Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Helper types and traits for the handling of CSS values.
use app_units::Au;
use cssparser::ToCss as CssparserToCss;
use cssparser::{serialize_string, ParseError, Parser, Token, UnicodeRange};
use nsstring::nsCString;
use servo_arc::Arc;
use std::fmt::{self, Write};
/// Serialises a value according to its CSS representation.
///
/// This trait is implemented for `str` and its friends, serialising the string
/// contents as a CSS quoted string.
///
/// This trait is derivable with `#[derive(ToCss)]`, with the following behaviour:
/// * unit variants get serialised as the `snake-case` representation
/// of their name;
/// * unit variants whose name starts with "Moz" or "Webkit" are prepended
/// with a "-";
/// * if `#[css(comma)]` is found on a variant, its fields are separated by
/// commas, otherwise, by spaces;
/// * if `#[css(function)]` is found on a variant, the variant name gets
/// serialised like unit variants and its fields are surrounded by parentheses;
/// * if `#[css(iterable)]` is found on a function variant, that variant needs
/// to have a single member, and that member needs to be iterable. The
/// iterable will be serialized as the arguments for the function;
/// * an iterable field can also be annotated with `#[css(if_empty = "foo")]`
/// to print `"foo"` if the iterator is empty;
/// * if `#[css(dimension)]` is found on a variant, that variant needs
/// to have a single member. The variant would be serialized as a CSS
/// dimension token, like: <member><identifier>;
/// * if `#[css(skip)]` is found on a field, the `ToCss` call for that field
/// is skipped;
/// * if `#[css(skip_if = "function")]` is found on a field, the `ToCss` call
/// for that field is skipped if `function` returns true. This function is
/// provided the field as an argument;
/// * if `#[css(contextual_skip_if = "function")]` is found on a field, the
/// `ToCss` call for that field is skipped if `function` returns true. This
/// function is given all the fields in the current struct or variant as an
/// argument;
/// * `#[css(represents_keyword)]` can be used on bool fields in order to
/// serialize the field name if the field is true, or nothing otherwise. It
/// also collects those keywords for `SpecifiedValueInfo`.
/// * `#[css(bitflags(single="", mixed="", validate="", overlapping_bits)]` can
/// be used to derive parse / serialize / etc on bitflags. The rules for parsing
/// bitflags are the following:
///
/// * `single` flags can only appear on their own. It's common that bitflags
/// properties at least have one such value like `none` or `auto`.
/// * `mixed` properties can appear mixed together, but not along any other
/// flag that shares a bit with itself. For example, if you have three
/// bitflags like:
///
/// FOO = 1 << 0;
/// BAR = 1 << 1;
/// BAZ = 1 << 2;
/// BAZZ = BAR | BAZ;
///
/// Then the following combinations won't be valid:
///
/// * foo foo: (every flag shares a bit with itself)
/// * bar bazz: (bazz shares a bit with bar)
///
/// But `bar baz` will be valid, as they don't share bits, and so would
/// `foo` with any other flag, or `bazz` on its own.
/// * `overlapping_bits` enables some tracking during serialization of mixed
/// flags to avoid serializing variants that can subsume other variants.
/// In the example above, you could do:
/// mixed="foo,bazz,bar,baz", overlapping_bits
/// to ensure that if bazz is serialized, bar and baz aren't, even though
/// their bits are set. Note that the serialization order is canonical,
/// and thus depends on the order you specify the flags in.
///
/// * finally, one can put `#[css(derive_debug)]` on the whole type, to
/// implement `Debug` by a single call to `ToCss::to_css`.
pub trait ToCss {
/// Serialize `self` in CSS syntax, writing to `dest`.
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write;
/// Serialize `self` in CSS syntax and return a string.
///
/// (This is a convenience wrapper for `to_css` and probably should not be overridden.)
#[inline]
fn to_css_string(&self) -> String {
let mut s = String::new();
self.to_css(&mut CssWriter::new(&mut s)).unwrap();
s
}
/// Serialize `self` in CSS syntax and return a nsCString.
///
/// (This is a convenience wrapper for `to_css` and probably should not be overridden.)
#[inline]
fn to_css_nscstring(&self) -> nsCString {
let mut s = nsCString::new();
self.to_css(&mut CssWriter::new(&mut s)).unwrap();
s
}
}
impl<'a, T> ToCss for &'a T
where
T: ToCss + ?Sized,
{
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
(*self).to_css(dest)
}
}
impl ToCss for crate::owned_str::OwnedStr {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
serialize_string(self, dest)
}
}
impl ToCss for str {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
serialize_string(self, dest)
}
}
impl ToCss for String {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
serialize_string(self, dest)
}
}
impl<T> ToCss for Option<T>
where
T: ToCss,
{
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
self.as_ref().map_or(Ok(()), |value| value.to_css(dest))
}
}
impl ToCss for () {
#[inline]
fn to_css<W>(&self, _: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
Ok(())
}
}
/// A writer tailored for serialising CSS.
///
/// Coupled with SequenceWriter, this allows callers to transparently handle
/// things like comma-separated values etc.
pub struct CssWriter<'w, W: 'w> {
inner: &'w mut W,
prefix: Option<&'static str>,
}
impl<'w, W> CssWriter<'w, W>
where
W: Write,
{
/// Creates a new `CssWriter`.
#[inline]
pub fn new(inner: &'w mut W) -> Self {
Self {
inner,
prefix: Some(""),
}
}
}
impl<'w, W> Write for CssWriter<'w, W>
where
W: Write,
{
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
if s.is_empty() {
return Ok(());
}
if let Some(prefix) = self.prefix.take() {
// We are going to write things, but first we need to write
// the prefix that was set by `SequenceWriter::item`.
if !prefix.is_empty() {
self.inner.write_str(prefix)?;
}
}
self.inner.write_str(s)
}
#[inline]
fn write_char(&mut self, c: char) -> fmt::Result {
if let Some(prefix) = self.prefix.take() {
// See comment in `write_str`.
if !prefix.is_empty() {
self.inner.write_str(prefix)?;
}
}
self.inner.write_char(c)
}
}
/// Convenience wrapper to serialise CSS values separated by a given string.
pub struct SequenceWriter<'a, 'b: 'a, W: 'b> {
inner: &'a mut CssWriter<'b, W>,
separator: &'static str,
}
impl<'a, 'b, W> SequenceWriter<'a, 'b, W>
where
W: Write + 'b,
{
/// Create a new sequence writer.
#[inline]
pub fn new(inner: &'a mut CssWriter<'b, W>, separator: &'static str) -> Self {
if inner.prefix.is_none() {
// See comment in `item`.
inner.prefix = Some("");
}
Self { inner, separator }
}
/// Serialize the CSS Value with the specific serialization function.
#[inline]
pub fn write_item<F>(&mut self, f: F) -> fmt::Result
where
F: FnOnce(&mut CssWriter<'b, W>) -> fmt::Result,
{
// Separate non-generic functions so that this code is not repeated
// in every monomorphization with a different type `F` or `W`.
fn before(
prefix: &mut Option<&'static str>,
separator: &'static str,
) -> Option<&'static str> {
let old_prefix = *prefix;
if old_prefix.is_none() {
// If there is no prefix in the inner writer, a previous
// call to this method produced output, which means we need
// to write the separator next time we produce output again.
*prefix = Some(separator);
}
old_prefix
}
fn after(
old_prefix: Option<&'static str>,
prefix: &mut Option<&'static str>,
separator: &'static str,
) {
match (old_prefix, *prefix) {
(_, None) => {
// This call produced output and cleaned up after itself.
},
(None, Some(p)) => {
// Some previous call to `item` produced output,
// but this one did not, prefix should be the same as
// the one we set.
debug_assert_eq!(separator, p);
// We clean up here even though it's not necessary just
// to be able to do all these assertion checks.
*prefix = None;
},
(Some(old), Some(new)) => {
// No previous call to `item` produced output, and this one
// either.
debug_assert_eq!(old, new);
},
}
}
let old_prefix = before(&mut self.inner.prefix, self.separator);
f(self.inner)?;
after(old_prefix, &mut self.inner.prefix, self.separator);
Ok(())
}
/// Serialises a CSS value, writing any separator as necessary.
///
/// The separator is never written before any `item` produces any output,
/// and is written in subsequent calls only if the `item` produces some
/// output on its own again. This lets us handle `Option<T>` fields by
/// just not printing anything on `None`.
#[inline]
pub fn item<T>(&mut self, item: &T) -> fmt::Result
where
T: ToCss,
{
self.write_item(|inner| item.to_css(inner))
}
/// Writes a string as-is (i.e. not escaped or wrapped in quotes)
/// with any separator as necessary.
///
/// See SequenceWriter::item.
#[inline]
pub fn raw_item(&mut self, item: &str) -> fmt::Result {
self.write_item(|inner| inner.write_str(item))
}
}
/// Type used as the associated type in the `OneOrMoreSeparated` trait on a
/// type to indicate that a serialized list of elements of this type is
/// separated by commas.
pub struct Comma;
/// Type used as the associated type in the `OneOrMoreSeparated` trait on a
/// type to indicate that a serialized list of elements of this type is
/// separated by spaces.
pub struct Space;
/// Type used as the associated type in the `OneOrMoreSeparated` trait on a
/// type to indicate that a serialized list of elements of this type is
/// separated by commas, but spaces without commas are also allowed when
/// parsing.
pub struct CommaWithSpace;
/// A trait satisfied by the types corresponding to separators.
pub trait Separator {
/// The separator string that the satisfying separator type corresponds to.
fn separator() -> &'static str;
/// Parses a sequence of values separated by this separator.
///
/// The given closure is called repeatedly for each item in the sequence.
///
/// Successful results are accumulated in a vector.
///
/// This method returns `Err(_)` the first time a closure does or if
/// the separators aren't correct.
fn parse<'i, 't, F, T, E>(
parser: &mut Parser<'i, 't>,
parse_one: F,
) -> Result<Vec<T>, ParseError<'i, E>>
where
F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result<T, ParseError<'i, E>>;
}
impl Separator for Comma {
fn separator() -> &'static str {
", "
}
fn parse<'i, 't, F, T, E>(
input: &mut Parser<'i, 't>,
parse_one: F,
) -> Result<Vec<T>, ParseError<'i, E>>
where
F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result<T, ParseError<'i, E>>,
{
input.parse_comma_separated(parse_one)
}
}
impl Separator for Space {
fn separator() -> &'static str {
" "
}
fn parse<'i, 't, F, T, E>(
input: &mut Parser<'i, 't>,
mut parse_one: F,
) -> Result<Vec<T>, ParseError<'i, E>>
where
F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result<T, ParseError<'i, E>>,
{
input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less.
let mut results = vec![parse_one(input)?];
loop {
input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less.
if let Ok(item) = input.try(&mut parse_one) {
results.push(item);
} else {
return Ok(results);
}
}
}
}
impl Separator for CommaWithSpace {
fn separator() -> &'static str {
", "
}
fn parse<'i, 't, F, T, E>(
input: &mut Parser<'i, 't>,
mut parse_one: F,
) -> Result<Vec<T>, ParseError<'i, E>>
where
F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result<T, ParseError<'i, E>>,
{
input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less.
let mut results = vec![parse_one(input)?];
loop {
input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less.
let comma_location = input.current_source_location();
let comma = input.try(|i| i.expect_comma()).is_ok();
input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less.
if let Ok(item) = input.try(&mut parse_one) {
results.push(item);
} else if comma {
return Err(comma_location.new_unexpected_token_error(Token::Comma));
} else {
break;
}
}
Ok(results)
}
}
/// Marker trait on T to automatically implement ToCss for Vec<T> when T's are
/// separated by some delimiter `delim`.
pub trait OneOrMoreSeparated {
/// Associated type indicating which separator is used.
type S: Separator;
}
impl OneOrMoreSeparated for UnicodeRange {
type S = Comma;
}
impl<T> ToCss for Vec<T>
where
T: ToCss + OneOrMoreSeparated,
{
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
let mut iter = self.iter();
iter.next().unwrap().to_css(dest)?;
for item in iter {
dest.write_str(<T as OneOrMoreSeparated>::S::separator())?;
item.to_css(dest)?;
}
Ok(())
}
}
impl<T> ToCss for Box<T>
where
T: ?Sized + ToCss,
{
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
(**self).to_css(dest)
}
}
impl<T> ToCss for Arc<T>
where
T: ?Sized + ToCss,
{
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
(**self).to_css(dest)
}
}
impl ToCss for Au {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
self.to_f64_px().to_css(dest)?;
dest.write_str("px")
}
}
macro_rules! impl_to_css_for_predefined_type {
($name: ty) => {
impl<'a> ToCss for $name {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
::cssparser::ToCss::to_css(self, dest)
}
}
};
}
impl_to_css_for_predefined_type!(f32);
impl_to_css_for_predefined_type!(i8);
impl_to_css_for_predefined_type!(i32);
impl_to_css_for_predefined_type!(u8);
impl_to_css_for_predefined_type!(u16);
impl_to_css_for_predefined_type!(u32);
impl_to_css_for_predefined_type!(::cssparser::Token<'a>);
impl_to_css_for_predefined_type!(::cssparser::UnicodeRange);
/// Helper types for the handling of specified values.
pub mod specified {
use crate::ParsingMode;
/// Whether to allow negative lengths or not.
#[repr(u8)]
#[derive(
Clone, Copy, Debug, Deserialize, Eq, MallocSizeOf, PartialEq, PartialOrd, Serialize, ToShmem,
)]
pub enum AllowedNumericType {
/// Allow all kind of numeric values.
All,
/// Allow only non-negative numeric values.
NonNegative,
/// Allow only numeric values greater or equal to 1.0.
AtLeastOne,
/// Allow only numeric values from 0 to 1.0.
ZeroToOne,
}
impl Default for AllowedNumericType {
#[inline]
fn default() -> Self {
AllowedNumericType::All
}
}
impl AllowedNumericType {
/// Whether the value fits the rules of this numeric type.
#[inline]
pub fn is_ok(&self, parsing_mode: ParsingMode, val: f32) -> bool {
if parsing_mode.allows_all_numeric_values() {
return true;
}
match *self {
AllowedNumericType::All => true,
AllowedNumericType::NonNegative => val >= 0.0,
AllowedNumericType::AtLeastOne => val >= 1.0,
AllowedNumericType::ZeroToOne => val >= 0.0 && val <= 1.0,
}
}
/// Clamp the value following the rules of this numeric type.
#[inline]
pub fn clamp(&self, val: f32) -> f32 {
match *self {
AllowedNumericType::All => val,
AllowedNumericType::NonNegative => val.max(0.),
AllowedNumericType::AtLeastOne => val.max(1.),
AllowedNumericType::ZeroToOne => val.max(0.).min(1.),
}
}
}
}