DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (84a232cf4f5f)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
 * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved.
 * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * a) Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * b) Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *   the documentation and/or other materials provided with the distribution.
 *
 * c) Neither the name of Cisco Systems, Inc. nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */
#ifndef __sctp_process_lock_h__
#define __sctp_process_lock_h__

/*
 * Need to yet define five atomic fuctions or
 * their equivalant.
 * - atomic_add_int(&foo, val) - add atomically the value
 * - atomic_fetchadd_int(&foo, val) - does same as atomic_add_int
 *				      but value it was is returned.
 * - atomic_subtract_int(&foo, val) - can be made from atomic_add_int()
 *
 * - atomic_cmpset_int(&foo, value, newvalue) - Does a set of newvalue
 *					        in foo if and only if
 *					        foo is value. Returns 0
 *					        on success.
 */

#ifdef SCTP_PER_SOCKET_LOCKING
/*
 * per socket level locking
 */

#if defined(__Userspace_os_Windows)
/* Lock for INFO stuff */
#define SCTP_INP_INFO_LOCK_INIT()
#define SCTP_INP_INFO_RLOCK()
#define SCTP_INP_INFO_RUNLOCK()
#define SCTP_INP_INFO_WLOCK()
#define SCTP_INP_INFO_WUNLOCK()
#define SCTP_INP_INFO_LOCK_DESTROY()
#define SCTP_IPI_COUNT_INIT()
#define SCTP_IPI_COUNT_DESTROY()
#else
#define SCTP_INP_INFO_LOCK_INIT()
#define SCTP_INP_INFO_RLOCK()
#define SCTP_INP_INFO_RUNLOCK()
#define SCTP_INP_INFO_WLOCK()
#define SCTP_INP_INFO_WUNLOCK()
#define SCTP_INP_INFO_LOCK_DESTROY()
#define SCTP_IPI_COUNT_INIT()
#define SCTP_IPI_COUNT_DESTROY()
#endif

#define SCTP_TCB_SEND_LOCK_INIT(_tcb)
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb)
#define SCTP_TCB_SEND_LOCK(_tcb)
#define SCTP_TCB_SEND_UNLOCK(_tcb)

/* Lock for INP */
#define SCTP_INP_LOCK_INIT(_inp)
#define SCTP_INP_LOCK_DESTROY(_inp)

#define SCTP_INP_RLOCK(_inp)
#define SCTP_INP_RUNLOCK(_inp)
#define SCTP_INP_WLOCK(_inp)
#define SCTP_INP_WUNLOCK(_inep)
#define SCTP_INP_INCR_REF(_inp)
#define SCTP_INP_DECR_REF(_inp)

#define SCTP_ASOC_CREATE_LOCK_INIT(_inp)
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp)
#define SCTP_ASOC_CREATE_LOCK(_inp)
#define SCTP_ASOC_CREATE_UNLOCK(_inp)

#define SCTP_INP_READ_INIT(_inp)
#define SCTP_INP_READ_DESTROY(_inp)
#define SCTP_INP_READ_LOCK(_inp)
#define SCTP_INP_READ_UNLOCK(_inp)

/* Lock for TCB */
#define SCTP_TCB_LOCK_INIT(_tcb)
#define SCTP_TCB_LOCK_DESTROY(_tcb)
#define SCTP_TCB_LOCK(_tcb)
#define SCTP_TCB_TRYLOCK(_tcb) 1
#define SCTP_TCB_UNLOCK(_tcb)
#define SCTP_TCB_UNLOCK_IFOWNED(_tcb)
#define SCTP_TCB_LOCK_ASSERT(_tcb)

#else
/*
 * per tcb level locking
 */
#define SCTP_IPI_COUNT_INIT()

#if defined(__Userspace_os_Windows)
#define SCTP_WQ_ADDR_INIT() \
	InitializeCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_DESTROY() \
	DeleteCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_LOCK() \
	EnterCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_UNLOCK() \
	LeaveCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))


#define SCTP_INP_INFO_LOCK_INIT() \
	InitializeCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_LOCK_DESTROY() \
	DeleteCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_RLOCK() \
	EnterCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_TRYLOCK()	\
	TryEnterCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WLOCK() \
	EnterCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_RUNLOCK() \
	LeaveCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WUNLOCK()	\
	LeaveCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))

#define SCTP_IP_PKTLOG_INIT() \
	InitializeCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_DESTROY () \
	DeleteCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_LOCK() \
	EnterCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_UNLOCK() \
	LeaveCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))

/*
 * The INP locks we will use for locking an SCTP endpoint, so for example if
 * we want to change something at the endpoint level for example random_store
 * or cookie secrets we lock the INP level.
 */
#define SCTP_INP_READ_INIT(_inp) \
	InitializeCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_DESTROY(_inp) \
	DeleteCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_LOCK(_inp) \
	EnterCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_UNLOCK(_inp) \
	LeaveCriticalSection(&(_inp)->inp_rdata_mtx)

#define SCTP_INP_LOCK_INIT(_inp) \
	InitializeCriticalSection(&(_inp)->inp_mtx)
#define SCTP_INP_LOCK_DESTROY(_inp) \
	DeleteCriticalSection(&(_inp)->inp_mtx)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do { 						\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);			\
		EnterCriticalSection(&(_inp)->inp_mtx);				\
} while (0)
#define SCTP_INP_WLOCK(_inp) do { 						\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);			\
	EnterCriticalSection(&(_inp)->inp_mtx);					\
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) \
	EnterCriticalSection(&(_inp)->inp_mtx)
#define SCTP_INP_WLOCK(_inp) \
	EnterCriticalSection(&(_inp)->inp_mtx)
#endif

#define SCTP_TCB_SEND_LOCK_INIT(_tcb) \
	InitializeCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) \
	DeleteCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_LOCK(_tcb) \
	EnterCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_UNLOCK(_tcb) \
	LeaveCriticalSection(&(_tcb)->tcb_send_mtx)

#define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
#define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)

#define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \
	InitializeCriticalSection(&(_inp)->inp_create_mtx)
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \
	DeleteCriticalSection(&(_inp)->inp_create_mtx)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do {					\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE);		\
	EnterCriticalSection(&(_inp)->inp_create_mtx);				\
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) \
	EnterCriticalSection(&(_inp)->inp_create_mtx)
#endif

#define SCTP_INP_RUNLOCK(_inp) \
	LeaveCriticalSection(&(_inp)->inp_mtx)
#define SCTP_INP_WUNLOCK(_inp) \
	LeaveCriticalSection(&(_inp)->inp_mtx)
#define SCTP_ASOC_CREATE_UNLOCK(_inp) \
	LeaveCriticalSection(&(_inp)->inp_create_mtx)

/*
 * For the majority of things (once we have found the association) we will
 * lock the actual association mutex. This will protect all the assoiciation
 * level queues and streams and such. We will need to lock the socket layer
 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
 */

#define SCTP_TCB_LOCK_INIT(_tcb) \
	InitializeCriticalSection(&(_tcb)->tcb_mtx)
#define SCTP_TCB_LOCK_DESTROY(_tcb) \
	DeleteCriticalSection(&(_tcb)->tcb_mtx)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do {						\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);		\
	EnterCriticalSection(&(_tcb)->tcb_mtx);					\
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) \
	EnterCriticalSection(&(_tcb)->tcb_mtx)
#endif
#define SCTP_TCB_TRYLOCK(_tcb) 	((TryEnterCriticalSection(&(_tcb)->tcb_mtx)))
#define SCTP_TCB_UNLOCK(_tcb) \
	LeaveCriticalSection(&(_tcb)->tcb_mtx)
#define SCTP_TCB_LOCK_ASSERT(_tcb)

#else /* all Userspaces except Windows */
#define SCTP_WQ_ADDR_INIT() \
	(void)pthread_mutex_init(&SCTP_BASE_INFO(wq_addr_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_WQ_ADDR_DESTROY() \
	(void)pthread_mutex_destroy(&SCTP_BASE_INFO(wq_addr_mtx))
#ifdef INVARIANTS
#define SCTP_WQ_ADDR_LOCK() \
	KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(wq_addr_mtx)) == 0, ("%s: wq_addr_mtx already locked", __func__))
#define SCTP_WQ_ADDR_UNLOCK() \
	KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(wq_addr_mtx)) == 0, ("%s: wq_addr_mtx not locked", __func__))
#else
#define SCTP_WQ_ADDR_LOCK() \
	(void)pthread_mutex_lock(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_UNLOCK() \
	(void)pthread_mutex_unlock(&SCTP_BASE_INFO(wq_addr_mtx))
#endif

#define SCTP_INP_INFO_LOCK_INIT() \
	(void)pthread_mutex_init(&SCTP_BASE_INFO(ipi_ep_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_INP_INFO_LOCK_DESTROY() \
	(void)pthread_mutex_destroy(&SCTP_BASE_INFO(ipi_ep_mtx))
#ifdef INVARIANTS
#define SCTP_INP_INFO_RLOCK() \
	KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx already locked", __func__))
#define SCTP_INP_INFO_WLOCK() \
	KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx already locked", __func__))
#define SCTP_INP_INFO_RUNLOCK() \
	KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx not locked", __func__))
#define SCTP_INP_INFO_WUNLOCK() \
	KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx not locked", __func__))
#else
#define SCTP_INP_INFO_RLOCK() \
	(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WLOCK() \
	(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_RUNLOCK() \
	(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WUNLOCK() \
	(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx))
#endif
#define SCTP_INP_INFO_TRYLOCK() \
	(!(pthread_mutex_trylock(&SCTP_BASE_INFO(ipi_ep_mtx))))

#define SCTP_IP_PKTLOG_INIT() \
	(void)pthread_mutex_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_IP_PKTLOG_DESTROY() \
	(void)pthread_mutex_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#ifdef INVARIANTS
#define SCTP_IP_PKTLOG_LOCK() \
	KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) == 0, ("%s: ipi_pktlog_mtx already locked", __func__))
#define SCTP_IP_PKTLOG_UNLOCK() \
	KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) == 0, ("%s: ipi_pktlog_mtx not locked", __func__))
#else
#define SCTP_IP_PKTLOG_LOCK() \
	(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_UNLOCK() \
	(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#endif


/*
 * The INP locks we will use for locking an SCTP endpoint, so for example if
 * we want to change something at the endpoint level for example random_store
 * or cookie secrets we lock the INP level.
 */
#define SCTP_INP_READ_INIT(_inp) \
	(void)pthread_mutex_init(&(_inp)->inp_rdata_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_INP_READ_DESTROY(_inp) \
	(void)pthread_mutex_destroy(&(_inp)->inp_rdata_mtx)
#ifdef INVARIANTS
#define SCTP_INP_READ_LOCK(_inp) \
	KASSERT(pthread_mutex_lock(&(_inp)->inp_rdata_mtx) == 0, ("%s: inp_rdata_mtx already locked", __func__))
#define SCTP_INP_READ_UNLOCK(_inp) \
	KASSERT(pthread_mutex_unlock(&(_inp)->inp_rdata_mtx) == 0, ("%s: inp_rdata_mtx not locked", __func__))
#else
#define SCTP_INP_READ_LOCK(_inp) \
	(void)pthread_mutex_lock(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_UNLOCK(_inp) \
	(void)pthread_mutex_unlock(&(_inp)->inp_rdata_mtx)
#endif

#define SCTP_INP_LOCK_INIT(_inp) \
	(void)pthread_mutex_init(&(_inp)->inp_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_INP_LOCK_DESTROY(_inp) \
	(void)pthread_mutex_destroy(&(_inp)->inp_mtx)
#ifdef INVARIANTS
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do {									\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)				\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);						\
	KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))	\
} while (0)
#define SCTP_INP_WLOCK(_inp) do {									\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)				\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);						\
	KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) \
	KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))
#define SCTP_INP_WLOCK(_inp) \
	KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))
#endif
#define SCTP_INP_RUNLOCK(_inp) \
	KASSERT(pthread_mutex_unlock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx not locked", __func__))
#define SCTP_INP_WUNLOCK(_inp) \
	KASSERT(pthread_mutex_unlock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx not locked", __func__))
#else
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do {						\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);			\
	(void)pthread_mutex_lock(&(_inp)->inp_mtx);				\
} while (0)
#define SCTP_INP_WLOCK(_inp) do {						\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);			\
	(void)pthread_mutex_lock(&(_inp)->inp_mtx);				\
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) \
	(void)pthread_mutex_lock(&(_inp)->inp_mtx)
#define SCTP_INP_WLOCK(_inp) \
	(void)pthread_mutex_lock(&(_inp)->inp_mtx)
#endif
#define SCTP_INP_RUNLOCK(_inp) \
	(void)pthread_mutex_unlock(&(_inp)->inp_mtx)
#define SCTP_INP_WUNLOCK(_inp) \
	(void)pthread_mutex_unlock(&(_inp)->inp_mtx)
#endif
#define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
#define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)

#define SCTP_TCB_SEND_LOCK_INIT(_tcb) \
	(void)pthread_mutex_init(&(_tcb)->tcb_send_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) \
	(void)pthread_mutex_destroy(&(_tcb)->tcb_send_mtx)
#ifdef INVARIANTS
#define SCTP_TCB_SEND_LOCK(_tcb) \
	KASSERT(pthread_mutex_lock(&(_tcb)->tcb_send_mtx) == 0, ("%s: tcb_send_mtx already locked", __func__))
#define SCTP_TCB_SEND_UNLOCK(_tcb) \
	KASSERT(pthread_mutex_unlock(&(_tcb)->tcb_send_mtx) == 0, ("%s: tcb_send_mtx not locked", __func__))
#else
#define SCTP_TCB_SEND_LOCK(_tcb) \
	(void)pthread_mutex_lock(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_UNLOCK(_tcb) \
	(void)pthread_mutex_unlock(&(_tcb)->tcb_send_mtx)
#endif

#define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \
	(void)pthread_mutex_init(&(_inp)->inp_create_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \
	(void)pthread_mutex_destroy(&(_inp)->inp_create_mtx)
#ifdef INVARIANTS
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do {										\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)						\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE);							\
	KASSERT(pthread_mutex_lock(&(_inp)->inp_create_mtx) == 0, ("%s: inp_create_mtx already locked", __func__))	\
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) \
	KASSERT(pthread_mutex_lock(&(_inp)->inp_create_mtx) == 0, ("%s: inp_create_mtx already locked", __func__))
#endif
#define SCTP_ASOC_CREATE_UNLOCK(_inp) \
	KASSERT(pthread_mutex_unlock(&(_inp)->inp_create_mtx) == 0, ("%s: inp_create_mtx not locked", __func__))
#else
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do {					\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE)	\
		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE);		\
	(void)pthread_mutex_lock(&(_inp)->inp_create_mtx);			\
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) \
	(void)pthread_mutex_lock(&(_inp)->inp_create_mtx)
#endif
#define SCTP_ASOC_CREATE_UNLOCK(_inp) \
	(void)pthread_mutex_unlock(&(_inp)->inp_create_mtx)
#endif
/*
 * For the majority of things (once we have found the association) we will
 * lock the actual association mutex. This will protect all the assoiciation
 * level queues and streams and such. We will need to lock the socket layer
 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
 */

#define SCTP_TCB_LOCK_INIT(_tcb) \
	(void)pthread_mutex_init(&(_tcb)->tcb_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_TCB_LOCK_DESTROY(_tcb) \
	(void)pthread_mutex_destroy(&(_tcb)->tcb_mtx)
#ifdef INVARIANTS
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do {									\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) 				\
		sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);					\
	KASSERT(pthread_mutex_lock(&(_tcb)->tcb_mtx) == 0, ("%s: tcb_mtx already locked", __func__))	\
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) \
	KASSERT(pthread_mutex_lock(&(_tcb)->tcb_mtx) == 0, ("%s: tcb_mtx already locked", __func__))
#endif
#define SCTP_TCB_UNLOCK(_tcb) \
	KASSERT(pthread_mutex_unlock(&(_tcb)->tcb_mtx) == 0, ("%s: tcb_mtx not locked", __func__))
#else
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do {						\
	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) 	\
		sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);		\
	(void)pthread_mutex_lock(&(_tcb)->tcb_mtx);				\
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) \
	(void)pthread_mutex_lock(&(_tcb)->tcb_mtx)
#endif
#define SCTP_TCB_UNLOCK(_tcb) (void)pthread_mutex_unlock(&(_tcb)->tcb_mtx)
#endif
#define SCTP_TCB_LOCK_ASSERT(_tcb) \
	KASSERT(pthread_mutex_trylock(&(_tcb)->tcb_mtx) == EBUSY, ("%s: tcb_mtx not locked", __func__))
#define SCTP_TCB_TRYLOCK(_tcb) (!(pthread_mutex_trylock(&(_tcb)->tcb_mtx)))
#endif

#endif /* SCTP_PER_SOCKET_LOCKING */


/*
 * common locks
 */

/* copied over to compile */
#define SCTP_INP_LOCK_CONTENDED(_inp) (0) /* Don't know if this is possible */
#define SCTP_INP_READ_CONTENDED(_inp) (0) /* Don't know if this is possible */
#define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) (0) /* Don't know if this is possible */

/* socket locks */

#if defined(__Userspace_os_Windows)
#define SOCKBUF_LOCK_ASSERT(_so_buf)
#define SOCKBUF_LOCK(_so_buf) \
	EnterCriticalSection(&(_so_buf)->sb_mtx)
#define SOCKBUF_UNLOCK(_so_buf) \
	LeaveCriticalSection(&(_so_buf)->sb_mtx)
#define SOCK_LOCK(_so) \
	SOCKBUF_LOCK(&(_so)->so_rcv)
#define SOCK_UNLOCK(_so) \
	SOCKBUF_UNLOCK(&(_so)->so_rcv)
#else
#define SOCKBUF_LOCK_ASSERT(_so_buf) \
	KASSERT(pthread_mutex_trylock(SOCKBUF_MTX(_so_buf)) == EBUSY, ("%s: socket buffer not locked", __func__))
#ifdef INVARIANTS
#define SOCKBUF_LOCK(_so_buf) \
	KASSERT(pthread_mutex_lock(SOCKBUF_MTX(_so_buf)) == 0, ("%s: sockbuf_mtx already locked", __func__))
#define SOCKBUF_UNLOCK(_so_buf) \
	KASSERT(pthread_mutex_unlock(SOCKBUF_MTX(_so_buf)) == 0, ("%s: sockbuf_mtx not locked", __func__))
#else
#define SOCKBUF_LOCK(_so_buf) \
	pthread_mutex_lock(SOCKBUF_MTX(_so_buf))
#define SOCKBUF_UNLOCK(_so_buf) \
	pthread_mutex_unlock(SOCKBUF_MTX(_so_buf))
#endif
#define SOCK_LOCK(_so) \
	SOCKBUF_LOCK(&(_so)->so_rcv)
#define SOCK_UNLOCK(_so) \
	SOCKBUF_UNLOCK(&(_so)->so_rcv)
#endif

#define SCTP_STATLOG_INIT_LOCK()
#define SCTP_STATLOG_LOCK()
#define SCTP_STATLOG_UNLOCK()
#define SCTP_STATLOG_DESTROY()

#if defined(__Userspace_os_Windows)
/* address list locks */
#define SCTP_IPI_ADDR_INIT() \
	InitializeCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_DESTROY() \
	DeleteCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_RLOCK() \
	EnterCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_RUNLOCK() \
	LeaveCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WLOCK() \
	EnterCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WUNLOCK() \
	LeaveCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))


/* iterator locks */
#define SCTP_ITERATOR_LOCK_INIT() \
	InitializeCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_LOCK_DESTROY() \
	DeleteCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_LOCK() \
		EnterCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_UNLOCK() \
	LeaveCriticalSection(&sctp_it_ctl.it_mtx)

#define SCTP_IPI_ITERATOR_WQ_INIT() \
	InitializeCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_DESTROY() \
	DeleteCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_LOCK() \
	EnterCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() \
	LeaveCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)

#else /* end of __Userspace_os_Windows */
/* address list locks */
#define SCTP_IPI_ADDR_INIT() \
	(void)pthread_mutex_init(&SCTP_BASE_INFO(ipi_addr_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_IPI_ADDR_DESTROY() \
	(void)pthread_mutex_destroy(&SCTP_BASE_INFO(ipi_addr_mtx))
#ifdef INVARIANTS
#define SCTP_IPI_ADDR_RLOCK() \
	KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx already locked", __func__))
#define SCTP_IPI_ADDR_RUNLOCK() \
	KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx not locked", __func__))
#define SCTP_IPI_ADDR_WLOCK() \
	KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx already locked", __func__))
#define SCTP_IPI_ADDR_WUNLOCK() \
	KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx not locked", __func__))
#else
#define SCTP_IPI_ADDR_RLOCK() \
	(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_RUNLOCK() \
	(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WLOCK() \
	(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WUNLOCK() \
	(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx))
#endif

/* iterator locks */
#define SCTP_ITERATOR_LOCK_INIT() \
	(void)pthread_mutex_init(&sctp_it_ctl.it_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_ITERATOR_LOCK_DESTROY() \
	(void)pthread_mutex_destroy(&sctp_it_ctl.it_mtx)
#ifdef INVARIANTS
#define SCTP_ITERATOR_LOCK() \
	KASSERT(pthread_mutex_lock(&sctp_it_ctl.it_mtx) == 0, ("%s: it_mtx already locked", __func__))
#define SCTP_ITERATOR_UNLOCK() \
	KASSERT(pthread_mutex_unlock(&sctp_it_ctl.it_mtx) == 0, ("%s: it_mtx not locked", __func__))
#else
#define SCTP_ITERATOR_LOCK() \
	(void)pthread_mutex_lock(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_UNLOCK() \
	(void)pthread_mutex_unlock(&sctp_it_ctl.it_mtx)
#endif

#define SCTP_IPI_ITERATOR_WQ_INIT() \
	(void)pthread_mutex_init(&sctp_it_ctl.ipi_iterator_wq_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_IPI_ITERATOR_WQ_DESTROY() \
	(void)pthread_mutex_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx)
#ifdef INVARIANTS
#define SCTP_IPI_ITERATOR_WQ_LOCK() \
	KASSERT(pthread_mutex_lock(&sctp_it_ctl.ipi_iterator_wq_mtx) == 0, ("%s: ipi_iterator_wq_mtx already locked", __func__))
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() \
	KASSERT(pthread_mutex_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx) == 0, ("%s: ipi_iterator_wq_mtx not locked", __func__))
#else
#define SCTP_IPI_ITERATOR_WQ_LOCK() \
	(void)pthread_mutex_lock(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() \
	(void)pthread_mutex_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx)
#endif
#endif

#define SCTP_INCR_EP_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1)

#define SCTP_DECR_EP_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1)

#define SCTP_INCR_ASOC_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1)

#define SCTP_DECR_ASOC_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1)

#define SCTP_INCR_LADDR_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1)

#define SCTP_DECR_LADDR_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1)

#define SCTP_INCR_RADDR_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1)

#define SCTP_DECR_RADDR_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr), 1)

#define SCTP_INCR_CHK_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1)

#define SCTP_DECR_CHK_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1)

#define SCTP_INCR_READQ_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq), 1)

#define SCTP_DECR_READQ_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1)

#define SCTP_INCR_STRMOQ_COUNT() \
	atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1)

#define SCTP_DECR_STRMOQ_COUNT() \
	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1)

#endif