Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Diffie-Hellman parameter generation, key generation, and secret derivation.
* KEA secret generation and verification.
*/
#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif
#include "prerr.h"
#include "secerr.h"
#include "blapi.h"
#include "blapii.h"
#include "secitem.h"
#include "mpi.h"
#include "secmpi.h"
#define KEA_DERIVED_SECRET_LEN 128
/* Lengths are in bytes. */
static unsigned int
dh_GetSecretKeyLen(unsigned int primeLen)
{
/* Based on Table 2 in NIST SP 800-57. */
if (primeLen >= 1920) { /* 15360 bits */
return 64; /* 512 bits */
}
if (primeLen >= 960) { /* 7680 bits */
return 48; /* 384 bits */
}
if (primeLen >= 384) { /* 3072 bits */
return 32; /* 256 bits */
}
if (primeLen >= 256) { /* 2048 bits */
return 28; /* 224 bits */
}
return 20; /* 160 bits */
}
SECStatus
DH_GenParam(int primeLen, DHParams **params)
{
PLArenaPool *arena;
DHParams *dhparams;
unsigned char *ab = NULL;
mp_int p, q, a, h, psub1, test;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
if (!params || primeLen < 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
if (!arena) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
dhparams = (DHParams *)PORT_ArenaZAlloc(arena, sizeof(DHParams));
if (!dhparams) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
PORT_FreeArena(arena, PR_TRUE);
return SECFailure;
}
dhparams->arena = arena;
MP_DIGITS(&p) = 0;
MP_DIGITS(&q) = 0;
MP_DIGITS(&a) = 0;
MP_DIGITS(&h) = 0;
MP_DIGITS(&psub1) = 0;
MP_DIGITS(&test) = 0;
CHECK_MPI_OK(mp_init(&p));
CHECK_MPI_OK(mp_init(&q));
CHECK_MPI_OK(mp_init(&a));
CHECK_MPI_OK(mp_init(&h));
CHECK_MPI_OK(mp_init(&psub1));
CHECK_MPI_OK(mp_init(&test));
/* generate prime with MPI, uses Miller-Rabin to generate safe prime. */
CHECK_SEC_OK(generate_prime(&p, primeLen));
/* construct Sophie-Germain prime q = (p-1)/2. */
CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1));
CHECK_MPI_OK(mp_div_2(&psub1, &q));
/* construct a generator from the prime. */
ab = PORT_Alloc(primeLen);
if (!ab) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
rv = SECFailure;
goto cleanup;
}
/* generate a candidate number a in p's field */
CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(ab, primeLen));
CHECK_MPI_OK(mp_read_unsigned_octets(&a, ab, primeLen));
/* force a < p (note that quot(a/p) <= 1) */
if (mp_cmp(&a, &p) > 0)
CHECK_MPI_OK(mp_sub(&a, &p, &a));
do {
/* check that a is in the range [2..p-1] */
if (mp_cmp_d(&a, 2) < 0 || mp_cmp(&a, &psub1) >= 0) {
/* a is outside of the allowed range. Set a=3 and keep going. */
mp_set(&a, 3);
}
/* if a**q mod p != 1 then a is a generator */
CHECK_MPI_OK(mp_exptmod(&a, &q, &p, &test));
if (mp_cmp_d(&test, 1) != 0)
break;
/* increment the candidate and try again. */
CHECK_MPI_OK(mp_add_d(&a, 1, &a));
} while (PR_TRUE);
MPINT_TO_SECITEM(&p, &dhparams->prime, arena);
MPINT_TO_SECITEM(&a, &dhparams->base, arena);
*params = dhparams;
cleanup:
mp_clear(&p);
mp_clear(&q);
mp_clear(&a);
mp_clear(&h);
mp_clear(&psub1);
mp_clear(&test);
if (ab) {
PORT_ZFree(ab, primeLen);
}
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
if (rv != SECSuccess) {
PORT_FreeArena(arena, PR_TRUE);
}
return rv;
}
SECStatus
DH_NewKey(DHParams *params, DHPrivateKey **privKey)
{
PLArenaPool *arena;
DHPrivateKey *key;
mp_int g, xa, p, Ya;
mp_err err = MP_OKAY;
SECStatus rv = SECSuccess;
if (!params || !privKey) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
if (!arena) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
key = (DHPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DHPrivateKey));
if (!key) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
PORT_FreeArena(arena, PR_TRUE);
return SECFailure;
}
key->arena = arena;
MP_DIGITS(&g) = 0;
MP_DIGITS(&xa) = 0;
MP_DIGITS(&p) = 0;
MP_DIGITS(&Ya) = 0;
CHECK_MPI_OK(mp_init(&g));
CHECK_MPI_OK(mp_init(&xa));
CHECK_MPI_OK(mp_init(&p));
CHECK_MPI_OK(mp_init(&Ya));
/* Set private key's p */
CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->prime, &params->prime));
SECITEM_TO_MPINT(key->prime, &p);
/* Set private key's g */
CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->base, &params->base));
SECITEM_TO_MPINT(key->base, &g);
/* Generate private key xa */
SECITEM_AllocItem(arena, &key->privateValue,
dh_GetSecretKeyLen(params->prime.len));
CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(key->privateValue.data,
key->privateValue.len));
SECITEM_TO_MPINT(key->privateValue, &xa);
/* xa < p */
CHECK_MPI_OK(mp_mod(&xa, &p, &xa));
/* Compute public key Ya = g ** xa mod p */
CHECK_MPI_OK(mp_exptmod(&g, &xa, &p, &Ya));
MPINT_TO_SECITEM(&Ya, &key->publicValue, key->arena);
*privKey = key;
cleanup:
mp_clear(&g);
mp_clear(&xa);
mp_clear(&p);
mp_clear(&Ya);
if (err) {
MP_TO_SEC_ERROR(err);
rv = SECFailure;
}
if (rv) {
*privKey = NULL;
PORT_FreeArena(arena, PR_TRUE);
}
return rv;
}
SECStatus
DH_Derive(SECItem *publicValue,
SECItem *prime,
SECItem *privateValue,
SECItem *derivedSecret,
unsigned int outBytes)
{
mp_int p, Xa, Yb, ZZ, psub1;
mp_err err = MP_OKAY;
unsigned int len = 0;
unsigned int nb;
unsigned char *secret = NULL;
if (!publicValue || !publicValue->len || !prime || !prime->len ||
!privateValue || !privateValue->len || !derivedSecret) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
memset(derivedSecret, 0, sizeof *derivedSecret);
MP_DIGITS(&p) = 0;
MP_DIGITS(&Xa) = 0;
MP_DIGITS(&Yb) = 0;
MP_DIGITS(&ZZ) = 0;
MP_DIGITS(&psub1) = 0;
CHECK_MPI_OK(mp_init(&p));
CHECK_MPI_OK(mp_init(&Xa));
CHECK_MPI_OK(mp_init(&Yb));
CHECK_MPI_OK(mp_init(&ZZ));
CHECK_MPI_OK(mp_init(&psub1));
SECITEM_TO_MPINT(*publicValue, &Yb);
SECITEM_TO_MPINT(*privateValue, &Xa);
SECITEM_TO_MPINT(*prime, &p);
CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1));
/* We assume that the modulus, p, is a safe prime. That is, p = 2q+1 where
* q is also a prime. Thus the orders of the subgroups are factors of 2q:
* namely 1, 2, q and 2q.
*
* We check that the peer's public value isn't zero (which isn't in the
* group), one (subgroup of order one) or p-1 (subgroup of order 2). We
* also check that the public value is less than p, to avoid being fooled
* by values like p+1 or 2*p-1.
*
* Thus we must be operating in the subgroup of size q or 2q. */
if (mp_cmp_d(&Yb, 1) <= 0 ||
mp_cmp(&Yb, &psub1) >= 0) {
err = MP_BADARG;
goto cleanup;
}
/* ZZ = (Yb)**Xa mod p */
CHECK_MPI_OK(mp_exptmod(&Yb, &Xa, &p, &ZZ));
/* number of bytes in the derived secret */
len = mp_unsigned_octet_size(&ZZ);
if (len <= 0) {
err = MP_BADARG;
goto cleanup;
}
/*
* We check to make sure that ZZ is not equal to 0, 1 or -1 mod p.
* This helps guard against small subgroup attacks, since an attacker
* using a subgroup of size N will produce 0, 1 or -1 with probability 1/N.
* When the protocol is executed within a properly large subgroup, the
* probability of this result will be negligibly small. For example,
* with a safe prime of the form 2q+1, the probability will be 1/q.
*
* We return MP_BADARG because this is probably the result of a bad
* public value or a bad prime having been provided.
*/
if (mp_cmp_d(&ZZ, 0) == 0 || mp_cmp_d(&ZZ, 1) == 0 ||
mp_cmp(&ZZ, &psub1) == 0) {
err = MP_BADARG;
goto cleanup;
}
/* allocate a buffer which can hold the entire derived secret. */
secret = PORT_Alloc(len);
if (secret == NULL) {
err = MP_MEM;
goto cleanup;
}
/* grab the derived secret */
err = mp_to_unsigned_octets(&ZZ, secret, len);
if (err >= 0)
err = MP_OKAY;
/*
** if outBytes is 0 take all of the bytes from the derived secret.
** if outBytes is not 0 take exactly outBytes from the derived secret, zero
** pad at the beginning if necessary, and truncate beginning bytes
** if necessary.
*/
if (outBytes > 0)
nb = outBytes;
else
nb = len;
if (SECITEM_AllocItem(NULL, derivedSecret, nb) == NULL) {
err = MP_MEM;
goto cleanup;
}
if (len < nb) {
unsigned int offset = nb - len;
memset(derivedSecret->data, 0, offset);
memcpy(derivedSecret->data + offset, secret, len);
} else {
memcpy(derivedSecret->data, secret + len - nb, nb);
}
cleanup:
mp_clear(&p);
mp_clear(&Xa);
mp_clear(&Yb);
mp_clear(&ZZ);
mp_clear(&psub1);
if (secret) {
/* free the buffer allocated for the full secret. */
PORT_ZFree(secret, len);
}
if (err) {
MP_TO_SEC_ERROR(err);
if (derivedSecret->data)
PORT_ZFree(derivedSecret->data, derivedSecret->len);
return SECFailure;
}
return SECSuccess;
}
SECStatus
KEA_Derive(SECItem *prime,
SECItem *public1,
SECItem *public2,
SECItem *private1,
SECItem *private2,
SECItem *derivedSecret)
{
mp_int p, Y, R, r, x, t, u, w;
mp_err err;
unsigned char *secret = NULL;
unsigned int len = 0, offset;
if (!prime || !public1 || !public2 || !private1 || !private2 ||
!derivedSecret) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
memset(derivedSecret, 0, sizeof *derivedSecret);
MP_DIGITS(&p) = 0;
MP_DIGITS(&Y) = 0;
MP_DIGITS(&R) = 0;
MP_DIGITS(&r) = 0;
MP_DIGITS(&x) = 0;
MP_DIGITS(&t) = 0;
MP_DIGITS(&u) = 0;
MP_DIGITS(&w) = 0;
CHECK_MPI_OK(mp_init(&p));
CHECK_MPI_OK(mp_init(&Y));
CHECK_MPI_OK(mp_init(&R));
CHECK_MPI_OK(mp_init(&r));
CHECK_MPI_OK(mp_init(&x));
CHECK_MPI_OK(mp_init(&t));
CHECK_MPI_OK(mp_init(&u));
CHECK_MPI_OK(mp_init(&w));
SECITEM_TO_MPINT(*prime, &p);
SECITEM_TO_MPINT(*public1, &Y);
SECITEM_TO_MPINT(*public2, &R);
SECITEM_TO_MPINT(*private1, &r);
SECITEM_TO_MPINT(*private2, &x);
/* t = DH(Y, r, p) = Y ** r mod p */
CHECK_MPI_OK(mp_exptmod(&Y, &r, &p, &t));
/* u = DH(R, x, p) = R ** x mod p */
CHECK_MPI_OK(mp_exptmod(&R, &x, &p, &u));
/* w = (t + u) mod p */
CHECK_MPI_OK(mp_addmod(&t, &u, &p, &w));
/* allocate a buffer for the full derived secret */
len = mp_unsigned_octet_size(&w);
secret = PORT_Alloc(len);
if (secret == NULL) {
err = MP_MEM;
goto cleanup;
}
/* grab the secret */
err = mp_to_unsigned_octets(&w, secret, len);
if (err > 0)
err = MP_OKAY;
/* allocate output buffer */
if (SECITEM_AllocItem(NULL, derivedSecret, KEA_DERIVED_SECRET_LEN) == NULL) {
err = MP_MEM;
goto cleanup;
}
memset(derivedSecret->data, 0, derivedSecret->len);
/* copy in the 128 lsb of the secret */
if (len >= KEA_DERIVED_SECRET_LEN) {
memcpy(derivedSecret->data, secret + (len - KEA_DERIVED_SECRET_LEN),
KEA_DERIVED_SECRET_LEN);
} else {
offset = KEA_DERIVED_SECRET_LEN - len;
memcpy(derivedSecret->data + offset, secret, len);
}
cleanup:
mp_clear(&p);
mp_clear(&Y);
mp_clear(&R);
mp_clear(&r);
mp_clear(&x);
mp_clear(&t);
mp_clear(&u);
mp_clear(&w);
if (secret)
PORT_ZFree(secret, len);
if (err) {
MP_TO_SEC_ERROR(err);
if (derivedSecret->data)
PORT_ZFree(derivedSecret->data, derivedSecret->len);
return SECFailure;
}
return SECSuccess;
}
/* Test counts based on the fact the prime and subprime
* were given to us */
static int
dh_prime_testcount(int prime_length)
{
if (prime_length < 1024) {
return 50;
} else if (prime_length < 2048) {
return 40;
} else if (prime_length < 3072) {
return 56;
}
return 64;
}
PRBool
KEA_PrimeCheck(SECItem *prime)
{
mp_int p;
mp_err err = 0;
MP_DIGITS(&p) = 0;
CHECK_MPI_OK(mp_init(&p));
SECITEM_TO_MPINT(*prime, &p);
CHECK_MPI_OK(mpp_pprime_secure(&p, dh_prime_testcount(prime->len)));
cleanup:
mp_clear(&p);
return err ? PR_FALSE : PR_TRUE;
}
PRBool
KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime)
{
mp_int p, q, y, r;
mp_err err;
int cmp = 1; /* default is false */
if (!Y || !prime || !subPrime) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
MP_DIGITS(&p) = 0;
MP_DIGITS(&q) = 0;
MP_DIGITS(&y) = 0;
MP_DIGITS(&r) = 0;
CHECK_MPI_OK(mp_init(&p));
CHECK_MPI_OK(mp_init(&q));
CHECK_MPI_OK(mp_init(&y));
CHECK_MPI_OK(mp_init(&r));
SECITEM_TO_MPINT(*prime, &p);
SECITEM_TO_MPINT(*subPrime, &q);
SECITEM_TO_MPINT(*Y, &y);
/* compute r = y**q mod p */
CHECK_MPI_OK(mp_exptmod(&y, &q, &p, &r));
/* compare to 1 */
cmp = mp_cmp_d(&r, 1);
cleanup:
mp_clear(&p);
mp_clear(&q);
mp_clear(&y);
mp_clear(&r);
if (err) {
MP_TO_SEC_ERROR(err);
return PR_FALSE;
}
return (cmp == 0) ? PR_TRUE : PR_FALSE;
}