Source code

Revision control

Copy as Markdown

Other Tools

////////////////////////////////////////////////////////////////////////////////
///
/// SSE optimized routines for Pentium-III, Athlon-XP and later CPUs. All SSE
/// optimized functions have been gathered into this single source
/// code file, regardless to their class or original source code file, in order
/// to ease porting the library to other compiler and processor platforms.
///
/// The SSE-optimizations are programmed using SSE compiler intrinsics that
/// are supported both by Microsoft Visual C++ and GCC compilers, so this file
/// should compile with both toolsets.
///
/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++
/// 6.0 processor pack" update to support SSE instruction set. The update is
/// available for download at Microsoft Developers Network, see here:
///
/// If the above URL is expired or removed, go to "http://msdn.microsoft.com" and
/// perform a search with keywords "processor pack".
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include "cpu_detect.h"
#include "STTypes.h"
using namespace soundtouch;
#ifdef SOUNDTOUCH_ALLOW_SSE
// SSE routines available only with float sample type
//////////////////////////////////////////////////////////////////////////////
//
// implementation of SSE optimized functions of class 'TDStretchSSE'
//
//////////////////////////////////////////////////////////////////////////////
#include "TDStretch.h"
#ifdef SOUNDTOUCH_WASM_SIMD
#include "simde/x86/avx2.h"
#else
#include <xmmintrin.h>
#endif
#include <math.h>
// Calculates cross correlation of two buffers
double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &anorm)
{
int i;
const float *pVec1;
const __m128 *pVec2;
__m128 vSum, vNorm;
// Note. It means a major slow-down if the routine needs to tolerate
// unaligned __m128 memory accesses. It's way faster if we can skip
// unaligned slots and use _mm_load_ps instruction instead of _mm_loadu_ps.
// This can mean up to ~ 10-fold difference (incl. part of which is
// due to skipping every second round for stereo sound though).
//
// Compile-time define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION is provided
// for choosing if this little cheating is allowed.
#ifdef ST_SIMD_AVOID_UNALIGNED
// Little cheating allowed, return valid correlation only for
// aligned locations, meaning every second round for stereo sound.
#define _MM_LOAD _mm_load_ps
if (((ulongptr)pV1) & 15) return -1e50; // skip unaligned locations
#else
// No cheating allowed, use unaligned load & take the resulting
// performance hit.
#define _MM_LOAD _mm_loadu_ps
#endif
// ensure overlapLength is divisible by 8
assert((overlapLength % 8) == 0);
// Calculates the cross-correlation value between 'pV1' and 'pV2' vectors
// Note: pV2 _must_ be aligned to 16-bit boundary, pV1 need not.
pVec1 = (const float*)pV1;
pVec2 = (const __m128*)pV2;
vSum = vNorm = _mm_setzero_ps();
// Unroll the loop by factor of 4 * 4 operations. Use same routine for
// stereo & mono, for mono it just means twice the amount of unrolling.
for (i = 0; i < channels * overlapLength / 16; i ++)
{
__m128 vTemp;
// vSum += pV1[0..3] * pV2[0..3]
vTemp = _MM_LOAD(pVec1);
vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp ,pVec2[0]));
vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp));
// vSum += pV1[4..7] * pV2[4..7]
vTemp = _MM_LOAD(pVec1 + 4);
vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp, pVec2[1]));
vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp));
// vSum += pV1[8..11] * pV2[8..11]
vTemp = _MM_LOAD(pVec1 + 8);
vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp, pVec2[2]));
vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp));
// vSum += pV1[12..15] * pV2[12..15]
vTemp = _MM_LOAD(pVec1 + 12);
vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp, pVec2[3]));
vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp));
pVec1 += 16;
pVec2 += 4;
}
// return value = vSum[0] + vSum[1] + vSum[2] + vSum[3]
float *pvNorm = (float*)&vNorm;
float norm = (pvNorm[0] + pvNorm[1] + pvNorm[2] + pvNorm[3]);
anorm = norm;
float *pvSum = (float*)&vSum;
return (double)(pvSum[0] + pvSum[1] + pvSum[2] + pvSum[3]) / sqrt(norm < 1e-9 ? 1.0 : norm);
/* This is approximately corresponding routine in C-language yet without normalization:
double corr, norm;
uint i;
// Calculates the cross-correlation value between 'pV1' and 'pV2' vectors
corr = norm = 0.0;
for (i = 0; i < channels * overlapLength / 16; i ++)
{
corr += pV1[0] * pV2[0] +
pV1[1] * pV2[1] +
pV1[2] * pV2[2] +
pV1[3] * pV2[3] +
pV1[4] * pV2[4] +
pV1[5] * pV2[5] +
pV1[6] * pV2[6] +
pV1[7] * pV2[7] +
pV1[8] * pV2[8] +
pV1[9] * pV2[9] +
pV1[10] * pV2[10] +
pV1[11] * pV2[11] +
pV1[12] * pV2[12] +
pV1[13] * pV2[13] +
pV1[14] * pV2[14] +
pV1[15] * pV2[15];
for (j = 0; j < 15; j ++) norm += pV1[j] * pV1[j];
pV1 += 16;
pV2 += 16;
}
return corr / sqrt(norm);
*/
}
double TDStretchSSE::calcCrossCorrAccumulate(const float *pV1, const float *pV2, double &norm)
{
// call usual calcCrossCorr function because SSE does not show big benefit of
// accumulating "norm" value, and also the "norm" rolling algorithm would get
// complicated due to SSE-specific alignment-vs-nonexact correlation rules.
return calcCrossCorr(pV1, pV2, norm);
}
//////////////////////////////////////////////////////////////////////////////
//
// implementation of SSE optimized functions of class 'FIRFilter'
//
//////////////////////////////////////////////////////////////////////////////
#include "FIRFilter.h"
FIRFilterSSE::FIRFilterSSE() : FIRFilter()
{
filterCoeffsAlign = NULL;
filterCoeffsUnalign = NULL;
}
FIRFilterSSE::~FIRFilterSSE()
{
delete[] filterCoeffsUnalign;
filterCoeffsAlign = NULL;
filterCoeffsUnalign = NULL;
}
// (overloaded) Calculates filter coefficients for SSE routine
void FIRFilterSSE::setCoefficients(const float *coeffs, uint newLength, uint uResultDivFactor)
{
uint i;
float fDivider;
FIRFilter::setCoefficients(coeffs, newLength, uResultDivFactor);
// Scale the filter coefficients so that it won't be necessary to scale the filtering result
// also rearrange coefficients suitably for SSE
// Ensure that filter coeffs array is aligned to 16-byte boundary
delete[] filterCoeffsUnalign;
filterCoeffsUnalign = new float[2 * newLength + 4];
filterCoeffsAlign = (float *)SOUNDTOUCH_ALIGN_POINTER_16(filterCoeffsUnalign);
fDivider = (float)resultDivider;
// rearrange the filter coefficients for mmx routines
for (i = 0; i < newLength; i ++)
{
filterCoeffsAlign[2 * i + 0] =
filterCoeffsAlign[2 * i + 1] = coeffs[i + 0] / fDivider;
}
}
// SSE-optimized version of the filter routine for stereo sound
uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint numSamples) const
{
int count = (int)((numSamples - length) & (uint)-2);
int j;
assert(count % 2 == 0);
if (count < 2) return 0;
assert(source != NULL);
assert(dest != NULL);
assert((length % 8) == 0);
assert(filterCoeffsAlign != NULL);
assert(((ulongptr)filterCoeffsAlign) % 16 == 0);
// filter is evaluated for two stereo samples with each iteration, thus use of 'j += 2'
#pragma omp parallel for
for (j = 0; j < count; j += 2)
{
const float *pSrc;
float *pDest;
const __m128 *pFil;
__m128 sum1, sum2;
uint i;
pSrc = (const float*)source + j * 2; // source audio data
pDest = dest + j * 2; // destination audio data
pFil = (const __m128*)filterCoeffsAlign; // filter coefficients. NOTE: Assumes coefficients
// are aligned to 16-byte boundary
sum1 = sum2 = _mm_setzero_ps();
for (i = 0; i < length / 8; i ++)
{
// Unroll loop for efficiency & calculate filter for 2*2 stereo samples
// at each pass
// sum1 is accu for 2*2 filtered stereo sound data at the primary sound data offset
// sum2 is accu for 2*2 filtered stereo sound data for the next sound sample offset.
sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc) , pFil[0]));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 2), pFil[0]));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc + 4), pFil[1]));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 6), pFil[1]));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc + 8) , pFil[2]));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 10), pFil[2]));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc + 12), pFil[3]));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 14), pFil[3]));
pSrc += 16;
pFil += 4;
}
// Now sum1 and sum2 both have a filtered 2-channel sample each, but we still need
// to sum the two hi- and lo-floats of these registers together.
// post-shuffle & add the filtered values and store to dest.
_mm_storeu_ps(pDest, _mm_add_ps(
_mm_shuffle_ps(sum1, sum2, _MM_SHUFFLE(1,0,3,2)), // s2_1 s2_0 s1_3 s1_2
_mm_shuffle_ps(sum1, sum2, _MM_SHUFFLE(3,2,1,0)) // s2_3 s2_2 s1_1 s1_0
));
}
// Ideas for further improvement:
// 1. If it could be guaranteed that 'source' were always aligned to 16-byte
// boundary, a faster aligned '_mm_load_ps' instruction could be used.
// 2. If it could be guaranteed that 'dest' were always aligned to 16-byte
// boundary, a faster '_mm_store_ps' instruction could be used.
return (uint)count;
/* original routine in C-language. please notice the C-version has differently
organized coefficients though.
double suml1, suml2;
double sumr1, sumr2;
uint i, j;
for (j = 0; j < count; j += 2)
{
const float *ptr;
const float *pFil;
suml1 = sumr1 = 0.0;
suml2 = sumr2 = 0.0;
ptr = src;
pFil = filterCoeffs;
for (i = 0; i < lengthLocal; i ++)
{
// unroll loop for efficiency.
suml1 += ptr[0] * pFil[0] +
ptr[2] * pFil[2] +
ptr[4] * pFil[4] +
ptr[6] * pFil[6];
sumr1 += ptr[1] * pFil[1] +
ptr[3] * pFil[3] +
ptr[5] * pFil[5] +
ptr[7] * pFil[7];
suml2 += ptr[8] * pFil[0] +
ptr[10] * pFil[2] +
ptr[12] * pFil[4] +
ptr[14] * pFil[6];
sumr2 += ptr[9] * pFil[1] +
ptr[11] * pFil[3] +
ptr[13] * pFil[5] +
ptr[15] * pFil[7];
ptr += 16;
pFil += 8;
}
dest[0] = (float)suml1;
dest[1] = (float)sumr1;
dest[2] = (float)suml2;
dest[3] = (float)sumr2;
src += 4;
dest += 4;
}
*/
}
#endif // SOUNDTOUCH_ALLOW_SSE