DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (004536f666bf)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This code is made available to you under your choice of the following sets
 * of licensing terms:
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */
/* Copyright 2013 Mozilla Contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mozpkix/pkixcheck.h"

#include "mozpkix/pkixder.h"
#include "mozpkix/pkixutil.h"

namespace mozilla { namespace pkix {

// 4.1.1.2 signatureAlgorithm
// 4.1.2.3 signature

Result
CheckSignatureAlgorithm(TrustDomain& trustDomain,
                        EndEntityOrCA endEntityOrCA,
                        Time notBefore,
                        const der::SignedDataWithSignature& signedData,
                        Input signatureValue)
{
  // 4.1.1.2. signatureAlgorithm
  der::PublicKeyAlgorithm publicKeyAlg;
  DigestAlgorithm digestAlg;
  Reader signatureAlgorithmReader(signedData.algorithm);
  Result rv = der::SignatureAlgorithmIdentifierValue(signatureAlgorithmReader,
                                                     publicKeyAlg, digestAlg);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(signatureAlgorithmReader);
  if (rv != Success) {
    return rv;
  }

  // 4.1.2.3. Signature
  der::PublicKeyAlgorithm signedPublicKeyAlg;
  DigestAlgorithm signedDigestAlg;
  Reader signedSignatureAlgorithmReader(signatureValue);
  rv = der::SignatureAlgorithmIdentifierValue(signedSignatureAlgorithmReader,
                                              signedPublicKeyAlg,
                                              signedDigestAlg);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(signedSignatureAlgorithmReader);
  if (rv != Success) {
    return rv;
  }

  // "This field MUST contain the same algorithm identifier as the
  // signatureAlgorithm field in the sequence Certificate." However, it may
  // be encoded differently. In particular, one of the fields may have a NULL
  // parameter while the other one may omit the parameter field altogether, and
  // these are considered equivalent. Some certificates generation software
  // actually generates certificates like that, so we compare the parsed values
  // instead of comparing the encoded values byte-for-byte.
  //
  // Along the same lines, we accept two different OIDs for RSA-with-SHA1, and
  // we consider those OIDs to be equivalent here.
  if (publicKeyAlg != signedPublicKeyAlg || digestAlg != signedDigestAlg) {
    return Result::ERROR_SIGNATURE_ALGORITHM_MISMATCH;
  }

  // During the time of the deprecation of SHA-1 and the deprecation of RSA
  // keys of less than 2048 bits, we will encounter many certs signed using
  // SHA-1 and/or too-small RSA keys. With this in mind, we ask the trust
  // domain early on if it knows it will reject the signature purely based on
  // the digest algorithm and/or the RSA key size (if an RSA signature). This
  // is a good optimization because it completely avoids calling
  // trustDomain.FindIssuers (which may be slow) for such rejected certs, and
  // more generally it short-circuits any path building with them (which, of
  // course, is even slower).

  rv = trustDomain.CheckSignatureDigestAlgorithm(digestAlg, endEntityOrCA,
                                                 notBefore);
  if (rv != Success) {
    return rv;
  }

  switch (publicKeyAlg) {
    case der::PublicKeyAlgorithm::RSA_PKCS1:
    {
      // The RSA computation may give a result that requires fewer bytes to
      // encode than the public key (since it is modular arithmetic). However,
      // the last step of generating a PKCS#1.5 signature is the I2OSP
      // procedure, which pads any such shorter result with zeros so that it
      // is exactly the same length as the public key.
      unsigned int signatureSizeInBits = signedData.signature.GetLength() * 8u;
      return trustDomain.CheckRSAPublicKeyModulusSizeInBits(
               endEntityOrCA, signatureSizeInBits);
    }

    case der::PublicKeyAlgorithm::ECDSA:
      // In theory, we could implement a similar early-pruning optimization for
      // ECDSA curves. However, since there has been no similar deprecation for
      // for any curve that we support, the chances of us encountering a curve
      // during path building is too low to be worth bothering with.
      break;
    case der::PublicKeyAlgorithm::Uninitialized:
    {
      assert(false);
      return Result::FATAL_ERROR_LIBRARY_FAILURE;
    }
    MOZILLA_PKIX_UNREACHABLE_DEFAULT_ENUM
  }

  return Success;
}

// 4.1.2.4 Issuer

Result
CheckIssuer(Input encodedIssuer)
{
  // "The issuer field MUST contain a non-empty distinguished name (DN)."
  Reader issuer(encodedIssuer);
  Input encodedRDNs;
  ExpectTagAndGetValue(issuer, der::SEQUENCE, encodedRDNs);
  Reader rdns(encodedRDNs);
  // Check that the issuer name contains at least one RDN
  // (Note: this does not check related grammar rules, such as there being one
  // or more AVAs in each RDN, or the values in AVAs not being empty strings)
  if (rdns.AtEnd()) {
    return Result::ERROR_EMPTY_ISSUER_NAME;
  }
  return Success;
}

// 4.1.2.5 Validity

Result
ParseValidity(Input encodedValidity,
              /*optional out*/ Time* notBeforeOut,
              /*optional out*/ Time* notAfterOut)
{
  Reader validity(encodedValidity);
  Time notBefore(Time::uninitialized);
  if (der::TimeChoice(validity, notBefore) != Success) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  Time notAfter(Time::uninitialized);
  if (der::TimeChoice(validity, notAfter) != Success) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  if (der::End(validity) != Success) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  if (notBefore > notAfter) {
    return Result::ERROR_INVALID_DER_TIME;
  }

  if (notBeforeOut) {
    *notBeforeOut = notBefore;
  }
  if (notAfterOut) {
    *notAfterOut = notAfter;
  }

  return Success;
}

Result
CheckValidity(Time time, Time notBefore, Time notAfter)
{
  if (time < notBefore) {
    return Result::ERROR_NOT_YET_VALID_CERTIFICATE;
  }

  if (time > notAfter) {
    return Result::ERROR_EXPIRED_CERTIFICATE;
  }

  return Success;
}

// 4.1.2.7 Subject Public Key Info

Result
CheckSubjectPublicKeyInfoContents(Reader& input, TrustDomain& trustDomain,
                                  EndEntityOrCA endEntityOrCA)
{
  // Here, we validate the syntax and do very basic semantic validation of the
  // public key of the certificate. The intention here is to filter out the
  // types of bad inputs that are most likely to trigger non-mathematical
  // security vulnerabilities in the TrustDomain, like buffer overflows or the
  // use of unsafe elliptic curves.
  //
  // We don't check (all of) the mathematical properties of the public key here
  // because it is more efficient for the TrustDomain to do it during signature
  // verification and/or other use of the public key. In particular, we
  // delegate the arithmetic validation of the public key, as specified in
  // NIST SP800-56A section 5.6.2, to the TrustDomain, at least for now.

  Reader algorithm;
  Input subjectPublicKey;
  Result rv = der::ExpectTagAndGetValue(input, der::SEQUENCE, algorithm);
  if (rv != Success) {
    return rv;
  }
  rv = der::BitStringWithNoUnusedBits(input, subjectPublicKey);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(input);
  if (rv != Success) {
    return rv;
  }

  Reader subjectPublicKeyReader(subjectPublicKey);

  Reader algorithmOID;
  rv = der::ExpectTagAndGetValue(algorithm, der::OIDTag, algorithmOID);
  if (rv != Success) {
    return rv;
  }

  // RFC 3279 Section 2.3.1
  // python DottedOIDToCode.py rsaEncryption 1.2.840.113549.1.1.1
  static const uint8_t rsaEncryption[] = {
    0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01
  };

  // RFC 3279 Section 2.3.5 and RFC 5480 Section 2.1.1
  // python DottedOIDToCode.py id-ecPublicKey 1.2.840.10045.2.1
  static const uint8_t id_ecPublicKey[] = {
    0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01
  };

  if (algorithmOID.MatchRest(id_ecPublicKey)) {
    // An id-ecPublicKey AlgorithmIdentifier has a parameter that identifes
    // the curve being used. Although RFC 5480 specifies multiple forms, we
    // only supported the NamedCurve form, where the curve is identified by an
    // OID.

    Reader namedCurveOIDValue;
    rv = der::ExpectTagAndGetValue(algorithm, der::OIDTag,
                                   namedCurveOIDValue);
    if (rv != Success) {
      return rv;
    }

    // RFC 5480
    // python DottedOIDToCode.py secp256r1 1.2.840.10045.3.1.7
    static const uint8_t secp256r1[] = {
      0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
    };

    // RFC 5480
    // python DottedOIDToCode.py secp384r1 1.3.132.0.34
    static const uint8_t secp384r1[] = {
      0x2b, 0x81, 0x04, 0x00, 0x22
    };

    // RFC 5480
    // python DottedOIDToCode.py secp521r1 1.3.132.0.35
    static const uint8_t secp521r1[] = {
      0x2b, 0x81, 0x04, 0x00, 0x23
    };

    // Matching is attempted based on a rough estimate of the commonality of the
    // elliptic curve, to minimize the number of MatchRest calls.
    NamedCurve curve;
    unsigned int bits;
    if (namedCurveOIDValue.MatchRest(secp256r1)) {
      curve = NamedCurve::secp256r1;
      bits = 256;
    } else if (namedCurveOIDValue.MatchRest(secp384r1)) {
      curve = NamedCurve::secp384r1;
      bits = 384;
    } else if (namedCurveOIDValue.MatchRest(secp521r1)) {
      curve = NamedCurve::secp521r1;
      bits = 521;
    } else {
      return Result::ERROR_UNSUPPORTED_ELLIPTIC_CURVE;
    }

    rv = trustDomain.CheckECDSACurveIsAcceptable(endEntityOrCA, curve);
    if (rv != Success) {
      return rv;
    }

    // RFC 5480 Section 2.2 says that the first octet will be 0x04 to indicate
    // an uncompressed point, which is the only encoding we support.
    uint8_t compressedOrUncompressed;
    rv = subjectPublicKeyReader.Read(compressedOrUncompressed);
    if (rv != Success) {
      return rv;
    }
    if (compressedOrUncompressed != 0x04) {
      return Result::ERROR_UNSUPPORTED_EC_POINT_FORM;
    }

    // The point is encoded as two raw (not DER-encoded) integers, each padded
    // to the bit length (rounded up to the nearest byte).
    Input point;
    rv = subjectPublicKeyReader.SkipToEnd(point);
    if (rv != Success) {
      return rv;
    }
    if (point.GetLength() != ((bits + 7) / 8u) * 2u) {
      return Result::ERROR_BAD_DER;
    }

    // XXX: We defer the mathematical verification of the validity of the point
    // until signature verification. This means that if we never verify a
    // signature, we'll never fully check whether the public key is valid.
  } else if (algorithmOID.MatchRest(rsaEncryption)) {
    // RFC 3279 Section 2.3.1 says "The parameters field MUST have ASN.1 type
    // NULL for this algorithm identifier."
    rv = der::ExpectTagAndEmptyValue(algorithm, der::NULLTag);
    if (rv != Success) {
      return rv;
    }

    // RSAPublicKey :: = SEQUENCE{
    //    modulus            INTEGER,    --n
    //    publicExponent     INTEGER  }  --e
    rv = der::Nested(subjectPublicKeyReader, der::SEQUENCE,
                     [&trustDomain, endEntityOrCA](Reader& r) {
      Input modulus;
      Input::size_type modulusSignificantBytes;
      Result nestedRv =
        der::PositiveInteger(r, modulus, &modulusSignificantBytes);
      if (nestedRv != Success) {
        return nestedRv;
      }
      // XXX: Should we do additional checks of the modulus?
      nestedRv = trustDomain.CheckRSAPublicKeyModulusSizeInBits(
        endEntityOrCA, modulusSignificantBytes * 8u);
      if (nestedRv != Success) {
        return nestedRv;
      }

      // XXX: We don't allow the TrustDomain to validate the exponent.
      // XXX: We don't do our own sanity checking of the exponent.
      Input exponent;
      return der::PositiveInteger(r, exponent);
    });
    if (rv != Success) {
      return rv;
    }
  } else {
    return Result::ERROR_UNSUPPORTED_KEYALG;
  }

  rv = der::End(algorithm);
  if (rv != Success) {
    return rv;
  }
  rv = der::End(subjectPublicKeyReader);
  if (rv != Success) {
    return rv;
  }

  return Success;
}

Result
CheckSubjectPublicKeyInfo(Input subjectPublicKeyInfo, TrustDomain& trustDomain,
                          EndEntityOrCA endEntityOrCA)
{
  Reader spkiReader(subjectPublicKeyInfo);
  Result rv = der::Nested(spkiReader, der::SEQUENCE, [&](Reader& r) {
    return CheckSubjectPublicKeyInfoContents(r, trustDomain, endEntityOrCA);
  });
  if (rv != Success) {
    return rv;
  }
  return der::End(spkiReader);
}

// 4.2.1.3. Key Usage (id-ce-keyUsage)

// As explained in the comment in CheckKeyUsage, bit 0 is the most significant
// bit and bit 7 is the least significant bit.
inline uint8_t KeyUsageToBitMask(KeyUsage keyUsage)
{
  assert(keyUsage != KeyUsage::noParticularKeyUsageRequired);
  return 0x80u >> static_cast<uint8_t>(keyUsage);
}

Result
CheckKeyUsage(EndEntityOrCA endEntityOrCA, const Input* encodedKeyUsage,
              KeyUsage requiredKeyUsageIfPresent)
{
  if (!encodedKeyUsage) {
    // TODO(bug 970196): Reject certificates that are being used to verify
    // certificate signatures unless the certificate is a trust anchor, to
    // reduce the chances of an end-entity certificate being abused as a CA
    // certificate.
    // if (endEntityOrCA == EndEntityOrCA::MustBeCA && !isTrustAnchor) {
    //   return Result::ERROR_INADEQUATE_KEY_USAGE;
    // }
    //
    // TODO: Users may configure arbitrary certificates as trust anchors, not
    // just roots. We should only allow a certificate without a key usage to be
    // used as a CA when it is self-issued and self-signed.
    return Success;
  }

  Reader input(*encodedKeyUsage);
  Reader value;
  if (der::ExpectTagAndGetValue(input, der::BIT_STRING, value) != Success) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  uint8_t numberOfPaddingBits;
  if (value.Read(numberOfPaddingBits) != Success) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }
  if (numberOfPaddingBits > 7) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  uint8_t bits;
  if (value.Read(bits) != Success) {
    // Reject empty bit masks.
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  // The most significant bit is numbered 0 (digitalSignature) and the least
  // significant bit is numbered 7 (encipherOnly), and the padding is in the
  // least significant bits of the last byte. The numbering of bits in a byte
  // is backwards from how we usually interpret them.
  //
  // For example, let's say bits is encoded in one byte with of value 0xB0 and
  // numberOfPaddingBits == 4. Then, bits is 10110000 in binary:
  //
  //      bit 0  bit 3
  //          |  |
  //          v  v
  //          10110000
  //              ^^^^
  //               |
  //               4 padding bits
  //
  // Since bits is the last byte, we have to consider the padding by ensuring
  // that the least significant 4 bits are all zero, since DER rules require
  // all padding bits to be zero. Then we have to look at the bit N bits to the
  // right of the most significant bit, where N is a value from the KeyUsage
  // enumeration.
  //
  // Let's say we're interested in the keyCertSign (5) bit. We'd need to look
  // at bit 5, which is zero, so keyCertSign is not asserted. (Since we check
  // that the padding is all zeros, it is OK to read from the padding bits.)
  //
  // Let's say we're interested in the digitalSignature (0) bit. We'd need to
  // look at the bit 0 (the most significant bit), which is set, so that means
  // digitalSignature is asserted. Similarly, keyEncipherment (2) and
  // dataEncipherment (3) are asserted.
  //
  // Note that since the KeyUsage enumeration is limited to values 0-7, we
  // only ever need to examine the first byte test for
  // requiredKeyUsageIfPresent.

  if (requiredKeyUsageIfPresent != KeyUsage::noParticularKeyUsageRequired) {
    // Check that the required key usage bit is set.
    if ((bits & KeyUsageToBitMask(requiredKeyUsageIfPresent)) == 0) {
      return Result::ERROR_INADEQUATE_KEY_USAGE;
    }
  }

  // RFC 5280 says "The keyCertSign bit is asserted when the subject public
  // key is used for verifying signatures on public key certificates. If the
  // keyCertSign bit is asserted, then the cA bit in the basic constraints
  // extension (Section 4.2.1.9) MUST also be asserted."
  // However, we allow end-entity certificates (i.e. certificates without
  // basicConstraints.cA set to TRUE) to claim keyCertSign for compatibility
  // reasons. This does not compromise security because we only allow
  // certificates with basicConstraints.cA set to TRUE to act as CAs.
  if (requiredKeyUsageIfPresent == KeyUsage::keyCertSign &&
      endEntityOrCA != EndEntityOrCA::MustBeCA) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  // The padding applies to the last byte, so skip to the last byte.
  while (!value.AtEnd()) {
    if (value.Read(bits) != Success) {
      return Result::ERROR_INADEQUATE_KEY_USAGE;
    }
  }

  // All of the padding bits must be zero, according to DER rules.
  uint8_t paddingMask = static_cast<uint8_t>((1 << numberOfPaddingBits) - 1);
  if ((bits & paddingMask) != 0) {
    return Result::ERROR_INADEQUATE_KEY_USAGE;
  }

  return Success;
}

// RFC5820 4.2.1.4. Certificate Policies

// "The user-initial-policy-set contains the special value any-policy if the
// user is not concerned about certificate policy."
//
// python DottedOIDToCode.py anyPolicy 2.5.29.32.0

static const uint8_t anyPolicy[] = {
  0x55, 0x1d, 0x20, 0x00
};

/*static*/ const CertPolicyId CertPolicyId::anyPolicy = {
  4, { 0x55, 0x1d, 0x20, 0x00 }
};

bool
CertPolicyId::IsAnyPolicy() const {
  if (this == &CertPolicyId::anyPolicy) {
    return true;
  }
  return numBytes == sizeof(::mozilla::pkix::anyPolicy) &&
         std::equal(bytes, bytes + numBytes, ::mozilla::pkix::anyPolicy);
}

bool
CertPolicyId::operator==(const CertPolicyId& other) const
{
  return numBytes == other.numBytes &&
         std::equal(bytes, bytes + numBytes, other.bytes);
}

// certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
Result
CheckCertificatePolicies(EndEntityOrCA endEntityOrCA,
                         const Input* encodedCertificatePolicies,
                         const Input* encodedInhibitAnyPolicy,
                         TrustLevel trustLevel,
                         const CertPolicyId& requiredPolicy)
{
  if (requiredPolicy.numBytes == 0 ||
      requiredPolicy.numBytes > sizeof requiredPolicy.bytes) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  bool requiredPolicyFound = requiredPolicy.IsAnyPolicy();
  if (requiredPolicyFound) {
    return Success;
  }

  // Bug 989051. Until we handle inhibitAnyPolicy we will fail close when
  // inhibitAnyPolicy extension is present and we are validating for a policy.
  if (!requiredPolicyFound && encodedInhibitAnyPolicy) {
    return Result::ERROR_POLICY_VALIDATION_FAILED;
  }

  // The root CA certificate may omit the policies that it has been
  // trusted for, so we cannot require the policies to be present in those
  // certificates. Instead, the determination of which roots are trusted for
  // which policies is made by the TrustDomain's GetCertTrust method.
  if (trustLevel == TrustLevel::TrustAnchor &&
      endEntityOrCA == EndEntityOrCA::MustBeCA) {
    requiredPolicyFound = true;
  }

  Input requiredPolicyDER;
  if (requiredPolicyDER.Init(requiredPolicy.bytes, requiredPolicy.numBytes)
        != Success) {
    return Result::FATAL_ERROR_INVALID_ARGS;
  }

  if (encodedCertificatePolicies) {
    Reader extension(*encodedCertificatePolicies);
    Reader certificatePolicies;
    Result rv = der::ExpectTagAndGetValue(extension, der::SEQUENCE,
                                          certificatePolicies);
    if (rv != Success) {
      return Result::ERROR_POLICY_VALIDATION_FAILED;
    }
    if (!extension.AtEnd()) {
      return Result::ERROR_POLICY_VALIDATION_FAILED;
    }

    do {
      // PolicyInformation ::= SEQUENCE {
      //         policyIdentifier   CertPolicyId,
      //         policyQualifiers   SEQUENCE SIZE (1..MAX) OF
      //                                 PolicyQualifierInfo OPTIONAL }
      Reader policyInformation;
      rv = der::ExpectTagAndGetValue(certificatePolicies, der::SEQUENCE,
                                     policyInformation);
      if (rv != Success) {
        return Result::ERROR_POLICY_VALIDATION_FAILED;
      }

      Reader policyIdentifier;
      rv = der::ExpectTagAndGetValue(policyInformation, der::OIDTag,
                                     policyIdentifier);
      if (rv != Success) {
        return rv;
      }

      if (policyIdentifier.MatchRest(requiredPolicyDER)) {
        requiredPolicyFound = true;
      } else if (endEntityOrCA == EndEntityOrCA::MustBeCA &&
                 policyIdentifier.MatchRest(anyPolicy)) {
        requiredPolicyFound = true;
      }

      // RFC 5280 Section 4.2.1.4 says "Optional qualifiers, which MAY be
      // present, are not expected to change the definition of the policy." Also,
      // it seems that Section 6, which defines validation, does not require any
      // matching of qualifiers. Thus, doing anything with the policy qualifiers
      // would be a waste of time and a source of potential incompatibilities, so
      // we just ignore them.
    } while (!requiredPolicyFound && !certificatePolicies.AtEnd());
  }

  if (!requiredPolicyFound) {
    return Result::ERROR_POLICY_VALIDATION_FAILED;
  }

  return Success;
}

static const long UNLIMITED_PATH_LEN = -1; // must be less than zero

//  BasicConstraints ::= SEQUENCE {
//          cA                      BOOLEAN DEFAULT FALSE,
//          pathLenConstraint       INTEGER (0..MAX) OPTIONAL }

// RFC5280 4.2.1.9. Basic Constraints (id-ce-basicConstraints)
Result
CheckBasicConstraints(EndEntityOrCA endEntityOrCA,
                      const Input* encodedBasicConstraints,
                      const der::Version version, TrustLevel trustLevel,
                      unsigned int subCACount)
{
  bool isCA = false;
  long pathLenConstraint = UNLIMITED_PATH_LEN;

  if (encodedBasicConstraints) {
    Reader input(*encodedBasicConstraints);
    Result rv = der::Nested(input, der::SEQUENCE,
                            [&isCA, &pathLenConstraint](Reader& r) {
      Result nestedRv = der::OptionalBoolean(r, isCA);
      if (nestedRv != Success) {
        return nestedRv;
      }
      // TODO(bug 985025): If isCA is false, pathLenConstraint
      // MUST NOT be included (as per RFC 5280 section
      // 4.2.1.9), but for compatibility reasons, we don't
      // check this.
      return der::OptionalInteger(r, UNLIMITED_PATH_LEN, pathLenConstraint);
    });
    if (rv != Success) {
      return Result::ERROR_EXTENSION_VALUE_INVALID;
    }
    if (der::End(input) != Success) {
      return Result::ERROR_EXTENSION_VALUE_INVALID;
    }
  } else {
    // "If the basic constraints extension is not present in a version 3
    //  certificate, or the extension is present but the cA boolean is not
    //  asserted, then the certified public key MUST NOT be used to verify
    //  certificate signatures."
    //
    // For compatibility, we must accept v1 trust anchors without basic
    // constraints as CAs.
    //
    // There are devices with v1 certificates that are unlikely to be trust
    // anchors. In order to allow applications to treat this case differently
    // from other basic constraints violations (e.g. allowing certificate error
    // overrides for only this case), we return a different error code.
    //
    // TODO: add check for self-signedness?
    if (endEntityOrCA == EndEntityOrCA::MustBeCA && version == der::Version::v1) {
      if (trustLevel == TrustLevel::TrustAnchor) {
        isCA = true;
      } else {
        return Result::ERROR_V1_CERT_USED_AS_CA;
      }
    }
  }

  if (endEntityOrCA == EndEntityOrCA::MustBeEndEntity) {
    // CA certificates are not trusted as EE certs.

    if (isCA) {
      // Note that this check prevents a delegated OCSP response signing
      // certificate with the CA bit from successfully validating when we check
      // it from pkixocsp.cpp, which is a good thing.
      return Result::ERROR_CA_CERT_USED_AS_END_ENTITY;
    }

    return Success;
  }

  assert(endEntityOrCA == EndEntityOrCA::MustBeCA);

  // End-entity certificates are not allowed to act as CA certs.
  if (!isCA) {
    return Result::ERROR_CA_CERT_INVALID;
  }

  if (pathLenConstraint >= 0 &&
      static_cast<long>(subCACount) > pathLenConstraint) {
    return Result::ERROR_PATH_LEN_CONSTRAINT_INVALID;
  }

  return Success;
}

// 4.2.1.12. Extended Key Usage (id-ce-extKeyUsage)

static Result
MatchEKU(Reader& value, KeyPurposeId requiredEKU,
         EndEntityOrCA endEntityOrCA, TrustDomain& trustDomain,
         Time notBefore, /*in/out*/ bool& found,
         /*in/out*/ bool& foundOCSPSigning)
{
  // See Section 5.9 of "A Layman's Guide to a Subset of ASN.1, BER, and DER"
  // for a description of ASN.1 DER encoding of OIDs.

  // id-pkix  OBJECT IDENTIFIER  ::=
  //            { iso(1) identified-organization(3) dod(6) internet(1)
  //                    security(5) mechanisms(5) pkix(7) }
  // id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
  // id-kp-serverAuth      OBJECT IDENTIFIER ::= { id-kp 1 }
  // id-kp-clientAuth      OBJECT IDENTIFIER ::= { id-kp 2 }
  // id-kp-codeSigning     OBJECT IDENTIFIER ::= { id-kp 3 }
  // id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
  // id-kp-OCSPSigning     OBJECT IDENTIFIER ::= { id-kp 9 }
  static const uint8_t server[] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 1 };
  static const uint8_t client[] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 2 };
  static const uint8_t code  [] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 3 };
  static const uint8_t email [] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 4 };
  static const uint8_t ocsp  [] = { (40*1)+3, 6, 1, 5, 5, 7, 3, 9 };

  // id-Netscape        OBJECT IDENTIFIER ::= { 2 16 840 1 113730 }
  // id-Netscape-policy OBJECT IDENTIFIER ::= { id-Netscape 4 }
  // id-Netscape-stepUp OBJECT IDENTIFIER ::= { id-Netscape-policy 1 }
  static const uint8_t serverStepUp[] =
    { (40*2)+16, 128+6,72, 1, 128+6,128+120,66, 4, 1 };

  bool match = false;

  if (!found) {
    switch (requiredEKU) {
      case KeyPurposeId::id_kp_serverAuth: {
        if (value.MatchRest(server)) {
          match = true;
          break;
        }
        // Potentially treat CA certs with step-up OID as also having SSL server
        // type. Comodo has issued certificates that require this behavior that
        // don't expire until June 2020!
        if (endEntityOrCA == EndEntityOrCA::MustBeCA &&
            value.MatchRest(serverStepUp)) {
          Result rv = trustDomain.NetscapeStepUpMatchesServerAuth(notBefore,
                                                                  match);
          if (rv != Success) {
            return rv;
          }
        }
        break;
      }

      case KeyPurposeId::id_kp_clientAuth:
        match = value.MatchRest(client);
        break;

      case KeyPurposeId::id_kp_codeSigning:
        match = value.MatchRest(code);
        break;

      case KeyPurposeId::id_kp_emailProtection:
        match = value.MatchRest(email);
        break;

      case KeyPurposeId::id_kp_OCSPSigning:
        match = value.MatchRest(ocsp);
        break;

      case KeyPurposeId::anyExtendedKeyUsage:
        return NotReached("anyExtendedKeyUsage should start with found==true",
                          Result::FATAL_ERROR_LIBRARY_FAILURE);
    }
  }

  if (match) {
    found = true;
    if (requiredEKU == KeyPurposeId::id_kp_OCSPSigning) {
      foundOCSPSigning = true;
    }
  } else if (value.MatchRest(ocsp)) {
    foundOCSPSigning = true;
  }

  value.SkipToEnd(); // ignore unmatched OIDs.

  return Success;
}

Result
CheckExtendedKeyUsage(EndEntityOrCA endEntityOrCA,
                      const Input* encodedExtendedKeyUsage,
                      KeyPurposeId requiredEKU, TrustDomain& trustDomain,
                      Time notBefore)
{
  // XXX: We're using Result::ERROR_INADEQUATE_CERT_TYPE here so that callers
  // can distinguish EKU mismatch from KU mismatch from basic constraints
  // mismatch. We should probably add a new error code that is more clear for
  // this type of problem.

  bool foundOCSPSigning = false;

  if (encodedExtendedKeyUsage) {
    bool found = requiredEKU == KeyPurposeId::anyExtendedKeyUsage;

    Reader input(*encodedExtendedKeyUsage);
    Result rv = der::NestedOf(input, der::SEQUENCE, der::OIDTag,
                              der::EmptyAllowed::No, [&](Reader& r) {
      return MatchEKU(r, requiredEKU, endEntityOrCA, trustDomain, notBefore,
                      found, foundOCSPSigning);
    });
    if (rv != Success) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
    if (der::End(input) != Success) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }

    // If the EKU extension was included, then the required EKU must be in the
    // list.
    if (!found) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
  }

  // pkixocsp.cpp depends on the following additional checks.

  if (endEntityOrCA == EndEntityOrCA::MustBeEndEntity) {
    // When validating anything other than an delegated OCSP signing cert,
    // reject any cert that also claims to be an OCSP responder, because such
    // a cert does not make sense. For example, if an SSL certificate were to
    // assert id-kp-OCSPSigning then it could sign OCSP responses for itself,
    // if not for this check.
    // That said, we accept CA certificates with id-kp-OCSPSigning because
    // some CAs in Mozilla's CA program have issued such intermediate
    // certificates, and because some CAs have reported some Microsoft server
    // software wrongly requires CA certificates to have id-kp-OCSPSigning.
    // Allowing this exception does not cause any security issues because we
    // require delegated OCSP response signing certificates to be end-entity
    // certificates.
    if (foundOCSPSigning && requiredEKU != KeyPurposeId::id_kp_OCSPSigning) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
    // http://tools.ietf.org/html/rfc6960#section-4.2.2.2:
    // "OCSP signing delegation SHALL be designated by the inclusion of
    // id-kp-OCSPSigning in an extended key usage certificate extension
    // included in the OCSP response signer's certificate."
    //
    // id-kp-OCSPSigning is the only EKU that isn't implicitly assumed when the
    // EKU extension is missing from an end-entity certificate. However, any CA
    // certificate can issue a delegated OCSP response signing certificate, so
    // we can't require the EKU be explicitly included for CA certificates.
    if (!foundOCSPSigning && requiredEKU == KeyPurposeId::id_kp_OCSPSigning) {
      return Result::ERROR_INADEQUATE_CERT_TYPE;
    }
  }

  return Success;
}

Result
CheckTLSFeatures(const BackCert& subject, BackCert& potentialIssuer)
{
  const Input* issuerTLSFeatures = potentialIssuer.GetRequiredTLSFeatures();
  if (!issuerTLSFeatures) {
    return Success;
  }

  const Input* subjectTLSFeatures = subject.GetRequiredTLSFeatures();
  if (issuerTLSFeatures->GetLength() == 0 ||
      !subjectTLSFeatures ||
      !InputsAreEqual(*issuerTLSFeatures, *subjectTLSFeatures)) {
    return Result::ERROR_REQUIRED_TLS_FEATURE_MISSING;
  }

  return Success;
}

Result
TLSFeaturesSatisfiedInternal(const Input* requiredTLSFeatures,
                             const Input* stapledOCSPResponse)
{
  if (!requiredTLSFeatures) {
    return Success;
  }

  // RFC 6066 10.2: ExtensionType status_request
  const static uint8_t status_request = 5;
  const static uint8_t status_request_bytes[] = { status_request };

  Reader input(*requiredTLSFeatures);
  return der::NestedOf(input, der::SEQUENCE, der::INTEGER,
                       der::EmptyAllowed::No, [&](Reader& r) {
    if (!r.MatchRest(status_request_bytes)) {
      return Result::ERROR_REQUIRED_TLS_FEATURE_MISSING;
    }

    if (!stapledOCSPResponse) {
      return Result::ERROR_REQUIRED_TLS_FEATURE_MISSING;
    }

    return Result::Success;
  });
}

Result
CheckTLSFeaturesAreSatisfied(Input& cert,
                             const Input* stapledOCSPResponse)
{
  BackCert backCert(cert, EndEntityOrCA::MustBeEndEntity, nullptr);
  Result rv = backCert.Init();
  if (rv != Success) {
    return rv;
  }

  return TLSFeaturesSatisfiedInternal(backCert.GetRequiredTLSFeatures(),
                                      stapledOCSPResponse);
}

Result
CheckIssuerIndependentProperties(TrustDomain& trustDomain,
                                 const BackCert& cert,
                                 Time time,
                                 KeyUsage requiredKeyUsageIfPresent,
                                 KeyPurposeId requiredEKUIfPresent,
                                 const CertPolicyId& requiredPolicy,
                                 unsigned int subCACount,
                                 /*out*/ TrustLevel& trustLevel)
{
  Result rv;

  const EndEntityOrCA endEntityOrCA = cert.endEntityOrCA;

  // Check the cert's trust first, because we want to minimize the amount of
  // processing we do on a distrusted cert, in case it is trying to exploit
  // some bug in our processing.
  rv = trustDomain.GetCertTrust(endEntityOrCA, requiredPolicy, cert.GetDER(),
                                trustLevel);
  if (rv != Success) {
    return rv;
  }

  // IMPORTANT: We parse the validity interval here, so that we can use the
  // notBefore and notAfter values in checks for things that might be deprecated
  // over time. However, we must not fail for semantic errors until the end of
  // this method, in order to preserve error ranking.
  Time notBefore(Time::uninitialized);
  Time notAfter(Time::uninitialized);
  rv = ParseValidity(cert.GetValidity(), &notBefore, &notAfter);
  if (rv != Success) {
    return rv;
  }

  if (trustLevel == TrustLevel::TrustAnchor &&
      endEntityOrCA == EndEntityOrCA::MustBeEndEntity &&
      requiredEKUIfPresent == KeyPurposeId::id_kp_OCSPSigning) {
    // OCSP signer certificates can never be trust anchors, especially
    // since we don't support designated OCSP responders. All of the checks
    // below that are dependent on trustLevel rely on this overriding of the
    // trust level for OCSP signers.
    trustLevel = TrustLevel::InheritsTrust;
  }

  switch (trustLevel) {
    case TrustLevel::InheritsTrust:
      rv = CheckSignatureAlgorithm(trustDomain, endEntityOrCA, notBefore,
                                   cert.GetSignedData(), cert.GetSignature());
      if (rv != Success) {
        return rv;
      }
      break;

    case TrustLevel::TrustAnchor:
      // We don't even bother checking signatureAlgorithm or signature for
      // syntactic validity for trust anchors, because we don't use those
      // fields for anything, and because the trust anchor might be signed
      // with a signature algorithm we don't actually support.
      break;

    case TrustLevel::ActivelyDistrusted:
      return Result::ERROR_UNTRUSTED_CERT;
  }

  // Check the SPKI early, because it is one of the most selective properties
  // of the certificate due to SHA-1 deprecation and the deprecation of
  // certificates with keys weaker than RSA 2048.
  rv = CheckSubjectPublicKeyInfo(cert.GetSubjectPublicKeyInfo(), trustDomain,
                                 endEntityOrCA);
  if (rv != Success) {
    return rv;
  }

  // 4.1.2.4. Issuer
  rv = CheckIssuer(cert.GetIssuer());
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.1. Authority Key Identifier is ignored (see bug 965136).

  // 4.2.1.2. Subject Key Identifier is ignored (see bug 965136).

  // 4.2.1.3. Key Usage
  rv = CheckKeyUsage(endEntityOrCA, cert.GetKeyUsage(),
                     requiredKeyUsageIfPresent);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.4. Certificate Policies
  rv = CheckCertificatePolicies(endEntityOrCA, cert.GetCertificatePolicies(),
                                cert.GetInhibitAnyPolicy(), trustLevel,
                                requiredPolicy);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.5. Policy Mappings are not supported; see the documentation about
  //          policy enforcement in pkix.h.

  // 4.2.1.6. Subject Alternative Name dealt with during name constraint
  //          checking and during name verification (CERT_VerifyCertName).

  // 4.2.1.7. Issuer Alternative Name is not something that needs checking.

  // 4.2.1.8. Subject Directory Attributes is not something that needs
  //          checking.

  // 4.2.1.9. Basic Constraints.
  rv = CheckBasicConstraints(endEntityOrCA, cert.GetBasicConstraints(),
                             cert.GetVersion(), trustLevel, subCACount);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.10. Name Constraints is dealt with in during path building.

  // 4.2.1.11. Policy Constraints are implicitly supported; see the
  //           documentation about policy enforcement in pkix.h.

  // 4.2.1.12. Extended Key Usage
  rv = CheckExtendedKeyUsage(endEntityOrCA, cert.GetExtKeyUsage(),
                             requiredEKUIfPresent, trustDomain, notBefore);
  if (rv != Success) {
    return rv;
  }

  // 4.2.1.13. CRL Distribution Points is not supported, though the
  //           TrustDomain's CheckRevocation method may parse it and process it
  //           on its own.

  // 4.2.1.14. Inhibit anyPolicy is implicitly supported; see the documentation
  //           about policy enforcement in pkix.h.

  // IMPORTANT: Even though we parse validity above, we wait until this point to
  // check it, so that error ranking works correctly.
  rv = CheckValidity(time, notBefore, notAfter);
  if (rv != Success) {
    return rv;
  }

  rv = trustDomain.CheckValidityIsAcceptable(notBefore, notAfter, endEntityOrCA,
                                             requiredEKUIfPresent);
  if (rv != Success) {
    return rv;
  }

  return Success;
}

} } // namespace mozilla::pkix