Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
import { CommonUtils } from "resource://services-common/utils.sys.mjs";
import { CryptoUtils } from "resource://services-crypto/utils.sys.mjs";
import {
SCOPE_OLD_SYNC,
DEPRECATED_SCOPE_ECOSYSTEM_TELEMETRY,
FX_OAUTH_CLIENT_ID,
log,
logPII,
// The following top-level fields have since been deprecated and exist here purely
// to be removed from the account state when seen. After a reasonable period of time
// has passed, where users have been migrated away from those keys they should be safe to be removed
const DEPRECATED_DERIVED_KEYS_NAMES = [
"kSync",
"kXCS",
"kExtSync",
"kExtKbHash",
"ecosystemUserId",
"ecosystemAnonId",
];
// This scope and its associated key material were used by the old Kinto webextension
// storage backend, but has since been decommissioned. It's here entirely so that we
// remove the corresponding key from storage if present. We should be safe to remove it
// after some sensible period of time has elapsed to allow most clients to update.
const DEPRECATED_SCOPE_WEBEXT_SYNC = "sync:addon_storage";
// These are the scopes that correspond to new storage for the `LEGACY_DERIVED_KEYS_NAMES`.
// We will, if necessary, migrate storage for those keys so that it's associated with
// these scopes.
const LEGACY_DERIVED_KEY_SCOPES = [SCOPE_OLD_SYNC];
// These are scopes that we used to store, but are no longer using,
// and hence should be deleted from storage if present.
const DEPRECATED_KEY_SCOPES = [
DEPRECATED_SCOPE_ECOSYSTEM_TELEMETRY,
DEPRECATED_SCOPE_WEBEXT_SYNC,
];
/**
* Utilities for working with key material linked to the user's account.
*
* Each Firefox Account has 32 bytes of root key material called `kB` which is
* linked to the user's password, and which is used to derive purpose-specific
* subkeys for things like encrypting the user's sync data. This class provides
* the interface for working with such key material.
*
* Most recent FxA clients obtain appropriate key material directly as part of
* their sign-in flow, using a special extension of the OAuth2.0 protocol to
* securely deliver the derived keys without revealing `kB`. Keys obtained in
* in this way are called "scoped keys" since each corresponds to a particular
* OAuth scope, and this class provides a `getKeyForScope` method that is the
* preferred method for consumers to work with such keys.
*
* However, since the FxA integration in Firefox Desktop pre-dates the use of
* OAuth2.0, we also have a lot of code for fetching keys via an older flow.
* This flow uses a special `keyFetchToken` to obtain `kB` and then derive various
* sub-keys from it. Consumers should consider this an internal implementation
* detail of the `FxAccountsKeys` class and should prefer `getKeyForScope` where
* possible. We intend to remove support for Firefox ever directly handling `kB`
* at some point in the future.
*/
export class FxAccountsKeys {
constructor(fxAccountsInternal) {
this._fxai = fxAccountsInternal;
}
/**
* Checks if we currently have the key for a given scope, or if we have enough to
* be able to successfully fetch and unwrap it for the signed-in-user.
*
* Unlike `getKeyForScope`, this will not hit the network to fetch wrapped keys if
* they aren't available locally.
*/
canGetKeyForScope(scope) {
return this._fxai.withCurrentAccountState(async currentState => {
let userData = await currentState.getUserAccountData();
if (!userData) {
throw new Error("Can't possibly get keys; User is not signed in");
}
if (!userData.verified) {
log.info("Can't get keys; user is not verified");
return false;
}
if (userData.scopedKeys && userData.scopedKeys.hasOwnProperty(scope)) {
return true;
}
// If we have a `keyFetchToken` we can fetch `kB`.
if (userData.keyFetchToken) {
return true;
}
log.info("Can't get keys; no key material or tokens available");
return false;
});
}
/**
* Get the key for a specified OAuth scope.
*
* @param {String} scope The OAuth scope whose key should be returned
*
* @return Promise<JWK>
* If no key is available the promise resolves to `null`.
* If a key is available for the given scope, th promise resolves to a JWK with fields:
* {
* scope: The requested scope
* kid: Key identifier
* k: Derived key material
* kty: Always "oct" for scoped keys
* }
*
*/
async getKeyForScope(scope) {
const { scopedKeys } = await this._loadOrFetchKeys();
if (!scopedKeys.hasOwnProperty(scope)) {
throw new Error(`Key not available for scope "${scope}"`);
}
return {
scope,
...scopedKeys[scope],
};
}
/**
* Validates if the given scoped keys are valid keys
*
* @param { Object } scopedKeys: The scopedKeys bundle
*
* @return { Boolean }: true if the scopedKeys bundle is valid, false otherwise
*/
validScopedKeys(scopedKeys) {
for (const expectedScope of Object.keys(scopedKeys)) {
const key = scopedKeys[expectedScope];
if (
!key.hasOwnProperty("scope") ||
!key.hasOwnProperty("kid") ||
!key.hasOwnProperty("kty") ||
!key.hasOwnProperty("k")
) {
return false;
}
const { scope, kid, kty, k } = key;
if (scope != expectedScope || kty != "oct") {
return false;
}
// We verify the format of the key id is `timestamp-fingerprint`
if (!kid.includes("-")) {
return false;
}
const [keyRotationTimestamp, fingerprint] = kid.split("-");
// We then verify that the timestamp is a valid timestamp
const keyRotationTimestampNum = Number(keyRotationTimestamp);
// If the value we got back is falsy it's not a valid timestamp
// note that we treat a 0 timestamp as invalid
if (!keyRotationTimestampNum) {
return false;
}
// For extra safety, we validate that the timestamp can be converted into a valid
// Date object
const date = new Date(keyRotationTimestampNum);
if (isNaN(date.getTime()) || date.getTime() <= 0) {
return false;
}
// Finally, we validate that the fingerprint and the key itself are valid base64 values
// Note that we can't verify the fingerprint is correct here because we don't have kb
const validB64String = b64String => {
let decoded;
try {
decoded = ChromeUtils.base64URLDecode(b64String, {
padding: "reject",
});
} catch (e) {
return false;
}
return !!decoded;
};
if (!validB64String(fingerprint) || !validB64String(k)) {
return false;
}
}
return true;
}
/**
* Format a JWK kid as hex rather than base64.
*
* This is a backwards-compatibility helper for code that needs a raw key fingerprint
* for use as a key identifier, rather than the timestamp+fingerprint format used by
* FxA scoped keys.
*
* @param {Object} jwk The JWK from which to extract the `kid` field as hex.
*/
kidAsHex(jwk) {
// The kid format is "{timestamp}-{b64url(fingerprint)}", but we have to be careful
// because the fingerprint component may contain "-" as well, and we want to ensure
// the timestamp component was non-empty.
const idx = jwk.kid.indexOf("-") + 1;
if (idx <= 1) {
throw new Error(`Invalid kid: ${jwk.kid}`);
}
return CommonUtils.base64urlToHex(jwk.kid.slice(idx));
}
/**
* Fetch encryption keys for the signed-in-user from the FxA API server.
*
* Not for user consumption. Exists to cause the keys to be fetched.
*
* Returns user data so that it can be chained with other methods.
*
* @return Promise
* The promise resolves to the credentials object of the signed-in user:
* {
* email: The user's email address
* uid: The user's unique id
* sessionToken: Session for the FxA server
* scopedKeys: Object mapping OAuth scopes to corresponding derived keys
* verified: email verification status
* }
* @throws If there is no user signed in.
*/
async _loadOrFetchKeys() {
return this._fxai.withCurrentAccountState(async currentState => {
try {
let userData = await currentState.getUserAccountData();
if (!userData) {
throw new Error("Can't get keys; User is not signed in");
}
// If we have all the keys in latest storage location, we're good.
if (userData.scopedKeys) {
if (
LEGACY_DERIVED_KEY_SCOPES.every(scope =>
userData.scopedKeys.hasOwnProperty(scope)
) &&
!DEPRECATED_KEY_SCOPES.some(scope =>
userData.scopedKeys.hasOwnProperty(scope)
) &&
!DEPRECATED_DERIVED_KEYS_NAMES.some(keyName =>
userData.hasOwnProperty(keyName)
)
) {
return userData;
}
}
// If not, we've got work to do, and we debounce to avoid duplicating it.
if (!currentState.whenKeysReadyDeferred) {
currentState.whenKeysReadyDeferred = Promise.withResolvers();
// N.B. we deliberately don't `await` here, and instead use the promise
// to resolve `whenKeysReadyDeferred` (which we then `await` below).
this._migrateOrFetchKeys(currentState, userData).then(
dataWithKeys => {
currentState.whenKeysReadyDeferred.resolve(dataWithKeys);
currentState.whenKeysReadyDeferred = null;
},
err => {
currentState.whenKeysReadyDeferred.reject(err);
currentState.whenKeysReadyDeferred = null;
}
);
}
return await currentState.whenKeysReadyDeferred.promise;
} catch (err) {
return this._fxai._handleTokenError(err);
}
});
}
/**
* Set externally derived scoped keys in internal storage
* @param { Object } scopedKeys: The scoped keys object derived by the oauth flow
*
* @return { Promise }: A promise that resolves if the keys were successfully stored,
* or rejects if we failed to persist the keys, or if the user is not signed in already
*/
async setScopedKeys(scopedKeys) {
return this._fxai.withCurrentAccountState(async currentState => {
const userData = await currentState.getUserAccountData();
if (!userData) {
throw new Error("Cannot persist keys, no user signed in");
}
await currentState.updateUserAccountData({
scopedKeys,
});
});
}
/**
* Key storage migration or fetching logic.
*
* This method contains the doing-expensive-operations part of the logic of
* _loadOrFetchKeys(), factored out into a separate method so we can debounce it.
*
*/
async _migrateOrFetchKeys(currentState, userData) {
// If the required scopes are present in `scopedKeys`, then we know that we've
// previously applied all earlier migrations
// so we are safe to delete deprecated fields that older migrations
// might have depended on.
if (
userData.scopedKeys &&
LEGACY_DERIVED_KEY_SCOPES.every(scope =>
userData.scopedKeys.hasOwnProperty(scope)
)
) {
return this._removeDeprecatedKeys(currentState, userData);
}
// Otherwise, we need to fetch from the network and unwrap.
if (!userData.sessionToken) {
throw new Error("No sessionToken");
}
if (!userData.keyFetchToken) {
throw new Error("No keyFetchToken");
}
return this._fetchAndUnwrapAndDeriveKeys(
currentState,
userData.sessionToken,
userData.keyFetchToken
);
}
/**
* Removes deprecated keys from storage and returns an
* updated user data object
*/
async _removeDeprecatedKeys(currentState, userData) {
// Bug 1838708: Delete any deprecated high level keys from storage
const keysToRemove = DEPRECATED_DERIVED_KEYS_NAMES.filter(keyName =>
userData.hasOwnProperty(keyName)
);
if (keysToRemove.length) {
const removedKeys = {};
for (const keyName of keysToRemove) {
removedKeys[keyName] = null;
}
await currentState.updateUserAccountData({
...removedKeys,
});
userData = await currentState.getUserAccountData();
}
// Bug 1697596 - delete any deprecated scoped keys from storage.
const scopesToRemove = DEPRECATED_KEY_SCOPES.filter(scope =>
userData.scopedKeys.hasOwnProperty(scope)
);
if (scopesToRemove.length) {
const updatedScopedKeys = {
...userData.scopedKeys,
};
for (const scope of scopesToRemove) {
delete updatedScopedKeys[scope];
}
await currentState.updateUserAccountData({
scopedKeys: updatedScopedKeys,
});
userData = await currentState.getUserAccountData();
}
return userData;
}
/**
* Fetch keys from the server, unwrap them, and derive required sub-keys.
*
* Once the user's email is verified, we can resquest the root key `kB` from the
* FxA server, unwrap it using the client-side secret `unwrapBKey`, and then
* derive all the sub-keys required for operation of the browser.
*/
async _fetchAndUnwrapAndDeriveKeys(
currentState,
sessionToken,
keyFetchToken
) {
if (logPII()) {
log.debug(
`fetchAndUnwrapKeys: sessionToken: ${sessionToken}, keyFetchToken: ${keyFetchToken}`
);
}
// Sign out if we don't have the necessary tokens.
if (!sessionToken || !keyFetchToken) {
// this seems really bad and we should remove this - bug 1572313.
log.warn("improper _fetchAndUnwrapKeys() call: token missing");
await this._fxai.signOut();
return null;
}
// Deriving OAuth scoped keys requires additional metadata from the server.
// We fetch this first, before fetching the actual key material, because the
// keyFetchToken is single-use and we don't want to do a potentially-fallible
// operation after consuming it.
const scopedKeysMetadata = await this._fetchScopedKeysMetadata(
sessionToken
);
// Fetch the wrapped keys.
// It would be nice to be able to fetch this in a single operation with fetching
// the metadata above, but that requires server-side changes in FxA.
let { wrapKB } = await this._fetchKeys(keyFetchToken);
let data = await currentState.getUserAccountData();
// Sanity check that the user hasn't changed out from under us (which should
// be impossible given this is called within _withCurrentAccountState, but...)
if (data.keyFetchToken !== keyFetchToken) {
throw new Error("Signed in user changed while fetching keys!");
}
let kBbytes = CryptoUtils.xor(
CommonUtils.hexToBytes(data.unwrapBKey),
wrapKB
);
if (logPII()) {
log.debug("kBbytes: " + kBbytes);
}
let updateData = {
...(await this._deriveKeys(data.uid, kBbytes, scopedKeysMetadata)),
keyFetchToken: null, // null values cause the item to be removed.
unwrapBKey: null,
};
if (logPII()) {
log.debug(`Keys Obtained: ${updateData.scopedKeys}`);
} else {
log.debug(
"Keys Obtained: " + Object.keys(updateData.scopedKeys).join(", ")
);
}
// Just double-check that scoped keys are there now
if (!updateData.scopedKeys) {
throw new Error(`user data missing: scopedKeys`);
}
await currentState.updateUserAccountData(updateData);
return currentState.getUserAccountData();
}
/**
* Fetch the wrapped root key `wrapKB` from the FxA server.
*
* This consumes the single-use `keyFetchToken`.
*/
_fetchKeys(keyFetchToken) {
let client = this._fxai.fxAccountsClient;
log.debug(
`Fetching keys with token ${!!keyFetchToken} from ${client.host}`
);
if (logPII()) {
log.debug("fetchKeys - the token is " + keyFetchToken);
}
return client.accountKeys(keyFetchToken);
}
/**
* Fetch additional metadata required for deriving scoped keys.
*
* This includes timestamps and a server-provided secret to mix in to
* the derived value in order to support key rotation.
*/
async _fetchScopedKeysMetadata(sessionToken) {
// Hard-coded list of scopes that we know about.
// This list will probably grow in future.
const scopes = [SCOPE_OLD_SYNC].join(" ");
const scopedKeysMetadata =
await this._fxai.fxAccountsClient.getScopedKeyData(
sessionToken,
FX_OAUTH_CLIENT_ID,
scopes
);
// The server may decline us permission for some of those scopes, although it really shouldn't.
// We can live without them...except for the OLDSYNC scope, whose absence would be catastrophic.
if (!scopedKeysMetadata.hasOwnProperty(SCOPE_OLD_SYNC)) {
log.warn(
"The FxA server did not grant Firefox the `oldsync` scope; this is most unexpected!" +
` scopes were: ${Object.keys(scopedKeysMetadata)}`
);
throw new Error(
"The FxA server did not grant Firefox the `oldsync` scope"
);
}
return scopedKeysMetadata;
}
/**
* Derive purpose-specific keys from the root FxA key `kB`.
*
* Everything that uses an encryption key from FxA uses a purpose-specific derived
* key. For new uses this is derived in a structured way based on OAuth scopes,
* while for legacy uses (mainly Firefox Sync) it is derived in a more ad-hoc fashion.
* This method does all the derivations for the uses that we know about.
*
*/
async _deriveKeys(uid, kBbytes, scopedKeysMetadata) {
const scopedKeys = await this._deriveScopedKeys(
uid,
kBbytes,
scopedKeysMetadata
);
return {
scopedKeys,
};
}
/**
* Derive various scoped keys from the root FxA key `kB`.
*
* The `scopedKeysMetadata` object is additional information fetched from the server that
* that gets mixed in to the key derivation, with each member of the object corresponding
* to an OAuth scope that keys its own scoped key.
*
* As a special case for backwards-compatibility, sync-related scopes get special
* treatment to use a legacy derivation algorithm.
*
*/
async _deriveScopedKeys(uid, kBbytes, scopedKeysMetadata) {
const scopedKeys = {};
for (const scope in scopedKeysMetadata) {
if (LEGACY_DERIVED_KEY_SCOPES.includes(scope)) {
scopedKeys[scope] = await this._deriveLegacyScopedKey(
uid,
kBbytes,
scope,
scopedKeysMetadata[scope]
);
} else {
scopedKeys[scope] = await this._deriveScopedKey(
uid,
kBbytes,
scope,
scopedKeysMetadata[scope]
);
}
}
return scopedKeys;
}
/**
* Derive a scoped key for an individual OAuth scope.
*
* The derivation here uses HKDF to combine:
* - the root key material kB
* - a unique identifier for this scoped key
* - a server-provided secret that allows for key rotation
* - the account uid as an additional salt
*
* It produces 32 bytes of (secret) key material along with a (potentially public)
* key identifier, formatted as a JWK.
*
* The full details are in the technical docs at
*/
async _deriveScopedKey(uid, kBbytes, scope, scopedKeyMetadata) {
kBbytes = CommonUtils.byteStringToArrayBuffer(kBbytes);
const FINGERPRINT_LENGTH = 16;
const KEY_LENGTH = 32;
const VALID_UID = /^[0-9a-f]{32}$/i;
const VALID_ROTATION_SECRET = /^[0-9a-f]{64}$/i;
// Engage paranoia mode for input data.
if (!VALID_UID.test(uid)) {
throw new Error("uid must be a 32-character hex string");
}
if (kBbytes.length != 32) {
throw new Error("kBbytes must be exactly 32 bytes");
}
if (
typeof scopedKeyMetadata.identifier !== "string" ||
scopedKeyMetadata.identifier.length < 10
) {
throw new Error("identifier must be a string of length >= 10");
}
if (typeof scopedKeyMetadata.keyRotationTimestamp !== "number") {
throw new Error("keyRotationTimestamp must be a number");
}
if (!VALID_ROTATION_SECRET.test(scopedKeyMetadata.keyRotationSecret)) {
throw new Error("keyRotationSecret must be a 64-character hex string");
}
// The server returns milliseconds, we want seconds as a string.
const keyRotationTimestamp =
"" + Math.round(scopedKeyMetadata.keyRotationTimestamp / 1000);
if (keyRotationTimestamp.length < 10) {
throw new Error("keyRotationTimestamp must round to a 10-digit number");
}
const keyRotationSecret = CommonUtils.hexToArrayBuffer(
scopedKeyMetadata.keyRotationSecret
);
const salt = CommonUtils.hexToArrayBuffer(uid);
const context = new TextEncoder().encode(
"identity.mozilla.com/picl/v1/scoped_key\n" + scopedKeyMetadata.identifier
);
const inputKey = new Uint8Array(64);
inputKey.set(kBbytes, 0);
inputKey.set(keyRotationSecret, 32);
const derivedKeyMaterial = await CryptoUtils.hkdf(
inputKey,
salt,
context,
FINGERPRINT_LENGTH + KEY_LENGTH
);
const fingerprint = derivedKeyMaterial.slice(0, FINGERPRINT_LENGTH);
const key = derivedKeyMaterial.slice(
FINGERPRINT_LENGTH,
FINGERPRINT_LENGTH + KEY_LENGTH
);
return {
kid:
keyRotationTimestamp +
"-" +
ChromeUtils.base64URLEncode(fingerprint, {
pad: false,
}),
k: ChromeUtils.base64URLEncode(key, {
pad: false,
}),
kty: "oct",
};
}
/**
* Derive the scoped key for the one of our legacy sync-related scopes.
*
* These uses a different key-derivation algoritm that incorporates less server-provided
* data, for backwards-compatibility reasons.
*
*/
async _deriveLegacyScopedKey(uid, kBbytes, scope, scopedKeyMetadata) {
let kid, key;
if (scope == SCOPE_OLD_SYNC) {
kid = await this._deriveXClientState(kBbytes);
key = await this._deriveSyncKey(kBbytes);
} else {
throw new Error(`Unexpected legacy key-bearing scope: ${scope}`);
}
kid = CommonUtils.byteStringToArrayBuffer(kid);
key = CommonUtils.byteStringToArrayBuffer(key);
return this._formatLegacyScopedKey(kid, key, scope, scopedKeyMetadata);
}
/**
* Format key material for a legacy scyne-related scope as a JWK.
*
* @param {ArrayBuffer} kid bytes of the key hash to use in the key identifier
* @param {ArrayBuffer} key bytes of the derived sync key
* @param {String} scope the scope with which this key is associated
* @param {Number} keyRotationTimestamp server-provided timestamp of last key rotation
* @returns {Object} key material formatted as a JWK object
*/
_formatLegacyScopedKey(kid, key, scope, { keyRotationTimestamp }) {
kid = ChromeUtils.base64URLEncode(kid, {
pad: false,
});
key = ChromeUtils.base64URLEncode(key, {
pad: false,
});
return {
kid: `${keyRotationTimestamp}-${kid}`,
k: key,
kty: "oct",
};
}
/**
* Derive the Sync Key given the byte string kB.
*
* @returns Promise<HKDF(kB, undefined, "identity.mozilla.com/picl/v1/oldsync", 64)>
*/
async _deriveSyncKey(kBbytes) {
return CryptoUtils.hkdfLegacy(
kBbytes,
undefined,
"identity.mozilla.com/picl/v1/oldsync",
2 * 32
);
}
/**
* Derive the X-Client-State header given the byte string kB.
*
* @returns Promise<SHA256(kB)[:16]>
*/
async _deriveXClientState(kBbytes) {
return this._sha256(kBbytes).slice(0, 16);
}
_sha256(bytes) {
let hasher = Cc["@mozilla.org/security/hash;1"].createInstance(
Ci.nsICryptoHash
);
hasher.init(hasher.SHA256);
return CryptoUtils.digestBytes(bytes, hasher);
}
}