 0, 0, 0, 0]);
/// assert_eq!(i64::min_value(), rdr.read_i64::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_i64<T: ByteOrder>(&mut self) -> Result<i64> {
let mut buf = [0; 8];
self.read_exact(&mut buf)?;
Ok(T::read_i64(&buf))
}
/// Reads an unsigned 128 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read an unsigned 128 bit big-endian integer from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83,
/// 0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
/// ]);
/// assert_eq!(16947640962301618749969007319746179, rdr.read_u128::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_u128<T: ByteOrder>(&mut self) -> Result<u128> {
let mut buf = [0; 16];
self.read_exact(&mut buf)?;
Ok(T::read_u128(&buf))
}
/// Reads a signed 128 bit integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a signed 128 bit big-endian integer from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
/// assert_eq!(i128::min_value(), rdr.read_i128::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_i128<T: ByteOrder>(&mut self) -> Result<i128> {
let mut buf = [0; 16];
self.read_exact(&mut buf)?;
Ok(T::read_i128(&buf))
}
/// Reads an unsigned n-bytes integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read an unsigned n-byte big-endian integer from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0x80, 0x74, 0xfa]);
/// assert_eq!(8418554, rdr.read_uint::<BigEndian>(3).unwrap());
#[inline]
fn read_uint<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u64> {
let mut buf = [0; 8];
self.read_exact(&mut buf[..nbytes])?;
Ok(T::read_uint(&buf[..nbytes], nbytes))
}
/// Reads a signed n-bytes integer from the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read an unsigned n-byte big-endian integer from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0xc1, 0xff, 0x7c]);
/// assert_eq!(-4063364, rdr.read_int::<BigEndian>(3).unwrap());
#[inline]
fn read_int<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i64> {
let mut buf = [0; 8];
self.read_exact(&mut buf[..nbytes])?;
Ok(T::read_int(&buf[..nbytes], nbytes))
}
/// Reads an unsigned n-bytes integer from the underlying reader.
#[inline]
fn read_uint128<T: ByteOrder>(&mut self, nbytes: usize) -> Result<u128> {
let mut buf = [0; 16];
self.read_exact(&mut buf[..nbytes])?;
Ok(T::read_uint128(&buf[..nbytes], nbytes))
}
/// Reads a signed n-bytes integer from the underlying reader.
#[inline]
fn read_int128<T: ByteOrder>(&mut self, nbytes: usize) -> Result<i128> {
let mut buf = [0; 16];
self.read_exact(&mut buf[..nbytes])?;
Ok(T::read_int128(&buf[..nbytes], nbytes))
}
/// Reads a IEEE754 single-precision (4 bytes) floating point number from
/// the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a big-endian single-precision floating point number from a `Read`:
///
/// ```rust
/// use std::f32;
/// use std::io::Cursor;
///
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x40, 0x49, 0x0f, 0xdb,
/// ]);
/// assert_eq!(f32::consts::PI, rdr.read_f32::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_f32<T: ByteOrder>(&mut self) -> Result<f32> {
let mut buf = [0; 4];
self.read_exact(&mut buf)?;
Ok(T::read_f32(&buf))
}
/// Reads a IEEE754 double-precision (8 bytes) floating point number from
/// the underlying reader.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a big-endian double-precision floating point number from a `Read`:
///
/// ```rust
/// use std::f64;
/// use std::io::Cursor;
///
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x40, 0x09, 0x21, 0xfb, 0x54, 0x44, 0x2d, 0x18,
/// ]);
/// assert_eq!(f64::consts::PI, rdr.read_f64::<BigEndian>().unwrap());
/// ```
#[inline]
fn read_f64<T: ByteOrder>(&mut self) -> Result<f64> {
let mut buf = [0; 8];
self.read_exact(&mut buf)?;
Ok(T::read_f64(&buf))
}
/// Reads a sequence of unsigned 16 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of unsigned 16 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
/// let mut dst = [0; 2];
/// rdr.read_u16_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_u16_into<T: ByteOrder>(&mut self, dst: &mut [u16]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_u16(dst);
Ok(())
}
/// Reads a sequence of unsigned 32 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of unsigned 32 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0, 0, 2, 5, 0, 0, 3, 0]);
/// let mut dst = [0; 2];
/// rdr.read_u32_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_u32_into<T: ByteOrder>(&mut self, dst: &mut [u32]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_u32(dst);
Ok(())
}
/// Reads a sequence of unsigned 64 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of unsigned 64 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0, 0, 0, 0, 0, 0, 2, 5,
/// 0, 0, 0, 0, 0, 0, 3, 0,
/// ]);
/// let mut dst = [0; 2];
/// rdr.read_u64_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_u64_into<T: ByteOrder>(&mut self, dst: &mut [u64]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_u64(dst);
Ok(())
}
/// Reads a sequence of unsigned 128 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of unsigned 128 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5,
/// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,
/// ]);
/// let mut dst = [0; 2];
/// rdr.read_u128_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_u128_into<T: ByteOrder>(
&mut self,
dst: &mut [u128],
) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_u128(dst);
Ok(())
}
/// Reads a sequence of signed 8 bit integers from the underlying reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// Note that since each `i8` is a single byte, no byte order conversions
/// are used. This method is included because it provides a safe, simple
/// way for the caller to read into a `&mut [i8]` buffer. (Without this
/// method, the caller would have to either use `unsafe` code or convert
/// each byte to `i8` individually.)
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of signed 8 bit integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 251, 3]);
/// let mut dst = [0; 3];
/// rdr.read_i8_into(&mut dst).unwrap();
/// assert_eq!([2, -5, 3], dst);
/// ```
#[inline]
fn read_i8_into(&mut self, dst: &mut [i8]) -> Result<()> {
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)
}
/// Reads a sequence of signed 16 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of signed 16 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![2, 5, 3, 0]);
/// let mut dst = [0; 2];
/// rdr.read_i16_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_i16_into<T: ByteOrder>(&mut self, dst: &mut [i16]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_i16(dst);
Ok(())
}
/// Reads a sequence of signed 32 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of signed 32 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![0, 0, 2, 5, 0, 0, 3, 0]);
/// let mut dst = [0; 2];
/// rdr.read_i32_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_i32_into<T: ByteOrder>(&mut self, dst: &mut [i32]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_i32(dst);
Ok(())
}
/// Reads a sequence of signed 64 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of signed 64 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0, 0, 0, 0, 0, 0, 2, 5,
/// 0, 0, 0, 0, 0, 0, 3, 0,
/// ]);
/// let mut dst = [0; 2];
/// rdr.read_i64_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_i64_into<T: ByteOrder>(&mut self, dst: &mut [i64]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_i64(dst);
Ok(())
}
/// Reads a sequence of signed 128 bit integers from the underlying
/// reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of signed 128 bit big-endian integers from a `Read`:
///
/// ```rust
/// use std::io::Cursor;
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5,
/// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,
/// ]);
/// let mut dst = [0; 2];
/// rdr.read_i128_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([517, 768], dst);
/// ```
#[inline]
fn read_i128_into<T: ByteOrder>(
&mut self,
dst: &mut [i128],
) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_i128(dst);
Ok(())
}
/// Reads a sequence of IEEE754 single-precision (4 bytes) floating
/// point numbers from the underlying reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of big-endian single-precision floating point number
/// from a `Read`:
///
/// ```rust
/// use std::f32;
/// use std::io::Cursor;
///
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x40, 0x49, 0x0f, 0xdb,
/// 0x3f, 0x80, 0x00, 0x00,
/// ]);
/// let mut dst = [0.0; 2];
/// rdr.read_f32_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([f32::consts::PI, 1.0], dst);
/// ```
#[inline]
fn read_f32_into<T: ByteOrder>(&mut self, dst: &mut [f32]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_f32(dst);
Ok(())
}
/// **DEPRECATED**.
///
/// This method is deprecated. Use `read_f32_into` instead.
///
/// Reads a sequence of IEEE754 single-precision (4 bytes) floating
/// point numbers from the underlying reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of big-endian single-precision floating point number
/// from a `Read`:
///
/// ```rust
/// use std::f32;
/// use std::io::Cursor;
///
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x40, 0x49, 0x0f, 0xdb,
/// 0x3f, 0x80, 0x00, 0x00,
/// ]);
/// let mut dst = [0.0; 2];
/// rdr.read_f32_into_unchecked::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([f32::consts::PI, 1.0], dst);
/// ```
#[inline]
#[deprecated(since = "1.2.0", note = "please use `read_f32_into` instead")]
fn read_f32_into_unchecked<T: ByteOrder>(
&mut self,
dst: &mut [f32],
) -> Result<()> {
self.read_f32_into::<T>(dst)
}
/// Reads a sequence of IEEE754 double-precision (8 bytes) floating
/// point numbers from the underlying reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of big-endian single-precision floating point number
/// from a `Read`:
///
/// ```rust
/// use std::f64;
/// use std::io::Cursor;
///
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x40, 0x09, 0x21, 0xfb, 0x54, 0x44, 0x2d, 0x18,
/// 0x3f, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// ]);
/// let mut dst = [0.0; 2];
/// rdr.read_f64_into::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([f64::consts::PI, 1.0], dst);
/// ```
#[inline]
fn read_f64_into<T: ByteOrder>(&mut self, dst: &mut [f64]) -> Result<()> {
{
let buf = unsafe { slice_to_u8_mut(dst) };
self.read_exact(buf)?;
}
T::from_slice_f64(dst);
Ok(())
}
/// **DEPRECATED**.
///
/// This method is deprecated. Use `read_f64_into` instead.
///
/// Reads a sequence of IEEE754 double-precision (8 bytes) floating
/// point numbers from the underlying reader.
///
/// The given buffer is either filled completely or an error is returned.
/// If an error is returned, the contents of `dst` are unspecified.
///
/// # Safety
///
/// This method is unsafe because there are no guarantees made about the
/// floating point values. In particular, this method does not check for
/// signaling NaNs, which may result in undefined behavior.
///
/// # Errors
///
/// This method returns the same errors as [`Read::read_exact`].
///
///
/// # Examples
///
/// Read a sequence of big-endian single-precision floating point number
/// from a `Read`:
///
/// ```rust
/// use std::f64;
/// use std::io::Cursor;
///
/// use byteorder::{BigEndian, ReadBytesExt};
///
/// let mut rdr = Cursor::new(vec![
/// 0x40, 0x09, 0x21, 0xfb, 0x54, 0x44, 0x2d, 0x18,
/// 0x3f, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/// ]);
/// let mut dst = [0.0; 2];
/// rdr.read_f64_into_unchecked::<BigEndian>(&mut dst).unwrap();
/// assert_eq!([f64::consts::PI, 1.0], dst);
/// ```
#[inline]
#[deprecated(since = "1.2.0", note = "please use `read_f64_into` instead")]
fn read_f64_into_unchecked<T: ByteOrder>(
&mut self,
dst: &mut [f64],
) -> Result<()> {
self.read_f64_into::<T>(dst)
}
}
/// All types that implement `Read` get methods defined in `ReadBytesExt`
/// for free.
impl<R: io::Read + ?Sized> ReadBytesExt for R {}
/// Extends [`Write`] with methods for writing numbers. (For `std::io`.)
///
/// Most of the methods defined here have an unconstrained type parameter that
/// must be explicitly instantiated. Typically, it is instantiated with either
/// the [`BigEndian`] or [`LittleEndian`] types defined in this crate.
///
/// # Examples
///
/// Write unsigned 16 bit big-endian integers to a [`Write`]:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = vec![];
/// wtr.write_u16::<BigEndian>(517).unwrap();
/// wtr.write_u16::<BigEndian>(768).unwrap();
/// assert_eq!(wtr, vec![2, 5, 3, 0]);
/// ```
///
/// [`BigEndian`]: enum.BigEndian.html
/// [`LittleEndian`]: enum.LittleEndian.html
pub trait WriteBytesExt: io::Write {
/// Writes an unsigned 8 bit integer to the underlying writer.
///
/// Note that since this writes a single byte, no byte order conversions
/// are used. It is included for completeness.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write unsigned 8 bit integers to a `Write`:
///
/// ```rust
/// use byteorder::WriteBytesExt;
///
/// let mut wtr = Vec::new();
/// wtr.write_u8(2).unwrap();
/// wtr.write_u8(5).unwrap();
/// assert_eq!(wtr, b"\x02\x05");
/// ```
#[inline]
fn write_u8(&mut self, n: u8) -> Result<()> {
self.write_all(&[n])
}
/// Writes a signed 8 bit integer to the underlying writer.
///
/// Note that since this writes a single byte, no byte order conversions
/// are used. It is included for completeness.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write signed 8 bit integers to a `Write`:
///
/// ```rust
/// use byteorder::WriteBytesExt;
///
/// let mut wtr = Vec::new();
/// wtr.write_i8(2).unwrap();
/// wtr.write_i8(-5).unwrap();
/// assert_eq!(wtr, b"\x02\xfb");
/// ```
#[inline]
fn write_i8(&mut self, n: i8) -> Result<()> {
self.write_all(&[n as u8])
}
/// Writes an unsigned 16 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write unsigned 16 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_u16::<BigEndian>(517).unwrap();
/// wtr.write_u16::<BigEndian>(768).unwrap();
/// assert_eq!(wtr, b"\x02\x05\x03\x00");
/// ```
#[inline]
fn write_u16<T: ByteOrder>(&mut self, n: u16) -> Result<()> {
let mut buf = [0; 2];
T::write_u16(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 16 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write signed 16 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_i16::<BigEndian>(193).unwrap();
/// wtr.write_i16::<BigEndian>(-132).unwrap();
/// assert_eq!(wtr, b"\x00\xc1\xff\x7c");
/// ```
#[inline]
fn write_i16<T: ByteOrder>(&mut self, n: i16) -> Result<()> {
let mut buf = [0; 2];
T::write_i16(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 24 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write unsigned 24 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_u24::<BigEndian>(267).unwrap();
/// wtr.write_u24::<BigEndian>(120111).unwrap();
/// assert_eq!(wtr, b"\x00\x01\x0b\x01\xd5\x2f");
/// ```
#[inline]
fn write_u24<T: ByteOrder>(&mut self, n: u32) -> Result<()> {
let mut buf = [0; 3];
T::write_u24(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 24 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write signed 24 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_i24::<BigEndian>(-34253).unwrap();
/// wtr.write_i24::<BigEndian>(120111).unwrap();
/// assert_eq!(wtr, b"\xff\x7a\x33\x01\xd5\x2f");
/// ```
#[inline]
fn write_i24<T: ByteOrder>(&mut self, n: i32) -> Result<()> {
let mut buf = [0; 3];
T::write_i24(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 32 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write unsigned 32 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_u32::<BigEndian>(267).unwrap();
/// wtr.write_u32::<BigEndian>(1205419366).unwrap();
/// assert_eq!(wtr, b"\x00\x00\x01\x0b\x47\xd9\x3d\x66");
/// ```
#[inline]
fn write_u32<T: ByteOrder>(&mut self, n: u32) -> Result<()> {
let mut buf = [0; 4];
T::write_u32(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 32 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write signed 32 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_i32::<BigEndian>(-34253).unwrap();
/// wtr.write_i32::<BigEndian>(1205419366).unwrap();
/// assert_eq!(wtr, b"\xff\xff\x7a\x33\x47\xd9\x3d\x66");
/// ```
#[inline]
fn write_i32<T: ByteOrder>(&mut self, n: i32) -> Result<()> {
let mut buf = [0; 4];
T::write_i32(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 48 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write unsigned 48 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_u48::<BigEndian>(52360336390828).unwrap();
/// wtr.write_u48::<BigEndian>(541).unwrap();
/// assert_eq!(wtr, b"\x2f\x9f\x17\x40\x3a\xac\x00\x00\x00\x00\x02\x1d");
/// ```
#[inline]
fn write_u48<T: ByteOrder>(&mut self, n: u64) -> Result<()> {
let mut buf = [0; 6];
T::write_u48(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 48 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write signed 48 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_i48::<BigEndian>(-108363435763825).unwrap();
/// wtr.write_i48::<BigEndian>(77).unwrap();
/// assert_eq!(wtr, b"\x9d\x71\xab\xe7\x97\x8f\x00\x00\x00\x00\x00\x4d");
/// ```
#[inline]
fn write_i48<T: ByteOrder>(&mut self, n: i64) -> Result<()> {
let mut buf = [0; 6];
T::write_i48(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 64 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write unsigned 64 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_u64::<BigEndian>(918733457491587).unwrap();
/// wtr.write_u64::<BigEndian>(143).unwrap();
/// assert_eq!(wtr, b"\x00\x03\x43\x95\x4d\x60\x86\x83\x00\x00\x00\x00\x00\x00\x00\x8f");
/// ```
#[inline]
fn write_u64<T: ByteOrder>(&mut self, n: u64) -> Result<()> {
let mut buf = [0; 8];
T::write_u64(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 64 bit integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write signed 64 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_i64::<BigEndian>(i64::min_value()).unwrap();
/// wtr.write_i64::<BigEndian>(i64::max_value()).unwrap();
/// assert_eq!(wtr, b"\x80\x00\x00\x00\x00\x00\x00\x00\x7f\xff\xff\xff\xff\xff\xff\xff");
/// ```
#[inline]
fn write_i64<T: ByteOrder>(&mut self, n: i64) -> Result<()> {
let mut buf = [0; 8];
T::write_i64(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned 128 bit integer to the underlying writer.
#[inline]
fn write_u128<T: ByteOrder>(&mut self, n: u128) -> Result<()> {
let mut buf = [0; 16];
T::write_u128(&mut buf, n);
self.write_all(&buf)
}
/// Writes a signed 128 bit integer to the underlying writer.
#[inline]
fn write_i128<T: ByteOrder>(&mut self, n: i128) -> Result<()> {
let mut buf = [0; 16];
T::write_i128(&mut buf, n);
self.write_all(&buf)
}
/// Writes an unsigned n-bytes integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Panics
///
/// If the given integer is not representable in the given number of bytes,
/// this method panics. If `nbytes > 8`, this method panics.
///
/// # Examples
///
/// Write unsigned 40 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_uint::<BigEndian>(312550384361, 5).unwrap();
/// wtr.write_uint::<BigEndian>(43, 5).unwrap();
/// assert_eq!(wtr, b"\x48\xc5\x74\x62\xe9\x00\x00\x00\x00\x2b");
/// ```
#[inline]
fn write_uint<T: ByteOrder>(
&mut self,
n: u64,
nbytes: usize,
) -> Result<()> {
let mut buf = [0; 8];
T::write_uint(&mut buf, n, nbytes);
self.write_all(&buf[0..nbytes])
}
/// Writes a signed n-bytes integer to the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Panics
///
/// If the given integer is not representable in the given number of bytes,
/// this method panics. If `nbytes > 8`, this method panics.
///
/// # Examples
///
/// Write signed 56 bit big-endian integers to a `Write`:
///
/// ```rust
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_int::<BigEndian>(-3548172039376767, 7).unwrap();
/// wtr.write_int::<BigEndian>(43, 7).unwrap();
/// assert_eq!(wtr, b"\xf3\x64\xf4\xd1\xfd\xb0\x81\x00\x00\x00\x00\x00\x00\x2b");
/// ```
#[inline]
fn write_int<T: ByteOrder>(
&mut self,
n: i64,
nbytes: usize,
) -> Result<()> {
let mut buf = [0; 8];
T::write_int(&mut buf, n, nbytes);
self.write_all(&buf[0..nbytes])
}
/// Writes an unsigned n-bytes integer to the underlying writer.
///
/// If the given integer is not representable in the given number of bytes,
/// this method panics. If `nbytes > 16`, this method panics.
#[inline]
fn write_uint128<T: ByteOrder>(
&mut self,
n: u128,
nbytes: usize,
) -> Result<()> {
let mut buf = [0; 16];
T::write_uint128(&mut buf, n, nbytes);
self.write_all(&buf[0..nbytes])
}
/// Writes a signed n-bytes integer to the underlying writer.
///
/// If the given integer is not representable in the given number of bytes,
/// this method panics. If `nbytes > 16`, this method panics.
#[inline]
fn write_int128<T: ByteOrder>(
&mut self,
n: i128,
nbytes: usize,
) -> Result<()> {
let mut buf = [0; 16];
T::write_int128(&mut buf, n, nbytes);
self.write_all(&buf[0..nbytes])
}
/// Writes a IEEE754 single-precision (4 bytes) floating point number to
/// the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write a big-endian single-precision floating point number to a `Write`:
///
/// ```rust
/// use std::f32;
///
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_f32::<BigEndian>(f32::consts::PI).unwrap();
/// assert_eq!(wtr, b"\x40\x49\x0f\xdb");
/// ```
#[inline]
fn write_f32<T: ByteOrder>(&mut self, n: f32) -> Result<()> {
let mut buf = [0; 4];
T::write_f32(&mut buf, n);
self.write_all(&buf)
}
/// Writes a IEEE754 double-precision (8 bytes) floating point number to
/// the underlying writer.
///
/// # Errors
///
/// This method returns the same errors as [`Write::write_all`].
///
///
/// # Examples
///
/// Write a big-endian double-precision floating point number to a `Write`:
///
/// ```rust
/// use std::f64;
///
/// use byteorder::{BigEndian, WriteBytesExt};
///
/// let mut wtr = Vec::new();
/// wtr.write_f64::<BigEndian>(f64::consts::PI).unwrap();
/// assert_eq!(wtr, b"\x40\x09\x21\xfb\x54\x44\x2d\x18");
/// ```
#[inline]
fn write_f64<T: ByteOrder>(&mut self, n: f64) -> Result<()> {
let mut buf = [0; 8];
T::write_f64(&mut buf, n);
self.write_all(&buf)
}
}
/// All types that implement `Write` get methods defined in `WriteBytesExt`
/// for free.
impl<W: io::Write + ?Sized> WriteBytesExt for W {}
/// Convert a slice of T (where T is plain old data) to its mutable binary
/// representation.
///
/// This function is wildly unsafe because it permits arbitrary modification of
/// the binary representation of any `Copy` type. Use with care. It's intended
/// to be called only where `T` is a numeric type.
unsafe fn slice_to_u8_mut<T: Copy>(slice: &mut [T]) -> &mut [u8] {
use std::mem::size_of;
let len = size_of::<T>() * slice.len();
slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut u8, len)
}