DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b21e285d546)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Helper module to build up a selector safely and efficiently.
//!
//! Our selector representation is designed to optimize matching, and has
//! several requirements:
//! * All simple selectors and combinators are stored inline in the same buffer
//!   as Component instances.
//! * We store the top-level compound selectors from right to left, i.e. in
//!   matching order.
//! * We store the simple selectors for each combinator from left to right, so
//!   that we match the cheaper simple selectors first.
//!
//! Meeting all these constraints without extra memmove traffic during parsing
//! is non-trivial. This module encapsulates those details and presents an
//! easy-to-use API for the parser.

use crate::parser::{Combinator, Component, SelectorImpl};
use crate::sink::Push;
use servo_arc::{Arc, HeaderWithLength, ThinArc};
use smallvec::{self, SmallVec};
use std::cmp;
use std::iter;
use std::ptr;
use std::slice;

/// Top-level SelectorBuilder struct. This should be stack-allocated by the
/// consumer and never moved (because it contains a lot of inline data that
/// would be slow to memmov).
///
/// After instantation, callers may call the push_simple_selector() and
/// push_combinator() methods to append selector data as it is encountered
/// (from left to right). Once the process is complete, callers should invoke
/// build(), which transforms the contents of the SelectorBuilder into a heap-
/// allocated Selector and leaves the builder in a drained state.
#[derive(Debug)]
pub struct SelectorBuilder<Impl: SelectorImpl> {
    /// The entire sequence of simple selectors, from left to right, without combinators.
    ///
    /// We make this large because the result of parsing a selector is fed into a new
    /// Arc-ed allocation, so any spilled vec would be a wasted allocation. Also,
    /// Components are large enough that we don't have much cache locality benefit
    /// from reserving stack space for fewer of them.
    simple_selectors: SmallVec<[Component<Impl>; 32]>,
    /// The combinators, and the length of the compound selector to their left.
    combinators: SmallVec<[(Combinator, usize); 16]>,
    /// The length of the current compount selector.
    current_len: usize,
}

impl<Impl: SelectorImpl> Default for SelectorBuilder<Impl> {
    #[inline(always)]
    fn default() -> Self {
        SelectorBuilder {
            simple_selectors: SmallVec::new(),
            combinators: SmallVec::new(),
            current_len: 0,
        }
    }
}

impl<Impl: SelectorImpl> Push<Component<Impl>> for SelectorBuilder<Impl> {
    fn push(&mut self, value: Component<Impl>) {
        self.push_simple_selector(value);
    }
}

impl<Impl: SelectorImpl> SelectorBuilder<Impl> {
    /// Pushes a simple selector onto the current compound selector.
    #[inline(always)]
    pub fn push_simple_selector(&mut self, ss: Component<Impl>) {
        assert!(!ss.is_combinator());
        self.simple_selectors.push(ss);
        self.current_len += 1;
    }

    /// Completes the current compound selector and starts a new one, delimited
    /// by the given combinator.
    #[inline(always)]
    pub fn push_combinator(&mut self, c: Combinator) {
        self.combinators.push((c, self.current_len));
        self.current_len = 0;
    }

    /// Returns true if combinators have ever been pushed to this builder.
    #[inline(always)]
    pub fn has_combinators(&self) -> bool {
        !self.combinators.is_empty()
    }

    /// Consumes the builder, producing a Selector.
    #[inline(always)]
    pub fn build(
        &mut self,
        parsed_pseudo: bool,
        parsed_slotted: bool,
        parsed_part: bool,
    ) -> ThinArc<SpecificityAndFlags, Component<Impl>> {
        // Compute the specificity and flags.
        let specificity = specificity(self.simple_selectors.iter());
        let mut flags = SelectorFlags::empty();
        if parsed_pseudo {
            flags |= SelectorFlags::HAS_PSEUDO;
        }
        if parsed_slotted {
            flags |= SelectorFlags::HAS_SLOTTED;
        }
        if parsed_part {
            flags |= SelectorFlags::HAS_PART;
        }
        self.build_with_specificity_and_flags(SpecificityAndFlags { specificity, flags })
    }

    /// Builds with an explicit SpecificityAndFlags. This is separated from build() so
    /// that unit tests can pass an explicit specificity.
    #[inline(always)]
    pub fn build_with_specificity_and_flags(
        &mut self,
        spec: SpecificityAndFlags,
    ) -> ThinArc<SpecificityAndFlags, Component<Impl>> {
        // First, compute the total number of Components we'll need to allocate
        // space for.
        let full_len = self.simple_selectors.len() + self.combinators.len();

        // Create the header.
        let header = HeaderWithLength::new(spec, full_len);

        // Create the Arc using an iterator that drains our buffers.

        // Use a raw pointer to be able to call set_len despite "borrowing" the slice.
        // This is similar to SmallVec::drain, but we use a slice here because
        // we’re gonna traverse it non-linearly.
        let raw_simple_selectors: *const [Component<Impl>] = &*self.simple_selectors;
        unsafe {
            // Panic-safety: if SelectorBuilderIter is not iterated to the end,
            // some simple selectors will safely leak.
            self.simple_selectors.set_len(0)
        }
        let (rest, current) = split_from_end(unsafe { &*raw_simple_selectors }, self.current_len);
        let iter = SelectorBuilderIter {
            current_simple_selectors: current.iter(),
            rest_of_simple_selectors: rest,
            combinators: self.combinators.drain().rev(),
        };

        Arc::into_thin(Arc::from_header_and_iter(header, iter))
    }
}

struct SelectorBuilderIter<'a, Impl: SelectorImpl> {
    current_simple_selectors: slice::Iter<'a, Component<Impl>>,
    rest_of_simple_selectors: &'a [Component<Impl>],
    combinators: iter::Rev<smallvec::Drain<'a, (Combinator, usize)>>,
}

impl<'a, Impl: SelectorImpl> ExactSizeIterator for SelectorBuilderIter<'a, Impl> {
    fn len(&self) -> usize {
        self.current_simple_selectors.len() +
            self.rest_of_simple_selectors.len() +
            self.combinators.len()
    }
}

impl<'a, Impl: SelectorImpl> Iterator for SelectorBuilderIter<'a, Impl> {
    type Item = Component<Impl>;
    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(simple_selector_ref) = self.current_simple_selectors.next() {
            // Move a simple selector out of this slice iterator.
            // This is safe because we’ve called SmallVec::set_len(0) above,
            // so SmallVec::drop won’t drop this simple selector.
            unsafe { Some(ptr::read(simple_selector_ref)) }
        } else {
            self.combinators.next().map(|(combinator, len)| {
                let (rest, current) = split_from_end(self.rest_of_simple_selectors, len);
                self.rest_of_simple_selectors = rest;
                self.current_simple_selectors = current.iter();
                Component::Combinator(combinator)
            })
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}

fn split_from_end<T>(s: &[T], at: usize) -> (&[T], &[T]) {
    s.split_at(s.len() - at)
}

bitflags! {
    /// Flags that indicate at which point of parsing a selector are we.
    #[derive(Default, ToShmem)]
    pub (crate) struct SelectorFlags : u8 {
        const HAS_PSEUDO = 1 << 0;
        const HAS_SLOTTED = 1 << 1;
        const HAS_PART = 1 << 2;
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq, ToShmem)]
pub struct SpecificityAndFlags {
    /// There are two free bits here, since we use ten bits for each specificity
    /// kind (id, class, element).
    pub(crate) specificity: u32,
    /// There's padding after this field due to the size of the flags.
    pub(crate) flags: SelectorFlags,
}

impl SpecificityAndFlags {
    #[inline]
    pub fn specificity(&self) -> u32 {
        self.specificity
    }

    #[inline]
    pub fn has_pseudo_element(&self) -> bool {
        self.flags.intersects(SelectorFlags::HAS_PSEUDO)
    }

    #[inline]
    pub fn is_slotted(&self) -> bool {
        self.flags.intersects(SelectorFlags::HAS_SLOTTED)
    }

    #[inline]
    pub fn is_part(&self) -> bool {
        self.flags.intersects(SelectorFlags::HAS_PART)
    }
}

const MAX_10BIT: u32 = (1u32 << 10) - 1;

#[derive(Add, AddAssign, Clone, Copy, Default, Eq, Ord, PartialEq, PartialOrd)]
struct Specificity {
    id_selectors: u32,
    class_like_selectors: u32,
    element_selectors: u32,
}

impl From<u32> for Specificity {
    #[inline]
    fn from(value: u32) -> Specificity {
        assert!(value <= MAX_10BIT << 20 | MAX_10BIT << 10 | MAX_10BIT);
        Specificity {
            id_selectors: value >> 20,
            class_like_selectors: (value >> 10) & MAX_10BIT,
            element_selectors: value & MAX_10BIT,
        }
    }
}

impl From<Specificity> for u32 {
    #[inline]
    fn from(specificity: Specificity) -> u32 {
        cmp::min(specificity.id_selectors, MAX_10BIT) << 20 |
            cmp::min(specificity.class_like_selectors, MAX_10BIT) << 10 |
            cmp::min(specificity.element_selectors, MAX_10BIT)
    }
}

fn specificity<Impl>(iter: slice::Iter<Component<Impl>>) -> u32
where
    Impl: SelectorImpl,
{
    complex_selector_specificity(iter).into()
}

fn complex_selector_specificity<Impl>(iter: slice::Iter<Component<Impl>>) -> Specificity
where
    Impl: SelectorImpl,
{
    fn simple_selector_specificity<Impl>(
        simple_selector: &Component<Impl>,
        specificity: &mut Specificity,
    ) where
        Impl: SelectorImpl,
    {
        match *simple_selector {
            Component::Combinator(..) => {
                unreachable!("Found combinator in simple selectors vector?");
            },
            Component::Part(..) | Component::PseudoElement(..) | Component::LocalName(..) => {
                specificity.element_selectors += 1
            },
            Component::Slotted(ref selector) => {
                specificity.element_selectors += 1;
                // Note that due to the way ::slotted works we only compete with
                // other ::slotted rules, so the above rule doesn't really
                // matter, but we do it still for consistency with other
                // pseudo-elements.
                //
                // See: https://github.com/w3c/csswg-drafts/issues/1915
                *specificity += Specificity::from(selector.specificity());
            },
            Component::Host(ref selector) => {
                specificity.class_like_selectors += 1;
                if let Some(ref selector) = *selector {
                    // See: https://github.com/w3c/csswg-drafts/issues/1915
                    *specificity += Specificity::from(selector.specificity());
                }
            },
            Component::ID(..) => {
                specificity.id_selectors += 1;
            },
            Component::Class(..) |
            Component::AttributeInNoNamespace { .. } |
            Component::AttributeInNoNamespaceExists { .. } |
            Component::AttributeOther(..) |
            Component::FirstChild |
            Component::LastChild |
            Component::OnlyChild |
            Component::Root |
            Component::Empty |
            Component::Scope |
            Component::NthChild(..) |
            Component::NthLastChild(..) |
            Component::NthOfType(..) |
            Component::NthLastOfType(..) |
            Component::FirstOfType |
            Component::LastOfType |
            Component::OnlyOfType |
            Component::NonTSPseudoClass(..) => {
                specificity.class_like_selectors += 1;
            },
            Component::ExplicitUniversalType |
            Component::ExplicitAnyNamespace |
            Component::ExplicitNoNamespace |
            Component::DefaultNamespace(..) |
            Component::Namespace(..) => {
                // Does not affect specificity
            },
            Component::Negation(ref negated) => {
                for ss in negated.iter() {
                    simple_selector_specificity(&ss, specificity);
                }
            },
        }
    }

    let mut specificity = Default::default();
    for simple_selector in iter {
        simple_selector_specificity(&simple_selector, &mut specificity);
    }
    specificity
}