Source code

Revision control

Copy as Markdown

Other Tools

// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/win/src/win_utils.h"
#include <psapi.h>
#include <stddef.h>
#include <stdint.h>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "base/numerics/safe_math.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "base/win/pe_image.h"
#include "sandbox/win/src/internal_types.h"
#include "sandbox/win/src/nt_internals.h"
#include "sandbox/win/src/sandbox_nt_util.h"
namespace {
const size_t kDriveLetterLen = 3;
constexpr wchar_t kNTDotPrefix[] = L"\\\\.\\";
const size_t kNTDotPrefixLen = base::size(kNTDotPrefix) - 1;
// Holds the information about a known registry key.
struct KnownReservedKey {
const wchar_t* name;
HKEY key;
};
// Contains all the known registry key by name and by handle.
const KnownReservedKey kKnownKey[] = {
{L"HKEY_CLASSES_ROOT", HKEY_CLASSES_ROOT},
{L"HKEY_CURRENT_USER", HKEY_CURRENT_USER},
{L"HKEY_LOCAL_MACHINE", HKEY_LOCAL_MACHINE},
{L"HKEY_USERS", HKEY_USERS},
{L"HKEY_PERFORMANCE_DATA", HKEY_PERFORMANCE_DATA},
{L"HKEY_PERFORMANCE_TEXT", HKEY_PERFORMANCE_TEXT},
{L"HKEY_PERFORMANCE_NLSTEXT", HKEY_PERFORMANCE_NLSTEXT},
{L"HKEY_CURRENT_CONFIG", HKEY_CURRENT_CONFIG},
{L"HKEY_DYN_DATA", HKEY_DYN_DATA}};
// These functions perform case independent path comparisons.
bool EqualPath(const std::wstring& first, const std::wstring& second) {
return _wcsicmp(first.c_str(), second.c_str()) == 0;
}
bool EqualPath(const std::wstring& first,
size_t first_offset,
const std::wstring& second,
size_t second_offset) {
return _wcsicmp(first.c_str() + first_offset,
second.c_str() + second_offset) == 0;
}
bool EqualPath(const std::wstring& first,
const wchar_t* second,
size_t second_len) {
return _wcsnicmp(first.c_str(), second, second_len) == 0;
}
bool EqualPath(const std::wstring& first,
size_t first_offset,
const wchar_t* second,
size_t second_len) {
return _wcsnicmp(first.c_str() + first_offset, second, second_len) == 0;
}
// Returns true if |path| starts with "\??\" and returns a path without that
// component.
bool IsNTPath(const std::wstring& path, std::wstring* trimmed_path) {
if ((path.size() < sandbox::kNTPrefixLen) ||
!EqualPath(path, sandbox::kNTPrefix, sandbox::kNTPrefixLen)) {
*trimmed_path = path;
return false;
}
*trimmed_path = path.substr(sandbox::kNTPrefixLen);
return true;
}
// Returns true if |path| starts with "\Device\" and returns a path without that
// component.
bool IsDevicePath(const std::wstring& path, std::wstring* trimmed_path) {
if ((path.size() < sandbox::kNTDevicePrefixLen) ||
(!EqualPath(path, sandbox::kNTDevicePrefix,
sandbox::kNTDevicePrefixLen))) {
*trimmed_path = path;
return false;
}
*trimmed_path = path.substr(sandbox::kNTDevicePrefixLen);
return true;
}
// Returns the offset to the path seperator following
// "\Device\HarddiskVolumeX" in |path|.
size_t PassHarddiskVolume(const std::wstring& path) {
static constexpr wchar_t pattern[] = L"\\Device\\HarddiskVolume";
const size_t patternLen = base::size(pattern) - 1;
// First, check for |pattern|.
if ((path.size() < patternLen) || (!EqualPath(path, pattern, patternLen)))
return std::wstring::npos;
// Find the next path separator, after the pattern match.
return path.find_first_of(L'\\', patternLen - 1);
}
// Returns true if |path| starts with "\Device\HarddiskVolumeX\" and returns a
// path without that component. |removed| will hold the prefix removed.
bool IsDeviceHarddiskPath(const std::wstring& path,
std::wstring* trimmed_path,
std::wstring* removed) {
size_t offset = PassHarddiskVolume(path);
if (offset == std::wstring::npos)
return false;
// Remove up to and including the path separator.
*removed = path.substr(0, offset + 1);
// Remaining path starts after the path separator.
*trimmed_path = path.substr(offset + 1);
return true;
}
bool StartsWithDriveLetter(const std::wstring& path) {
if (path.size() < kDriveLetterLen)
return false;
if (path[1] != L':' || path[2] != L'\\')
return false;
return base::IsAsciiAlpha(path[0]);
}
// Removes "\\\\.\\" from the path.
void RemoveImpliedDevice(std::wstring* path) {
if (EqualPath(*path, kNTDotPrefix, kNTDotPrefixLen))
*path = path->substr(kNTDotPrefixLen);
}
} // namespace
namespace sandbox {
// Returns true if the provided path points to a pipe.
bool IsPipe(const std::wstring& path) {
size_t start = 0;
if (EqualPath(path, sandbox::kNTPrefix, sandbox::kNTPrefixLen))
start = sandbox::kNTPrefixLen;
const wchar_t kPipe[] = L"pipe\\";
if (path.size() < start + base::size(kPipe) - 1)
return false;
return EqualPath(path, start, kPipe, base::size(kPipe) - 1);
}
HKEY GetReservedKeyFromName(const std::wstring& name) {
for (size_t i = 0; i < base::size(kKnownKey); ++i) {
if (name == kKnownKey[i].name)
return kKnownKey[i].key;
}
return nullptr;
}
bool ResolveRegistryName(std::wstring name, std::wstring* resolved_name) {
for (size_t i = 0; i < base::size(kKnownKey); ++i) {
if (name.find(kKnownKey[i].name) == 0) {
HKEY key;
DWORD disposition;
if (ERROR_SUCCESS != ::RegCreateKeyEx(kKnownKey[i].key, L"", 0, nullptr,
0, MAXIMUM_ALLOWED, nullptr, &key,
&disposition))
return false;
bool result = GetPathFromHandle(key, resolved_name);
::RegCloseKey(key);
if (!result)
return false;
*resolved_name += name.substr(wcslen(kKnownKey[i].name));
return true;
}
}
return false;
}
// |full_path| can have any of the following forms:
// \??\c:\some\foo\bar
// \Device\HarddiskVolume0\some\foo\bar
// \??\HarddiskVolume0\some\foo\bar
// \??\UNC\SERVER\Share\some\foo\bar
DWORD IsReparsePoint(const std::wstring& full_path) {
// Check if it's a pipe. We can't query the attributes of a pipe.
if (IsPipe(full_path))
return ERROR_NOT_A_REPARSE_POINT;
std::wstring path;
bool nt_path = IsNTPath(full_path, &path);
bool has_drive = StartsWithDriveLetter(path);
bool is_device_path = IsDevicePath(path, &path);
if (!has_drive && !is_device_path && !nt_path)
return ERROR_INVALID_NAME;
if (!has_drive) {
// Add Win32 device namespace prefix, required for some Windows APIs.
path.insert(0, kNTDotPrefix);
}
// Ensure that volume path matches start of path.
wchar_t vol_path[MAX_PATH];
if (!::GetVolumePathNameW(path.c_str(), vol_path, MAX_PATH)) {
// This will fail if this is a device that isn't volume related, which can't
// then be a reparse point.
return is_device_path ? ERROR_NOT_A_REPARSE_POINT : ERROR_INVALID_NAME;
}
// vol_path includes a trailing slash, so reduce size for path and loop check.
size_t vol_path_len = wcslen(vol_path) - 1;
if (!EqualPath(path, vol_path, vol_path_len)) {
return ERROR_INVALID_NAME;
}
do {
DWORD attributes = ::GetFileAttributes(path.c_str());
if (INVALID_FILE_ATTRIBUTES == attributes) {
DWORD error = ::GetLastError();
if (error != ERROR_FILE_NOT_FOUND && error != ERROR_PATH_NOT_FOUND &&
error != ERROR_INVALID_FUNCTION &&
error != ERROR_INVALID_NAME) {
// Unexpected error.
return error;
}
} else if (FILE_ATTRIBUTE_REPARSE_POINT & attributes) {
// This is a reparse point.
return ERROR_SUCCESS;
}
path.resize(path.rfind(L'\\'));
} while (path.size() > vol_path_len); // Skip root dir.
return ERROR_NOT_A_REPARSE_POINT;
}
// We get a |full_path| of the forms accepted by IsReparsePoint(), and the name
// we'll get from |handle| will be \device\harddiskvolume1\some\foo\bar.
bool SameObject(HANDLE handle, const wchar_t* full_path) {
// Check if it's a pipe.
if (IsPipe(full_path))
return true;
std::wstring actual_path;
if (!GetPathFromHandle(handle, &actual_path))
return false;
std::wstring path(full_path);
DCHECK_NT(!path.empty());
// This may end with a backslash.
if (path.back() == L'\\') {
path.pop_back();
}
// Perfect match (case-insensitive check).
if (EqualPath(actual_path, path))
return true;
bool nt_path = IsNTPath(path, &path);
bool has_drive = StartsWithDriveLetter(path);
if (!has_drive && nt_path) {
std::wstring simple_actual_path;
if (IsDevicePath(path, &path)) {
if (IsDevicePath(actual_path, &simple_actual_path)) {
// Perfect match (case-insensitive check).
return (EqualPath(simple_actual_path, path));
} else {
return false;
}
} else {
// Add Win32 device namespace for GetVolumePathName.
path.insert(0, kNTDotPrefix);
}
}
// Get the volume path in the same format as actual_path.
wchar_t vol_path[MAX_PATH];
if (!::GetVolumePathName(path.c_str(), vol_path, MAX_PATH)) {
return false;
}
size_t vol_path_len = wcslen(vol_path);
base::string16 nt_vol;
if (!GetNtPathFromWin32Path(vol_path, &nt_vol)) {
return false;
}
// The two paths should be the same length.
if (nt_vol.size() + path.size() - vol_path_len != actual_path.size()) {
return false;
}
// Check the volume matches.
if (!EqualPath(actual_path, nt_vol.c_str(), nt_vol.size())) {
return false;
}
// Check the path after the volume matches.
if (!EqualPath(actual_path, nt_vol.size(), path, vol_path_len)) {
return false;
}
return true;
}
// Just make a best effort here. There are lots of corner cases that we're
// not expecting - and will fail to make long.
bool ConvertToLongPath(std::wstring* native_path,
const std::wstring* drive_letter) {
if (IsPipe(*native_path))
return true;
bool is_device_harddisk_path = false;
bool is_nt_path = false;
bool added_implied_device = false;
std::wstring temp_path;
std::wstring to_restore;
// Process a few prefix types.
if (IsNTPath(*native_path, &temp_path)) {
// "\??\"
if (!StartsWithDriveLetter(temp_path)) {
// Prepend with "\\.\".
temp_path = std::wstring(kNTDotPrefix) + temp_path;
added_implied_device = true;
}
is_nt_path = true;
} else if (IsDeviceHarddiskPath(*native_path, &temp_path, &to_restore)) {
// "\Device\HarddiskVolumeX\" - hacky attempt making ::GetLongPathName
// work for native device paths. Remove "\Device\HarddiskVolumeX\" and
// replace with drive letter.
// Nothing we can do if we don't have a drive letter. Leave |native_path|
// as is.
if (!drive_letter || drive_letter->empty())
return false;
temp_path = *drive_letter + temp_path;
is_device_harddisk_path = true;
} else if (IsDevicePath(*native_path, &temp_path)) {
// "\Device\" - there's nothing we can do to convert to long here.
return false;
}
DWORD size = MAX_PATH;
std::unique_ptr<wchar_t[]> long_path_buf(new wchar_t[size]);
DWORD return_value =
::GetLongPathName(temp_path.c_str(), long_path_buf.get(), size);
while (return_value >= size) {
size *= 2;
long_path_buf.reset(new wchar_t[size]);
return_value =
::GetLongPathName(temp_path.c_str(), long_path_buf.get(), size);
}
DWORD last_error = ::GetLastError();
if (0 == return_value && (ERROR_FILE_NOT_FOUND == last_error ||
ERROR_PATH_NOT_FOUND == last_error ||
ERROR_INVALID_NAME == last_error)) {
// The file does not exist, but maybe a sub path needs to be expanded.
std::wstring::size_type last_slash = temp_path.rfind(L'\\');
if (std::wstring::npos == last_slash)
return false;
std::wstring begin = temp_path.substr(0, last_slash);
std::wstring end = temp_path.substr(last_slash);
if (!ConvertToLongPath(&begin))
return false;
// Ok, it worked. Let's reset the return value.
temp_path = begin + end;
return_value = 1;
} else if (0 != return_value) {
temp_path = long_path_buf.get();
}
// If successful, re-apply original namespace prefix before returning.
if (return_value != 0) {
if (added_implied_device)
RemoveImpliedDevice(&temp_path);
if (is_nt_path) {
*native_path = kNTPrefix;
*native_path += temp_path;
} else if (is_device_harddisk_path) {
// Remove the added drive letter.
temp_path = temp_path.substr(kDriveLetterLen);
*native_path = to_restore;
*native_path += temp_path;
} else {
*native_path = temp_path;
}
return true;
}
return false;
}
bool GetPathFromHandle(HANDLE handle, std::wstring* path) {
NtQueryObjectFunction NtQueryObject = nullptr;
ResolveNTFunctionPtr("NtQueryObject", &NtQueryObject);
OBJECT_NAME_INFORMATION initial_buffer;
OBJECT_NAME_INFORMATION* name = &initial_buffer;
ULONG size = sizeof(initial_buffer);
// Query the name information a first time to get the size of the name.
// Windows XP requires that the size of the buffer passed in here be != 0.
NTSTATUS status =
NtQueryObject(handle, ObjectNameInformation, name, size, &size);
std::unique_ptr<BYTE[]> name_ptr;
if (size) {
name_ptr.reset(new BYTE[size]);
name = reinterpret_cast<OBJECT_NAME_INFORMATION*>(name_ptr.get());
// Query the name information a second time to get the name of the
// object referenced by the handle.
status = NtQueryObject(handle, ObjectNameInformation, name, size, &size);
}
if (STATUS_SUCCESS != status)
return false;
path->assign(name->ObjectName.Buffer,
name->ObjectName.Length / sizeof(name->ObjectName.Buffer[0]));
return true;
}
bool GetNtPathFromWin32Path(const std::wstring& path, std::wstring* nt_path) {
HANDLE file = ::CreateFileW(
path.c_str(), 0, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
nullptr, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, nullptr);
if (file == INVALID_HANDLE_VALUE)
return false;
bool rv = GetPathFromHandle(file, nt_path);
::CloseHandle(file);
return rv;
}
bool WriteProtectedChildMemory(HANDLE child_process,
void* address,
const void* buffer,
size_t length,
DWORD writeProtection) {
// First, remove the protections.
DWORD old_protection;
if (!::VirtualProtectEx(child_process, address, length, writeProtection,
&old_protection))
return false;
SIZE_T written;
bool ok =
::WriteProcessMemory(child_process, address, buffer, length, &written) &&
(length == written);
// Always attempt to restore the original protection.
if (!::VirtualProtectEx(child_process, address, length, old_protection,
&old_protection))
return false;
return ok;
}
bool CopyToChildMemory(HANDLE child,
const void* local_buffer,
size_t buffer_bytes,
void** remote_buffer) {
DCHECK(remote_buffer);
if (0 == buffer_bytes) {
*remote_buffer = nullptr;
return true;
}
// Allocate memory in the target process without specifying the address
void* remote_data = ::VirtualAllocEx(child, nullptr, buffer_bytes, MEM_COMMIT,
PAGE_READWRITE);
if (!remote_data)
return false;
SIZE_T bytes_written;
bool success = ::WriteProcessMemory(child, remote_data, local_buffer,
buffer_bytes, &bytes_written);
if (!success || bytes_written != buffer_bytes) {
::VirtualFreeEx(child, remote_data, 0, MEM_RELEASE);
return false;
}
*remote_buffer = remote_data;
return true;
}
DWORD GetLastErrorFromNtStatus(NTSTATUS status) {
RtlNtStatusToDosErrorFunction NtStatusToDosError = nullptr;
ResolveNTFunctionPtr("RtlNtStatusToDosError", &NtStatusToDosError);
return NtStatusToDosError(status);
}
// This function uses the undocumented PEB ImageBaseAddress field to extract
// the base address of the new process.
void* GetProcessBaseAddress(HANDLE process) {
NtQueryInformationProcessFunction query_information_process = nullptr;
ResolveNTFunctionPtr("NtQueryInformationProcess", &query_information_process);
if (!query_information_process)
return nullptr;
PROCESS_BASIC_INFORMATION process_basic_info = {};
NTSTATUS status = query_information_process(
process, ProcessBasicInformation, &process_basic_info,
sizeof(process_basic_info), nullptr);
if (STATUS_SUCCESS != status)
return nullptr;
PEB peb = {};
SIZE_T bytes_read = 0;
if (!::ReadProcessMemory(process, process_basic_info.PebBaseAddress, &peb,
sizeof(peb), &bytes_read) ||
(sizeof(peb) != bytes_read)) {
return nullptr;
}
void* base_address = peb.ImageBaseAddress;
char magic[2] = {};
if (!::ReadProcessMemory(process, base_address, magic, sizeof(magic),
&bytes_read) ||
(sizeof(magic) != bytes_read)) {
return nullptr;
}
if (magic[0] != 'M' || magic[1] != 'Z')
return nullptr;
#if defined(_M_ARM64)
// Windows 10 on ARM64 has multi-threaded DLL loading that does not work with
// the sandbox. (On x86 this gets disabled by hook detection code that was not
// ported to ARM64). This overwrites the LoaderThreads value in the process
// parameters part of the PEB, if it is set to the default of 0 (which
// actually means it defaults to 4 loading threads). This is an undocumented
// field so there is a, probably small, risk that it might change or move in
// the future. In order to slightly guard against that we only update if the
// value is currently 0.
auto processParameters = reinterpret_cast<uint8_t*>(peb.ProcessParameters);
const uint32_t loaderThreadsOffset = 0x40c;
uint32_t maxLoaderThreads = 0;
BOOL memoryRead = ::ReadProcessMemory(
process, processParameters + loaderThreadsOffset, &maxLoaderThreads,
sizeof(maxLoaderThreads), &bytes_read);
if (memoryRead && (sizeof(maxLoaderThreads) == bytes_read) &&
(maxLoaderThreads == 0)) {
maxLoaderThreads = 1;
WriteProtectedChildMemory(process, processParameters + loaderThreadsOffset,
&maxLoaderThreads, sizeof(maxLoaderThreads),
PAGE_READWRITE);
}
#endif
return base_address;
}
DWORD GetTokenInformation(HANDLE token,
TOKEN_INFORMATION_CLASS info_class,
std::unique_ptr<BYTE[]>* buffer) {
// Get the required buffer size.
DWORD size = 0;
::GetTokenInformation(token, info_class, nullptr, 0, &size);
if (!size) {
return ::GetLastError();
}
auto temp_buffer = std::make_unique<BYTE[]>(size);
if (!::GetTokenInformation(token, info_class, temp_buffer.get(), size,
&size)) {
return ::GetLastError();
}
*buffer = std::move(temp_buffer);
return ERROR_SUCCESS;
}
} // namespace sandbox
void ResolveNTFunctionPtr(const char* name, void* ptr) {
static volatile HMODULE ntdll = nullptr;
if (!ntdll) {
HMODULE ntdll_local = ::GetModuleHandle(sandbox::kNtdllName);
// Use PEImage to sanity-check that we have a valid ntdll handle.
base::win::PEImage ntdll_peimage(ntdll_local);
CHECK_NT(ntdll_peimage.VerifyMagic());
// Race-safe way to set static ntdll.
::InterlockedCompareExchangePointer(
reinterpret_cast<PVOID volatile*>(&ntdll), ntdll_local, nullptr);
}
CHECK_NT(ntdll);
FARPROC* function_ptr = reinterpret_cast<FARPROC*>(ptr);
*function_ptr = ::GetProcAddress(ntdll, name);
CHECK_NT(*function_ptr);
}