DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (7cdabf0e8c3b)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sw=2 et tw=0 ft=c:
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_Opcodes_h
#define vm_Opcodes_h

#include "mozilla/Attributes.h"

#include <stddef.h>

// clang-format off
/*
 * [SMDOC] Bytecode Definitions
 *
 * SpiderMonkey bytecode instructions.
 *
 * To use this header, define a macro of the form:
 *
 *     #define MACRO(op, op_snake, token, length, nuses, ndefs, format) ...
 *
 * Then `FOR_EACH_OPCODE(MACRO)` invokes `MACRO` for every opcode.
 *
 * Field        Description
 * -----        -----------
 * op           UpperCamelCase form of opcode id
 * op_snake     snake_case form of opcode id
 * token        Pretty-printer string, or null if ugly
 * length       Number of bytes including any immediate operands
 * nuses        Number of stack slots consumed by bytecode, -1 if variadic
 * ndefs        Number of stack slots produced by bytecode
 * format       JOF_ flags describing instruction operand layout, etc.
 *
 * For more about `format`, see the comments on the `JOF_` constants defined in
 * BytecodeUtil.h.
 *
 *
 * [SMDOC] Bytecode Invariants
 *
 * Creating scripts that do not follow the rules can lead to undefined
 * behavior. Bytecode has many consumers, not just the interpreter: JITs,
 * analyses, the debugger. That's why the rules below apply even to code that
 * can't be reached in ordinary execution (such as code after an infinite loop
 * or inside an `if (false)` block).
 *
 * The `code()` of a script must be a packed (not aligned) sequence of valid
 * instructions from start to end. Each instruction has a single byte opcode
 * followed by a number of operand bytes based on the opcode.
 *
 * ## Jump instructions
 *
 * Operands named `offset`, `forwardOffset`, or `defaultOffset` are jump
 * offsets, the distance in bytes from the start of the current instruction to
 * the start of another instruction in the same script. Operands named
 * `forwardOffset` or `defaultOffset` must be positive.
 *
 * Forward jumps must jump to a `JSOp::JumpTarget` instruction.  Backward jumps,
 * indicated by negative offsets, must jump to a `JSOp::LoopHead` instruction.
 * Jump offsets can't be zero.
 *
 * Needless to say, scripts must not contain overlapping instruction sequences
 * (in the sense of <https://en.wikipedia.org/wiki/Overlapping_gene>).
 *
 * A script's `trynotes` and `scopeNotes` impose further constraints. Each try
 * note and each scope note marks a region of the bytecode where some invariant
 * holds, or some cleanup behavior is needed--that there's a for-in iterator in
 * a particular stack slot, for instance, which must be closed on error. All
 * paths into the span must establish that invariant. In practice, this means
 * other code never jumps into the span: the only way in is to execute the
 * bytecode instruction that sets up the invariant (in our example,
 * `JSOp::Iter`).
 *
 * If a script's `trynotes` (see "Try Notes" in JSScript.h) contain a
 * `JSTRY_CATCH` or `JSTRY_FINALLY` span, there must be a `JSOp::Try`
 * instruction immediately before the span and a `JSOp::JumpTarget immediately
 * after it. Instructions must not jump to this `JSOp::JumpTarget`. (The VM puts
 * us there on exception.) Furthermore, the instruction sequence immediately
 * following a `JSTRY_CATCH` span must read `JumpTarget; Exception` or, in
 * non-function scripts, `JumpTarget; Undefined; SetRval; Exception`. (These
 * instructions run with an exception pending; other instructions aren't
 * designed to handle that.)
 *
 * Unreachable instructions are allowed, but they have to follow all the rules.
 *
 * Control must not reach the end of a script. (Currently, the last instruction
 * is always JSOp::RetRval.)
 *
 * ## Other operands
 *
 * Operands named `nameIndex` or `atomIndex` (which appear on instructions that
 * have `JOF_ATOM` in the `format` field) must be valid indexes into
 * `script->atoms()`.
 *
 * Operands named `argc` (`JOF_ARGC`) are argument counts for call
 * instructions. `argc` must be small enough that the instruction's nuses is <=
 * the current stack depth (see "Stack depth" below).
 *
 * Operands named `argno` (`JOF_QARG`) refer to an argument of the current
 * function. `argno` must be in the range `0..script->function()->nargs()`.
 * Instructions with these operands must appear only in function scripts.
 *
 * Operands named `localno` (`JOF_LOCAL`) refer to a local variable stored in
 * the stack frame. `localno` must be in the range `0..script->nfixed()`.
 *
 * Operands named `resumeIndex` (`JOF_RESUMEINDEX`) refer to a resume point in
 * the current script. `resumeIndex` must be a valid index into
 * `script->resumeOffsets()`.
 *
 * Operands named `hops` and `slot` (`JOF_ENVCOORD`) refer a slot in an
 * `EnvironmentObject`. At run time, they must point to a fixed slot in an
 * object on the current environment chain. See `EnvironmentCoordinates`.
 *
 * Operands with the following names must be valid indexes into
 * `script->gcthings()`, and the pointer in the vector must point to the right
 * type of thing:
 *
 * -   `objectIndex` (`JOF_OBJECT`): `PlainObject*` or `ArrayObject*`
 * -   `baseobjIndex` (`JOF_OBJECT`): `PlainObject*`
 * -   `funcIndex` (`JOF_OBJECT`): `JSFunction*`
 * -   `regexpIndex` (`JOF_REGEXP`): `RegExpObject*`
 * -   `scopeIndex` (`JOF_SCOPE`): `Scope*`
 * -   `lexicalScopeIndex` (`JOF_SCOPE`): `LexicalScope*`
 * -   `withScopeIndex` (`JOF_SCOPE`): `WithScope*`
 * -   `bigIntIndex` (`JOF_BIGINT`): `BigInt*`
 *
 * Operands named `icIndex` (`JOF_ICINDEX`) must be exactly the number of
 * preceding instructions in the script that have the JOF_IC flag.
 * (Rationale: Each JOF_IC instruction has a unique entry in
 * `script->jitScript()->icEntries()`.  At run time, in the bytecode
 * interpreter, we have to find that entry. We could store the IC index as an
 * operand to each JOF_IC instruction, but it's more memory-efficient to use a
 * counter and reset the counter to `icIndex` after each jump.)
 *
 * ## Stack depth
 *
 * Each instruction has a compile-time stack depth, the number of values on the
 * interpreter stack just before executing the instruction. It isn't explicitly
 * present in the bytecode itself, but (for reachable instructions, anyway)
 * it's a function of the bytecode.
 *
 * -   The first instruction has stack depth 0.
 *
 * -   Each successor of an instruction X has a stack depth equal to
 *
 *         X's stack depth - `js::StackUses(X)` + `js::StackDefs(X)`
 *
 *     except for `JSOp::Case` (below).
 *
 *     X's "successors" are: the next instruction in the script, if
 *     `js::FlowsIntoNext(op)` is true for X's opcode; one or more
 *     `JSOp::JumpTarget`s elsewhere, if X is a forward jump or
 *     `JSOp::TableSwitch`; and/or a `JSOp::LoopHead` if it's a backward jump.
 *
 * -   `JSOp::Case` is a special case because its stack behavior is eccentric.
 *     The formula above is correct for the next instruction. The jump target
 *     has a stack depth that is 1 less.
 *
 * -   See `JSOp::Gosub` for another special case.
 *
 * -   The `JSOp::JumpTarget` instruction immediately following a `JSTRY_CATCH`
 *     or `JSTRY_FINALLY` span has the same stack depth as the `JSOp::Try`
 *     instruction that precedes the span.
 *
 *     Every instruction covered by the `JSTRY_CATCH` or `JSTRY_FINALLY` span
 *     must have a stack depth >= that value, so that error recovery is
 *     guaranteed to find enough values on the stack to resume there.
 *
 * -   `script->nslots() - script->nfixed()` must be >= the maximum stack
 *     depth of any instruction in `script`.  (The stack frame must be big
 *     enough to run the code.)
 *
 * `BytecodeParser::parse()` computes stack depths for every reachable
 * instruction in a script.
 *
 * ## Scopes and environments
 *
 * As with stack depth, each instruction has a static scope, which is a
 * compile-time characterization of the eventual run-time environment chain
 * when that instruction executes. Just as every instruction has a stack budget
 * (nuses/ndefs), every instruction either pushes a scope, pops a scope, or
 * neither. The same successor relation applies as above.
 *
 * Every scope used in a script is stored in the `JSScript::gcthings()` vector.
 * They can be accessed using `getScope(index)` if you know what `index` to
 * pass.
 *
 * The scope of every instruction (that's reachable via the successor relation)
 * is given in two independent ways: by the bytecode itself and by the scope
 * notes. The two sources must agree.
 *
 * ## Further rules
 *
 * All reachable instructions must be reachable without taking any backward
 * edges.
 *
 * Instructions with the `JOF_CHECKSLOPPY` flag must not be used in strict mode
 * code. `JOF_CHECKSTRICT` instructions must not be used in nonstrict code.
 *
 * Many instructions have their own additional rules. These are documented on
 * the various opcodes below (look for the word "must").
 */
// clang-format on

// clang-format off
/*
 * SpiderMonkey bytecode categorization (as used in generated documentation):
 *
 * [Index]
 *   [Constants]
 *   [Expressions]
 *     Unary operators
 *     Binary operators
 *     Conversions
 *     Other expressions
 *   [Objects]
 *     Creating objects
 *     Defining properties
 *     Accessing properties
 *     Super
 *     Enumeration
 *     Iteration
 *     SetPrototype
 *     Array literals
 *     RegExp literals
 *   [Functions]
 *     Creating functions
 *     Creating constructors
 *     Calls
 *     Generators and async functions
 *   [Control flow]
 *     Jump targets
 *     Jumps
 *     Return
 *     Exceptions
 *   [Variables and scopes]
 *     Initialization
 *     Looking up bindings
 *     Getting binding values
 *     Setting binding values
 *     Entering and leaving environments
 *     Creating and deleting bindings
 *     Function environment setup
 *   [Stack operations]
 *   [Other]
 */
// clang-format on

// clang-format off
#define FOR_EACH_OPCODE(MACRO) \
    /*
     * Push `undefined`.
     *
     *   Category: Constants
     *   Operands:
     *   Stack: => undefined
     */ \
    MACRO(Undefined, undefined, "", 1, 0, 1, JOF_BYTE) \
    /*
     * Push `null`.
     *
     *   Category: Constants
     *   Operands:
     *   Stack: => null
     */ \
    MACRO(Null, null, js_null_str, 1, 0, 1, JOF_BYTE) \
    /*
     * Push a boolean constant.
     *
     *   Category: Constants
     *   Operands:
     *   Stack: => true/false
     */ \
    MACRO(False, false_, js_false_str, 1, 0, 1, JOF_BYTE) \
    MACRO(True, true_, js_true_str, 1, 0, 1, JOF_BYTE) \
    /*
     * Push the `int32_t` immediate operand as an `Int32Value`.
     *
     * `JSOp::Zero`, `JSOp::One`, `JSOp::Int8`, `JSOp::Uint16`, and `JSOp::Uint24`
     * are all compact encodings for `JSOp::Int32`.
     *
     *   Category: Constants
     *   Operands: int32_t val
     *   Stack: => val
     */ \
    MACRO(Int32, int32, NULL, 5, 0, 1, JOF_INT32) \
    /*
     * Push the number `0`.
     *
     *   Category: Constants
     *   Operands:
     *   Stack: => 0
     */ \
    MACRO(Zero, zero, "0", 1, 0, 1, JOF_BYTE) \
    /*
     * Push the number `1`.
     *
     *   Category: Constants
     *   Operands:
     *   Stack: => 1
     */ \
    MACRO(One, one, "1", 1, 0, 1, JOF_BYTE) \
    /*
     * Push the `int8_t` immediate operand as an `Int32Value`.
     *
     *   Category: Constants
     *   Operands: int8_t val
     *   Stack: => val
     */ \
    MACRO(Int8, int8, NULL, 2, 0, 1, JOF_INT8) \
    /*
     * Push the `uint16_t` immediate operand as an `Int32Value`.
     *
     *   Category: Constants
     *   Operands: uint16_t val
     *   Stack: => val
     */ \
    MACRO(Uint16, uint16, NULL, 3, 0, 1, JOF_UINT16) \
    /*
     * Push the `uint24_t` immediate operand as an `Int32Value`.
     *
     *   Category: Constants
     *   Operands: uint24_t val
     *   Stack: => val
     */ \
    MACRO(Uint24, uint24, NULL, 4, 0, 1, JOF_UINT24) \
    /*
     * Push the 64-bit floating-point immediate operand as a `DoubleValue`.
     *
     * If the operand is a NaN, it must be the canonical NaN (see
     * `JS::detail::CanonicalizeNaN`).
     *
     *   Category: Constants
     *   Operands: double val
     *   Stack: => val
     */ \
    MACRO(Double, double_, NULL, 9, 0, 1, JOF_DOUBLE) \
    /*
     * Push the BigInt constant `script->getBigInt(bigIntIndex)`.
     *
     *   Category: Constants
     *   Operands: uint32_t bigIntIndex
     *   Stack: => bigint
     */ \
    MACRO(BigInt, big_int, NULL, 5, 0, 1, JOF_BIGINT) \
    /*
     * Push the string constant `script->getAtom(atomIndex)`.
     *
     *   Category: Constants
     *   Operands: uint32_t atomIndex
     *   Stack: => string
     */ \
    MACRO(String, string, NULL, 5, 0, 1, JOF_ATOM) \
    /*
     * Push a well-known symbol.
     *
     * `symbol` must be in range for `JS::SymbolCode`.
     *
     *   Category: Constants
     *   Operands: uint8_t symbol (the JS::SymbolCode of the symbol to use)
     *   Stack: => symbol
     */ \
    MACRO(Symbol, symbol, NULL, 2, 0, 1, JOF_UINT8) \
    /*
     * Pop the top value on the stack, discard it, and push `undefined`.
     *
     * Implements: [The `void` operator][1], step 3.
     *
     * [1]: https://tc39.es/ecma262/#sec-void-operator
     *
     *   Category: Expressions
     *   Type: Unary operators
     *   Operands:
     *   Stack: val => undefined
     */ \
    MACRO(Void, void_, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * [The `typeof` operator][1].
     *
     * Infallible. The result is always a string that depends on the [type][2]
     * of `val`.
     *
     * `JSOp::Typeof` and `JSOp::TypeofExpr` are the same except
     * that--amazingly--`JSOp::Typeof` affects the behavior of an immediately
     * *preceding* `JSOp::GetName` or `JSOp::GetGName` instruction! This is how
     * we implement [`typeof`][1] step 2, making `typeof nonExistingVariable`
     * return `"undefined"` instead of throwing a ReferenceError.
     *
     * In a global scope:
     *
     * -   `typeof x` compiles to `GetGName "x"; Typeof`.
     * -   `typeof (0, x)` compiles to `GetGName "x"; TypeofExpr`.
     *
     * Emitting the same bytecode for these two expressions would be a bug.
     * Per spec, the latter throws a ReferenceError if `x` doesn't exist.
     *
     * [1]: https://tc39.es/ecma262/#sec-typeof-operator
     * [2]: https://tc39.es/ecma262/#sec-ecmascript-language-types
     *
     *   Category: Expressions
     *   Type: Unary operators
     *   Operands:
     *   Stack: val => (typeof val)
     */ \
    MACRO(Typeof, typeof_, NULL, 1, 1, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    MACRO(TypeofExpr, typeof_expr, NULL, 1, 1, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    /*
     * [The unary `+` operator][1].
     *
     * `+val` doesn't do any actual math. It just calls [ToNumber][2](val).
     *
     * The conversion can call `.toString()`/`.valueOf()` methods and can
     * throw. The result on success is always a Number. (Per spec, unary `-`
     * supports BigInts, but unary `+` does not.)
     *
     * [1]: https://tc39.es/ecma262/#sec-unary-plus-operator
     * [2]: https://tc39.es/ecma262/#sec-tonumber
     *
     *   Category: Expressions
     *   Type: Unary operators
     *   Operands:
     *   Stack: val => (+val)
     */ \
    MACRO(Pos, pos, "+ ", 1, 1, 1, JOF_BYTE) \
    /*
     * [The unary `-` operator][1].
     *
     * Convert `val` to a numeric value, then push `-val`. The conversion can
     * call `.toString()`/`.valueOf()` methods and can throw. The result on
     * success is always numeric.
     *
     * [1]: https://tc39.es/ecma262/#sec-unary-minus-operator
     *
     *   Category: Expressions
     *   Type: Unary operators
     *   Operands:
     *   Stack: val => (-val)
     */ \
    MACRO(Neg, neg, "- ", 1, 1, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The bitwise NOT operator][1] (`~`).
     *
     * `val` is converted to an integer, then bitwise negated. The conversion
     * can call `.toString()`/`.valueOf()` methods and can throw. The result on
     * success is always an Int32 or BigInt value.
     *
     * [1]: https://tc39.es/ecma262/#sec-bitwise-not-operator
     *
     *   Category: Expressions
     *   Type: Unary operators
     *   Operands:
     *   Stack: val => (~val)
     */ \
    MACRO(BitNot, bit_not, "~", 1, 1, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The logical NOT operator][1] (`!`).
     *
     * `val` is first converted with [ToBoolean][2], then logically
     * negated. The result is always a boolean value. This does not call
     * user-defined methods and can't throw.
     *
     * [1]: https://tc39.es/ecma262/#sec-logical-not-operator
     * [2]: https://tc39.es/ecma262/#sec-toboolean
     *
     *   Category: Expressions
     *   Type: Unary operators
     *   Operands:
     *   Stack: val => (!val)
     */ \
    MACRO(Not, not_, "!", 1, 1, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    /*
     * [Binary bitwise operations][1] (`|`, `^`, `&`).
     *
     * The arguments are converted to integers first. The conversion can call
     * `.toString()`/`.valueOf()` methods and can throw. The result on success
     * is always an Int32 or BigInt Value.
     *
     * [1]: https://tc39.es/ecma262/#sec-binary-bitwise-operators
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval OP rval)
     */ \
    MACRO(BitOr, bit_or, "|",  1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(BitXor, bit_xor, "^", 1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(BitAnd, bit_and, "&", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * Loose equality operators (`==` and `!=`).
     *
     * Pop two values, compare them, and push the boolean result. The
     * comparison may perform conversions that call `.toString()`/`.valueOf()`
     * methods and can throw.
     *
     * Implements: [Abstract Equality Comparison][1].
     *
     * [1]: https://tc39.es/ecma262/#sec-abstract-equality-comparison
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval OP rval)
     */ \
    MACRO(Eq, eq, "==", 1, 2, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    MACRO(Ne, ne, "!=", 1, 2, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    /*
     * Strict equality operators (`===` and `!==`).
     *
     * Pop two values, check whether they're equal, and push the boolean
     * result. This does not call user-defined methods and can't throw
     * (except possibly due to OOM while flattening a string).
     *
     * Implements: [Strict Equality Comparison][1].
     *
     * [1]: https://tc39.es/ecma262/#sec-strict-equality-comparison
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval OP rval)
     */ \
    MACRO(StrictEq, strict_eq, "===", 1, 2, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    MACRO(StrictNe, strict_ne, "!==", 1, 2, 1, JOF_BYTE|JOF_DETECTING|JOF_IC) \
    /*
     * Relative operators (`<`, `>`, `<=`, `>=`).
     *
     * Pop two values, compare them, and push the boolean result. The
     * comparison may perform conversions that call `.toString()`/`.valueOf()`
     * methods and can throw.
     *
     * Implements: [Relational Operators: Evaluation][1].
     *
     * [1]: https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval OP rval)
     */ \
    MACRO(Lt, lt, "<",  1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Gt, gt, ">",  1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Le, le, "<=", 1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Ge, ge, ">=", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The `instanceof` operator][1].
     *
     * This throws a `TypeError` if `target` is not an object. It calls
     * `target[Symbol.hasInstance](value)` if the method exists. On success,
     * the result is always a boolean value.
     *
     * [1]: https://tc39.es/ecma262/#sec-instanceofoperator
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: value, target => (value instanceof target)
     */ \
    MACRO(Instanceof, instanceof, js_instanceof_str, 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The `in` operator][1].
     *
     * Push `true` if `obj` has a property with the key `id`. Otherwise push `false`.
     *
     * This throws a `TypeError` if `obj` is not an object. This can fire
     * proxy hooks and can throw. On success, the result is always a boolean
     * value.
     *
     * [1]: https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: id, obj => (id in obj)
     */ \
    MACRO(In, in_, js_in_str, 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * [Bitwise shift operators][1] (`<<`, `>>`, `>>>`).
     *
     * Pop two values, convert them to integers, perform a bitwise shift, and
     * push the result.
     *
     * Conversion can call `.toString()`/`.valueOf()` methods and can throw.
     * The result on success is always an Int32 or BigInt Value.
     *
     * [1]: https://tc39.es/ecma262/#sec-bitwise-shift-operators
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval OP rval)
     */ \
    MACRO(Lsh, lsh, "<<", 1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Rsh, rsh, ">>", 1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Ursh, ursh, ">>>", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The binary `+` operator][1].
     *
     * Pop two values, convert them to primitive values, add them, and push the
     * result. If both values are numeric, add them; if either is a
     * string, do string concatenation instead.
     *
     * The conversion can call `.toString()`/`.valueOf()` methods and can throw.
     *
     * [1]: https://tc39.es/ecma262/#sec-addition-operator-plus-runtime-semantics-evaluation
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval + rval)
     */ \
    MACRO(Add, add, "+", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The binary `-` operator][1].
     *
     * Pop two values, convert them to numeric values, subtract the top value
     * from the other one, and push the result.
     *
     * The conversion can call `.toString()`/`.valueOf()` methods and can
     * throw. On success, the result is always numeric.
     *
     * [1]: https://tc39.es/ecma262/#sec-subtraction-operator-minus-runtime-semantics-evaluation
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval - rval)
     */ \
    MACRO(Sub, sub, "-", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * Add or subtract 1.
     *
     * `val` must already be a numeric value, such as the result of
     * `JSOp::ToNumeric`.
     *
     * Implements: [The `++` and `--` operators][1], step 3 of each algorithm.
     *
     * [1]: https://tc39.es/ecma262/#sec-postfix-increment-operator
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: val => (val +/- 1)
     */ \
    MACRO(Inc, inc, NULL, 1, 1, 1, JOF_BYTE|JOF_IC) \
    MACRO(Dec, dec, NULL, 1, 1, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The multiplicative operators][1] (`*`, `/`, `%`).
     *
     * Pop two values, convert them to numeric values, do math, and push the
     * result.
     *
     * The conversion can call `.toString()`/`.valueOf()` methods and can
     * throw. On success, the result is always numeric.
     *
     * [1]: https://tc39.es/ecma262/#sec-multiplicative-operators-runtime-semantics-evaluation
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval OP rval)
     */ \
    MACRO(Mul, mul, "*", 1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Div, div, "/", 1, 2, 1, JOF_BYTE|JOF_IC) \
    MACRO(Mod, mod, "%", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * [The exponentiation operator][1] (`**`).
     *
     * Pop two values, convert them to numeric values, do exponentiation, and
     * push the result. The top value is the exponent.
     *
     * The conversion can call `.toString()`/`.valueOf()` methods and can
     * throw. This throws a RangeError if both values are BigInts and the
     * exponent is negative.
     *
     * [1]: https://tc39.es/ecma262/#sec-exp-operator
     *
     *   Category: Expressions
     *   Type: Binary operators
     *   Operands:
     *   Stack: lval, rval => (lval ** rval)
     */ \
    MACRO(Pow, pow, "**", 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * Convert a value to a property key.
     *
     * Implements: [ToPropertyKey][1], except that if the result would be the
     * string representation of some integer in the range 0..2^31, we push the
     * corresponding Int32 value instead. This is because the spec insists that
     * array indices are strings, whereas for us they are integers.
     *
     * This is used for code like `++obj[index]`, which must do both a
     * `JSOp::GetElem` and a `JSOp::SetElem` with the same property key. Both
     * instructions would convert `index` to a property key for us, but the
     * spec says to convert it only once.
     *
     * The conversion can call `.toString()`/`.valueOf()` methods and can
     * throw.
     *
     * [1]: https://tc39.es/ecma262/#sec-topropertykey
     *
     *   Category: Expressions
     *   Type: Conversions
     *   Operands:
     *   Stack: propertyNameValue => propertyKey
     */ \
    MACRO(ToId, to_id, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Convert a value to a numeric value (a Number or BigInt).
     *
     * Implements: [ToNumeric][1](val).
     *
     * Note: This is used to implement [`++` and `--`][2]. Surprisingly, it's
     * not possible to get the right behavior using `JSOp::Add` and `JSOp::Sub`
     * alone. For one thing, `JSOp::Add` sometimes does string concatenation,
     * while `++` always does numeric addition. More fundamentally, the result
     * of evaluating `--x` is ToNumeric(old value of `x`), a value that the
     * sequence `GetLocal "x"; One; Sub; SetLocal "x"` does not give us.
     *
     * [1]: https://tc39.es/ecma262/#sec-tonumeric
     * [2]: https://tc39.es/ecma262/#sec-postfix-increment-operator
     *
     *   Category: Expressions
     *   Type: Conversions
     *   Operands:
     *   Stack: val => ToNumeric(val)
     */ \
    MACRO(ToNumeric, to_numeric, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Convert a value to a string.
     *
     * Implements: [ToString][1](val).
     *
     * Note: This is used in code for template literals, like `${x}${y}`. Each
     * substituted value must be converted using ToString. `JSOp::Add` by itself
     * would do a slightly wrong kind of conversion (hint="number" rather than
     * hint="string").
     *
     * [1]: https://tc39.es/ecma262/#sec-tostring
     *
     *   Category: Expressions
     *   Type: Conversions
     *   Stack: val => ToString(val)
     */ \
    MACRO(ToString, to_string, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Push the global `this` value. Not to be confused with the `globalThis`
     * property on the global.
     *
     * This must be used only in scopes where `this` refers to the global
     * `this`.
     *
     *   Category: Expressions
     *   Type: Other expressions
     *   Operands:
     *   Stack: => this
     */ \
    MACRO(GlobalThis, global_this, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Push the value of `new.target`.
     *
     * The result is a constructor or `undefined`.
     *
     * This must be used only in scripts where `new.target` is allowed:
     * non-arrow function scripts and other scripts that have a non-arrow
     * function script on the scope chain.
     *
     * Implements: [GetNewTarget][1].
     *
     * [1]: https://tc39.es/ecma262/#sec-getnewtarget
     *
     *   Category: Expressions
     *   Type: Other expressions
     *   Operands:
     *   Stack: => new.target
     */ \
    MACRO(NewTarget, new_target, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Dynamic import of the module specified by the string value on the top of
     * the stack.
     *
     * Implements: [Import Calls][1].
     *
     * [1]: https://tc39.es/ecma262/#sec-import-calls
     *
     *   Category: Expressions
     *   Type: Other expressions
     *   Operands:
     *   Stack: moduleId => promise
     */ \
    MACRO(DynamicImport, dynamic_import, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Push the `import.meta` object.
     *
     * This must be used only in module code.
     *
     *   Category: Expressions
     *   Type: Other expressions
     *   Operands:
     *   Stack: => import.meta
     */ \
    MACRO(ImportMeta, import_meta, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Create and push a new object with no properties.
     *
     * (This opcode has 4 unused bytes so it can be easily turned into
     * `JSOp::NewObject` during bytecode generation.)
     *
     *   Category: Objects
     *   Type: Creating objects
     *   Operands: uint32_t _unused
     *   Stack: => obj
     */ \
    MACRO(NewInit, new_init, NULL, 5, 0, 1, JOF_UINT32|JOF_IC) \
    /*
     * Create and push a new object of a predetermined shape.
     *
     * The new object has the shape of the template object
     * `script->getObject(baseobjIndex)`. Subsequent `InitProp` instructions
     * must fill in all slots of the new object before it is used in any other
     * way.
     *
     * For `JSOp::NewObject`, the new object has a group based on the allocation
     * site (or a new group if the template's group is a singleton). For
     * `JSOp::NewObjectWithGroup`, the new object has the same group as the
     * template object.
     *
     *   Category: Objects
     *   Type: Creating objects
     *   Operands: uint32_t baseobjIndex
     *   Stack: => obj
     */ \
    MACRO(NewObject, new_object, NULL, 5, 0, 1, JOF_OBJECT|JOF_IC) \
    MACRO(NewObjectWithGroup, new_object_with_group, NULL, 5, 0, 1, JOF_OBJECT|JOF_IC) \
    /*
     * Push a preconstructed object.
     *
     * Going one step further than `JSOp::NewObject`, this instruction doesn't
     * just reuse the shape--it actually pushes the preconstructed object
     * `script->getObject(objectIndex)` right onto the stack. The object must
     * be a singleton `PlainObject` or `ArrayObject`.
     *
     * The spec requires that an *ObjectLiteral* or *ArrayLiteral* creates a
     * new object every time it's evaluated, so this instruction must not be
     * used anywhere it might be executed more than once.
     *
     * There's a shell-only option, `newGlobal({cloneSingletons: true})`, that
     * makes this instruction do a deep copy of the object. A few tests use it.
     *
     *   Category: Objects
     *   Type: Creating objects
     *   Operands: uint32_t objectIndex
     *   Stack: => obj
     */ \
    MACRO(Object, object, NULL, 5, 0, 1, JOF_OBJECT) \
    /*
     * Create and push a new ordinary object with the provided [[Prototype]].
     *
     * This is used to create the `.prototype` object for derived classes.
     *
     *   Category: Objects
     *   Type: Creating objects
     *   Operands:
     *   Stack: proto => obj
     */ \
    MACRO(ObjWithProto, obj_with_proto, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Define a data property on an object.
     *
     * `obj` must be an object.
     *
     * Implements: [CreateDataPropertyOrThrow][1] as used in
     * [PropertyDefinitionEvaluation][2] of regular and shorthand
     * *PropertyDefinition*s.
     *
     *    [1]: https://tc39.es/ecma262/#sec-createdatapropertyorthrow
     *    [2]: https://tc39.es/ecma262/#sec-object-initializer-runtime-semantics-propertydefinitionevaluation
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, val => obj
     */ \
    MACRO(InitProp, init_prop, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING|JOF_IC) \
    /*
     * Like `JSOp::InitProp`, but define a non-enumerable property.
     *
     * This is used to define class methods.
     *
     * Implements: [PropertyDefinitionEvaluation][1] for methods, steps 3 and
     * 4, when *enumerable* is false.
     *
     *    [1]: https://tc39.es/ecma262/#sec-method-definitions-runtime-semantics-propertydefinitionevaluation
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, val => obj
     */ \
    MACRO(InitHiddenProp, init_hidden_prop, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING|JOF_IC) \
    /*
     * Like `JSOp::InitProp`, but define a non-enumerable, non-writable,
     * non-configurable property.
     *
     * This is used to define the `.prototype` property on classes.
     *
     * Implements: [MakeConstructor][1], step 8, when *writablePrototype* is
     * false.
     *
     *    [1]: https://tc39.es/ecma262/#sec-makeconstructor
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, val => obj
     */ \
    MACRO(InitLockedProp, init_locked_prop, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING|JOF_IC) \
    /*
     * Define a data property on `obj` with property key `id` and value `val`.
     *
     * Implements: [CreateDataPropertyOrThrow][1]. This instruction is used for
     * object literals like `{0: val}` and `{[id]: val}`, and methods like
     * `*[Symbol.iterator]() {}`.
     *
     * `JSOp::InitHiddenElem` is the same but defines a non-enumerable property,
     * for class methods.
     *
     *    [1]: https://tc39.es/ecma262/#sec-createdatapropertyorthrow
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands:
     *   Stack: obj, id, val => obj
     */ \
    MACRO(InitElem, init_elem, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING|JOF_IC) \
    MACRO(InitHiddenElem, init_hidden_elem, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING|JOF_IC) \
    /*
     * Define an accessor property on `obj` with the given `getter`.
     * `nameIndex` gives the property name.
     *
     * `JSOp::InitHiddenPropGetter` is the same but defines a non-enumerable
     * property, for getters in classes.
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, getter => obj
     */ \
    MACRO(InitPropGetter, init_prop_getter, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING) \
    MACRO(InitHiddenPropGetter, init_hidden_prop_getter, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING) \
    /*
     * Define an accessor property on `obj` with property key `id` and the given `getter`.
     *
     * This is used to implement getters like `get [id]() {}` or `get 0() {}`.
     *
     * `JSOp::InitHiddenElemGetter` is the same but defines a non-enumerable
     * property, for getters in classes.
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands:
     *   Stack: obj, id, getter => obj
     */ \
    MACRO(InitElemGetter, init_elem_getter, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING) \
    MACRO(InitHiddenElemGetter, init_hidden_elem_getter, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING) \
    /*
     * Define an accessor property on `obj` with the given `setter`.
     *
     * This is used to implement ordinary setters like `set foo(v) {}`.
     *
     * `JSOp::InitHiddenPropSetter` is the same but defines a non-enumerable
     * property, for setters in classes.
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, setter => obj
     */ \
    MACRO(InitPropSetter, init_prop_setter, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING) \
    MACRO(InitHiddenPropSetter, init_hidden_prop_setter, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPINIT|JOF_DETECTING) \
    /*
     * Define an accesssor property on `obj` with property key `id` and the
     * given `setter`.
     *
     * This is used to implement setters with computed property keys or numeric
     * keys.
     *
     * `JSOp::InitHiddenElemSetter` is the same but defines a non-enumerable
     * property, for setters in classes.
     *
     *   Category: Objects
     *   Type: Defining properties
     *   Operands:
     *   Stack: obj, id, setter => obj
     */ \
    MACRO(InitElemSetter, init_elem_setter, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING) \
    MACRO(InitHiddenElemSetter, init_hidden_elem_setter, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING) \
    /*
     * Get the value of the property `obj.name`. This can call getters and
     * proxy traps.
     *
     * `JSOp::CallProp` is exactly like `JSOp::GetProp` but hints to the VM that we're
     * getting a method in order to call it.
     *
     * Implements: [GetV][1], [GetValue][2] step 5.
     *
     * [1]: https://tc39.es/ecma262/#sec-getv
     * [2]: https://tc39.es/ecma262/#sec-getvalue
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj => obj[name]
     */ \
    MACRO(GetProp, get_prop, NULL, 5, 1, 1, JOF_ATOM|JOF_PROP|JOF_TYPESET|JOF_IC) \
    MACRO(CallProp, call_prop, NULL, 5, 1, 1, JOF_ATOM|JOF_PROP|JOF_TYPESET|JOF_IC) \
    /*
     * Get the value of the property `obj[key]`.
     *
     * `JSOp::CallElem` is exactly like `JSOp::GetElem` but hints to the VM that
     * we're getting a method in order to call it.
     *
     * Implements: [GetV][1], [GetValue][2] step 5.
     *
     * [1]: https://tc39.es/ecma262/#sec-getv
     * [2]: https://tc39.es/ecma262/#sec-getvalue
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands:
     *   Stack: obj, key => obj[key]
     */ \
    MACRO(GetElem, get_elem, NULL, 1, 2, 1, JOF_BYTE|JOF_ELEM|JOF_TYPESET|JOF_IC) \
    MACRO(CallElem, call_elem, NULL, 1, 2, 1, JOF_BYTE|JOF_ELEM|JOF_TYPESET|JOF_IC) \
    /*
     * Push the value of `obj.length`.
     *
     * `nameIndex` must be the index of the atom `"length"`. This then behaves
     * exactly like `JSOp::GetProp`.
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj => obj.length
     */ \
    MACRO(Length, length, NULL, 5, 1, 1, JOF_ATOM|JOF_PROP|JOF_TYPESET|JOF_IC) \
    /*
     * Non-strict assignment to a property, `obj.name = val`.
     *
     * This throws a TypeError if `obj` is null or undefined. If it's a
     * primitive value, the property is set on ToObject(`obj`), typically with
     * no effect.
     *
     * Implements: [PutValue][1] step 6 for non-strict code.
     *
     * [1]: https://tc39.es/ecma262/#sec-putvalue
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, val => val
     */ \
    MACRO(SetProp, set_prop, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSLOPPY|JOF_IC) \
    /*
     * Like `JSOp::SetProp`, but for strict mode code. Throw a TypeError if
     * `obj[key]` exists but is non-writable, if it's an accessor property with
     * no setter, or if `obj` is a primitive value.
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj, val => val
     */ \
    MACRO(StrictSetProp, strict_set_prop, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSTRICT|JOF_IC) \
    /*
     * Non-strict assignment to a property, `obj[key] = val`.
     *
     * Implements: [PutValue][1] step 6 for non-strict code.
     *
     * [1]: https://tc39.es/ecma262/#sec-putvalue
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands:
     *   Stack: obj, key, val => val
     */ \
    MACRO(SetElem, set_elem, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSLOPPY|JOF_IC) \
    /*
     * Like `JSOp::SetElem`, but for strict mode code. Throw a TypeError if
     * `obj[key]` exists but is non-writable, if it's an accessor property with
     * no setter, or if `obj` is a primitive value.
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands:
     *   Stack: obj, key, val => val
     */ \
    MACRO(StrictSetElem, strict_set_elem, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSTRICT|JOF_IC) \
    /*
     * Delete a property from `obj`. Push true on success, false if the
     * property existed but could not be deleted. This implements `delete
     * obj.name` in non-strict code.
     *
     * Throws if `obj` is null or undefined. Can call proxy traps.
     *
     * Implements: [`delete obj.propname`][1] step 5 in non-strict code.
     *
     * [1]: https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj => succeeded
     */ \
    MACRO(DelProp, del_prop, NULL, 5, 1, 1, JOF_ATOM|JOF_PROP|JOF_CHECKSLOPPY) \
    /*
     * Like `JSOp::DelProp`, but for strict mode code. Push `true` on success,
     * else throw a TypeError.
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands: uint32_t nameIndex
     *   Stack: obj => succeeded
     */ \
    MACRO(StrictDelProp, strict_del_prop, NULL, 5, 1, 1, JOF_ATOM|JOF_PROP|JOF_CHECKSTRICT) \
    /*
     * Delete the property `obj[key]` and push `true` on success, `false`
     * if the property existed but could not be deleted.
     *
     * This throws if `obj` is null or undefined. Can call proxy traps.
     *
     * Implements: [`delete obj[key]`][1] step 5 in non-strict code.
     *
     * [1]: https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands:
     *   Stack: obj, key => succeeded
     */ \
    MACRO(DelElem, del_elem, NULL, 1, 2, 1, JOF_BYTE|JOF_ELEM|JOF_CHECKSLOPPY) \
    /*
     * Like `JSOp::DelElem, but for strict mode code. Push `true` on success,
     * else throw a TypeError.
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands:
     *   Stack: obj, key => succeeded
     */ \
    MACRO(StrictDelElem, strict_del_elem, NULL, 1, 2, 1, JOF_BYTE|JOF_ELEM|JOF_CHECKSTRICT) \
    /*
     * Push true if `obj` has an own property `id`.
     *
     * Note that `obj` is the top value, like `JSOp::In`.
     *
     * This opcode is not used for normal JS. Self-hosted code uses it by
     * calling the intrinsic `hasOwn(id, obj)`. For example,
     * `Object.prototype.hasOwnProperty` is implemented this way (see
     * js/src/builtin/Object.js).
     *
     *   Category: Objects
     *   Type: Accessing properties
     *   Operands:
     *   Stack: id, obj => (obj.hasOwnProperty(id))
     */ \
    MACRO(HasOwn, has_own, NULL, 1, 2, 1, JOF_BYTE|JOF_IC) \
    /*
     * Push the SuperBase of the method `callee`. The SuperBase is
     * `callee.[[HomeObject]].[[GetPrototypeOf]]()`, the object where `super`
     * property lookups should begin.
     *
     * `callee` must be a function that has a HomeObject that's an object,
     * typically produced by `JSOp::Callee` or `JSOp::EnvCallee`.
     *
     * Implements: [GetSuperBase][1], except that instead of the environment,
     * the argument supplies the callee.
     *
     * [1]: https://tc39.es/ecma262/#sec-getsuperbase
     *
     *   Category: Objects
     *   Type: Super
     *   Operands:
     *   Stack: callee => superBase
     */ \
    MACRO(SuperBase, super_base, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Get the value of `receiver.name`, starting the property search at `obj`.
     * In spec terms, `obj.[[Get]](name, receiver)`.
     *
     * Implements: [GetValue][1] for references created by [`super.name`][2].
     * The `receiver` is `this` and `obj` is the SuperBase of the enclosing
     * method.
     *
     * [1]: https://tc39.es/ecma262/#sec-getvalue
     * [2]: https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
     *
     *   Category: Objects
     *   Type: Super
     *   Operands: uint32_t nameIndex
     *   Stack: receiver, obj => super.name
     */ \
    MACRO(GetPropSuper, get_prop_super, NULL, 5, 2, 1, JOF_ATOM|JOF_PROP|JOF_TYPESET|JOF_IC) \
    /*
     * Get the value of `receiver[key]`, starting the property search at `obj`.
     * In spec terms, `obj.[[Get]](key, receiver)`.
     *
     * Implements: [GetValue][1] for references created by [`super[key]`][2]
     * (where the `receiver` is `this` and `obj` is the SuperBase of the enclosing
     * method); [`Reflect.get(obj, key, receiver)`][3].
     *
     * [1]: https://tc39.es/ecma262/#sec-getvalue
     * [2]: https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
     * [3]: https://tc39.es/ecma262/#sec-reflect.get
     *
     *   Category: Objects
     *   Type: Super
     *   Operands:
     *   Stack: receiver, key, obj => super[key]
     */ \
    MACRO(GetElemSuper, get_elem_super, NULL, 1, 3, 1, JOF_BYTE|JOF_ELEM|JOF_TYPESET|JOF_IC) \
    /*
     * Assign `val` to `receiver.name`, starting the search for an existing
     * property at `obj`. In spec terms, `obj.[[Set]](name, val, receiver)`.
     *
     * Implements: [PutValue][1] for references created by [`super.name`][2] in
     * non-strict code. The `receiver` is `this` and `obj` is the SuperBase of
     * the enclosing method.
     *
     * [1]: https://tc39.es/ecma262/#sec-putvalue
     * [2]: https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
     *
     *   Category: Objects
     *   Type: Super
     *   Operands: uint32_t nameIndex
     *   Stack: receiver, obj, val => val
     */ \
    MACRO(SetPropSuper, set_prop_super, NULL, 5, 3, 1, JOF_ATOM|JOF_PROP|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSLOPPY) \
    /*
     * Like `JSOp::SetPropSuper`, but for strict mode code.
     *
     *   Category: Objects
     *   Type: Super
     *   Operands: uint32_t nameIndex
     *   Stack: receiver, obj, val => val
     */ \
    MACRO(StrictSetPropSuper, strict_set_prop_super, NULL, 5, 3, 1, JOF_ATOM|JOF_PROP|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSTRICT) \
    /*
     * Assign `val` to `receiver[key]`, strating the search for an existing
     * property at `obj`. In spec terms, `obj.[[Set]](key, val, receiver)`.
     *
     * Implements: [PutValue][1] for references created by [`super[key]`][2] in
     * non-strict code. The `receiver` is `this` and `obj` is the SuperBase of
     * the enclosing method.
     *
     * [1]: https://tc39.es/ecma262/#sec-putvalue
     * [2]: https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
     *
     *   Category: Objects
     *   Type: Super
     *   Operands:
     *   Stack: receiver, key, obj, val => val
     */ \
    MACRO(SetElemSuper, set_elem_super, NULL, 1, 4, 1, JOF_BYTE|JOF_ELEM|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSLOPPY) \
    /*
     * Like `JSOp::SetElemSuper`, but for strict mode code.
     *
     *   Category: Objects
     *   Type: Super
     *   Operands:
     *   Stack: receiver, key, obj, val => val
     */ \
    MACRO(StrictSetElemSuper, strict_set_elem_super, NULL, 1, 4, 1, JOF_BYTE|JOF_ELEM|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSTRICT) \
    /*
     * Set up a for-in loop by pushing a `PropertyIteratorObject` over the
     * enumerable properties of `val`.
     *
     * Implements: [ForIn/OfHeadEvaluation][1] step 6,
     * [EnumerateObjectProperties][1]. (The spec refers to an "Iterator object"
     * with a `next` method, but notes that it "is never directly accessible"
     * to scripts. The object we use for this has no public methods.)
     *
     * If `val` is null or undefined, this pushes an empty iterator.
     *
     * The `iter` object pushed by this instruction must not be used or removed
     * from the stack except by `JSOp::MoreIter` and `JSOp::EndIter`, or by error
     * handling.
     *
     * The script's `JSScript::trynotes()` must mark the body of the `for-in`
     * loop, i.e. exactly those instructions that begin executing with `iter`
     * on the stack, starting with the next instruction (always
     * `JSOp::LoopHead`). Code must not jump into or out of this region: control
     * can enter only by executing `JSOp::Iter` and can exit only by executing a
     * `JSOp::EndIter` or by exception unwinding. (A `JSOp::EndIter` is always
     * emitted at the end of the loop, and extra copies are emitted on "exit
     * slides", where a `break`, `continue`, or `return` statement exits the
     * loop.)
     *
     * Typically a single try note entry marks the contiguous chunk of bytecode
     * from the instruction after `JSOp::Iter` to `JSOp::EndIter` (inclusive);
     * but if that range contains any instructions on exit slides, after a
     * `JSOp::EndIter`, then those must be correctly noted as *outside* the
     * loop.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofheadevaluation-tdznames-expr-iterationkind
     * [2]: https://tc39.es/ecma262/#sec-enumerate-object-properties
     *
     *   Category: Objects
     *   Type: Enumeration
     *   Operands:
     *   Stack: val => iter
     */ \
    MACRO(Iter, iter, NULL, 1, 1, 1, JOF_BYTE|JOF_IC) \
    /*
     * Get the next property name for a for-in loop.
     *
     * `iter` must be a `PropertyIteratorObject` produced by `JSOp::Iter`.  This
     * pushes the property name for the next loop iteration, or
     * `MagicValue(JS_NO_ITER_VALUE)` if there are no more enumerable
     * properties to iterate over. The magic value must be used only by
     * `JSOp::IsNoIter` and `JSOp::EndIter`.
     *
     *   Category: Objects
     *   Type: Enumeration
     *   Operands:
     *   Stack: iter => iter, name
     */ \
    MACRO(MoreIter, more_iter, NULL, 1, 1, 2, JOF_BYTE) \
    /*
     * Test whether the value on top of the stack is
     * `MagicValue(JS_NO_ITER_VALUE)` and push the boolean result.
     *
     *   Category: Objects
     *   Type: Enumeration
     *   Operands:
     *   Stack: val => val, done
     */ \
    MACRO(IsNoIter, is_no_iter, NULL, 1, 1, 2, JOF_BYTE) \
    /*
     * No-op instruction to hint to IonBuilder that the value on top of the
     * stack is the (likely string) key in a for-in loop.
     *
     *   Category: Objects
     *   Type: Enumeration
     *   Operands:
     *   Stack: val => val
     */ \
    MACRO(IterNext, iter_next, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Exit a for-in loop, closing the iterator.
     *
     * `iter` must be a `PropertyIteratorObject` pushed by `JSOp::Iter`.
     *
     *   Category: Objects
     *   Type: Enumeration
     *   Operands:
     *   Stack: iter, iterval =>
     */ \
    MACRO(EndIter, end_iter, NULL, 1, 2, 0, JOF_BYTE) \
    /*
     * Check that the top value on the stack is an object, and throw a
     * TypeError if not. `kind` is used only to generate an appropriate error
     * message. It must be in range for `js::CheckIsObjectKind`.
     *
     * Implements: [GetIterator][1] step 5, [IteratorNext][2] step 3. Both
     * operations call a JS method which scripts can define however they want,
     * so they check afterwards that the method returned an object.
     *
     * [1]: https://tc39.es/ecma262/#sec-getiterator
     * [2]: https://tc39.es/ecma262/#sec-iteratornext
     *
     *   Category: Objects
     *   Type: Iteration
     *   Operands: uint8_t kind
     *   Stack: result => result
     */ \
    MACRO(CheckIsObj, check_is_obj, NULL, 2, 1, 1, JOF_UINT8) \
    /*
     * Check that the top value on the stack is callable, and throw a TypeError
     * if not. The operand `kind` is used only to generate an appropriate error
     * message. It must be in range for `js::CheckIsCallableKind`.
     *
     *   Category: Objects
     *   Type: Iteration
     *   Operands: uint8_t kind
     *   Stack: obj => obj
     */ \
    MACRO(CheckIsCallable, check_is_callable, NULL, 2, 1, 1, JOF_UINT8) \
    /*
     * Throw a TypeError if `val` is `null` or `undefined`.
     *
     * Implements: [RequireObjectCoercible][1]. But most instructions that
     * require an object will perform this check for us, so of the dozens of
     * calls to RequireObjectCoercible in the spec, we need this instruction
     * only for [destructuring assignment][2] and [initialization][3].
     *
     * [1]: https://tc39.es/ecma262/#sec-requireobjectcoercible
     * [2]: https://tc39.es/ecma262/#sec-runtime-semantics-destructuringassignmentevaluation
     * [3]: https://tc39.es/ecma262/#sec-destructuring-binding-patterns-runtime-semantics-bindinginitialization
     *
     *   Category: Objects
     *   Type: Iteration
     *   Operands:
     *   Stack: val => val
     */ \
    MACRO(CheckObjCoercible, check_obj_coercible, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Create and push an async iterator wrapping the sync iterator `iter`.
     * `next` should be `iter`'s `.next` method.
     *
     * Implements: [CreateAsyncToSyncIterator][1]. The spec says this operation
     * takes one argument, but that argument is a Record with two relevant
     * fields, `[[Iterator]]` and `[[NextMethod]]`.
     *
     * Used for `for await` loops.
     *
     * [1]: https://tc39.es/ecma262/#sec-createasyncfromsynciterator
     *
     *   Category: Objects
     *   Type: Iteration
     *   Operands:
     *   Stack: iter, next => asynciter
     */ \
    MACRO(ToAsyncIter, to_async_iter, NULL, 1, 2, 1, JOF_BYTE) \
    /*
     * Set the prototype of `obj`.
     *
     * `obj` must be an object.
     *
     * Implements: [B.3.1 __proto__ Property Names in Object Initializers][1], step 7.a.
     *
     * [1]: https://tc39.es/ecma262/#sec-__proto__-property-names-in-object-initializers
     *
     *   Category: Objects
     *   Type: SetPrototype
     *   Operands:
     *   Stack: obj, protoVal => obj
     */ \
    MACRO(MutateProto, mutate_proto, NULL, 1, 2, 1, JOF_BYTE) \
    /*
     * Create and push a new Array object with the given `length`,
     * preallocating enough memory to hold that many elements.
     *
     *   Category: Objects
     *   Type: Array literals
     *   Operands: uint32_t length
     *   Stack: => array
     */ \
    MACRO(NewArray, new_array, NULL, 5, 0, 1, JOF_UINT32|JOF_IC) \
    /*
     * Initialize an array element `array[index]` with value `val`.
     *
     * `val` may be `MagicValue(JS_ELEMENTS_HOLE)`. If it is, this does nothing.
     *
     * This never calls setters or proxy traps.
     *
     * `array` must be an Array object created by `JSOp::NewArray` with length >
     * `index`, and never used except by `JSOp::InitElemArray`.
     *
     * Implements: [ArrayAccumulation][1], the third algorithm, step 4, in the
     * common case where *nextIndex* is known.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
     *
     *   Category: Objects
     *   Type: Array literals
     *   Operands: uint32_t index
     *   Stack: array, val => array
     */ \
    MACRO(InitElemArray, init_elem_array, NULL, 5, 2, 1, JOF_UINT32|JOF_ELEM|JOF_PROPINIT|JOF_DETECTING|JOF_IC) \
    /*
     * Initialize an array element `array[index++]` with value `val`.
     *
     * `val` may be `MagicValue(JS_ELEMENTS_HOLE)`. If it is, no element is
     * defined, but the array length and the stack value `index` are still
     * incremented.
     *
     * This never calls setters or proxy traps.
     *
     * `array` must be an Array object created by `JSOp::NewArray` and never used
     * except by `JSOp::InitElemArray` and `JSOp::InitElemInc`.
     *
     * `index` must be an integer, `0 <= index <= INT32_MAX`. If `index` is
     * `INT32_MAX`, this throws a RangeError.
     *
     * This instruction is used when an array literal contains a
     * *SpreadElement*. In `[a, ...b, c]`, `InitElemArray 0` is used to put
     * `a` into the array, but `InitElemInc` is used for the elements of `b`
     * and for `c`.
     *
     * Implements: Several steps in [ArrayAccumulation][1] that call
     * CreateDataProperty, set the array length, and/or increment *nextIndex*.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
     *
     *   Category: Objects
     *   Type: Array literals
     *   Operands:
     *   Stack: array, index, val => array, (index + 1)
     */ \
    MACRO(InitElemInc, init_elem_inc, NULL, 1, 3, 2, JOF_BYTE|JOF_ELEM|JOF_PROPINIT|JOF_IC) \
    /*
     * Push `MagicValue(JS_ELEMENTS_HOLE)`, representing an *Elision* in an
     * array literal (like the missing property 0 in the array `[, 1]`).
     *
     * This magic value must be used only by `JSOp::InitElemArray` or
     * `JSOp::InitElemInc`.
     *
     *   Category: Objects
     *   Type: Array literals
     *   Operands:
     *   Stack: => hole
     */ \
    MACRO(Hole, hole, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Create and push a new array that shares the elements of a template
     * object.
     *
     * `script->getObject(objectIndex)` must be a copy-on-write array whose
     * elements are all primitive values.
     *
     * This is an optimization. This single instruction implements an entire
     * array literal, saving run time, code, and memory compared to
     * `JSOp::NewArray` and a series of `JSOp::InitElem` instructions.
     *
     *   Category: Objects
     *   Type: Array literals
     *   Operands: uint32_t objectIndex
     *   Stack: => array
     */ \
    MACRO(NewArrayCopyOnWrite, new_array_copy_on_write, NULL, 5, 0, 1, JOF_OBJECT) \
    /*
     * Clone and push a new RegExp object.
     *
     * Implements: [Evaluation for *RegularExpressionLiteral*][1].
     *
     * [1]: https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation
     *
     *   Category: Objects
     *   Type: RegExp literals
     *   Operands: uint32_t regexpIndex
     *   Stack: => regexp
     */ \
    MACRO(RegExp, reg_exp, NULL, 5, 0, 1, JOF_REGEXP) \
    /*
     * Push a function object.
     *
     * This clones the function unless it's a singleton; see
     * `CanReuseFunctionForClone`. The new function inherits the current
     * environment chain.
     *
     * Used to create most JS functions. Notable exceptions are arrow functions
     * and derived or default class constructors.
     *
     * The function indicated by `funcIndex` must be a non-arrow function.
     *
     * Implements: [InstantiateFunctionObject][1], [Evaluation for
     * *FunctionExpression*][2], and so on.
     *
     * [1]: https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-instantiatefunctionobject
     * [2]: https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
     *
     *   Category: Functions
     *   Type: Creating functions
     *   Operands: uint32_t funcIndex
     *   Stack: => fn
     */ \
    MACRO(Lambda, lambda, NULL, 5, 0, 1, JOF_OBJECT) \
    /*
     * Push a new arrow function.
     *
     * `newTarget` matters only if the arrow function uses the expression
     * `new.target`. It should be the current value of `new.target`, so that
     * the arrow function inherits `new.target` from the enclosing scope. (If
     * `new.target` is illegal here, the value doesn't matter; use `null`.)
     *
     * The function indicated by `funcIndex` must be an arrow function.
     *
     *   Category: Functions
     *   Type: Creating functions
     *   Operands: uint32_t funcIndex
     *   Stack: newTarget => arrowFn
     */ \
    MACRO(LambdaArrow, lambda_arrow, NULL, 5, 1, 1, JOF_OBJECT) \
    /*
     * Set the name of a function.
     *
     * `fun` must be a function object. `name` must be a string, Int32 value,
     * or symbol (like the result of `JSOp::ToId`).
     *
     * Implements: [SetFunctionName][1], used e.g. to name methods with
     * computed property names.
     *
     * [1]: https://tc39.es/ecma262/#sec-setfunctionname
     *
     *   Category: Functions
     *   Type: Creating functions
     *   Operands: uint8_t prefixKind
     *   Stack: fun, name => fun
     */ \
    MACRO(SetFunName, set_fun_name, NULL, 2, 2, 1, JOF_UINT8) \
    /*
     * Initialize the home object for functions with super bindings.
     *
     *   Category: Functions
     *   Type: Creating functions
     *   Operands:
     *   Stack: fun, homeObject => fun
     */ \
    MACRO(InitHomeObject, init_home_object, NULL, 1, 2, 1, JOF_BYTE) \
    /*
     * Throw a TypeError if `baseClass` isn't either `null` or a constructor.
     *
     * Implements: [ClassDefinitionEvaluation][1] step 6.f.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
     *
     *   Category: Functions
     *   Type: Creating constructors
     *   Operands:
     *   Stack: baseClass => baseClass
     */ \
    MACRO(CheckClassHeritage, check_class_heritage, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Like `JSOp::Lambda`, but using `proto` as the new function's
     * `[[Prototype]]` (or `%FunctionPrototype%` if `proto` is `null`).
     *
     * `proto` must be either a constructor or `null`. We use
     * `JSOp::CheckClassHeritage` to check.
     *
     * This is used to create the constructor for a derived class.
     *
     * Implements: [ClassDefinitionEvaluation][1] steps 6.e.ii, 6.g.iii, and
     * 12 for derived classes.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
     *
     *   Category: Functions
     *   Type: Creating constructors
     *   Operands: uint32_t funcIndex
     *   Stack: proto => obj
     */ \
    MACRO(FunWithProto, fun_with_proto, NULL, 5, 1, 1, JOF_OBJECT) \
    /*
     * Create and push a default constructor for a base class.
     *
     * A default constructor behaves like `constructor() {}`.
     *
     * Implements: [ClassDefinitionEvaluation for *ClassTail*][1], steps
     * 10.b. and 12-17.
     *
     * The `sourceStart`/`sourceEnd` offsets are the start/end offsets of the
     * class definition in the source buffer and are used for `toString()`.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
     *
     *   Category: Functions
     *   Type: Creating constructors
     *   Operands: uint32_t nameIndex, uint32_t sourceStart, uint32_t sourceEnd
     *   Stack: => constructor
     */ \
    MACRO(ClassConstructor, class_constructor, NULL, 13, 0, 1, JOF_CLASS_CTOR) \
    /*
     * Create and push a default constructor for a derived class.
     *
     * A default derived-class constructor behaves like
     * `constructor(...args) { super(...args); }`.
     *
     * Implements: [ClassDefinitionEvaluation for *ClassTail*][1], steps
     * 10.a. and 12-17.
     *
     * The `sourceStart`/`sourceEnd` offsets are the start/end offsets of the
     * class definition in the source buffer and are used for `toString()`.
     *
     * [1]: https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
     *
     *   Category: Functions
     *   Type: Creating constructors
     *   Operands: uint32_t nameIndex, uint32_t sourceStart, uint32_t sourceEnd
     *   Stack: proto => constructor
     */ \
    MACRO(DerivedConstructor, derived_constructor, NULL, 13, 1, 1, JOF_CLASS_CTOR) \
    /*
     * Pushes the current global's builtin prototype for a given proto key.
     *
     *   Category: Functions
     *   Type: Creating constructors
     *   Operands: uint8_t kind
     *   Stack: => %BuiltinPrototype%
     */ \
    MACRO(BuiltinProto, builtin_proto, NULL, 2, 0, 1, JOF_UINT8) \
    /*
     * Invoke `callee` with `this` and `args`, and push the return value. Throw
     * a TypeError if `callee` isn't a function.
     *
     * `JSOp::CallIter` is used for implicit calls to @@iterator methods, to
     * ensure error messages are formatted with `JSMSG_NOT_ITERABLE` ("x is not
     * iterable") rather than `JSMSG_NOT_FUNCTION` ("x[Symbol.iterator] is not
     * a function"). The `argc` operand must be 0 for this variation.
     *
     * `JSOp::FunApply` hints to the VM that this is likely a call to the
     * builtin method `Function.prototype.apply`, an easy optimization target.
     *
     * `JSOp::FunCall` similarly hints to the VM that the callee is likely
     * `Function.prototype.call`.
     *
     * `JSOp::CallIgnoresRv` hints to the VM that the return value is ignored.
     * This allows alternate faster implementations to be used that avoid
     * unnecesary allocations.
     *
     * Implements: [EvaluateCall][1] steps 4, 5, and 7.
     *
     * [1]: https://tc39.es/ecma262/#sec-evaluatecall
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint16_t argc
     *   Stack: callee, this, args[0], ..., args[argc-1] => rval
     */ \
    MACRO(Call, call, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_IC) \
    MACRO(CallIter, call_iter, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_IC) \
    MACRO(FunApply, fun_apply, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_IC) \
    MACRO(FunCall, fun_call, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_IC) \
    MACRO(CallIgnoresRv, call_ignores_rv, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_IC) \
    /*
     * Like `JSOp::Call`, but the arguments are provided in an array rather than
     * a span of stack slots. Used to implement spread-call syntax:
     * `f(...args)`.
     *
     * `args` must be an Array object containing the actual arguments. The
     * array must be packed (dense and free of holes; see IsPackedArray).
     * This can be ensured by creating the array with `JSOp::NewArray` and
     * populating it using `JSOp::InitElemArray`.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: callee, this, args => rval
     */ \
    MACRO(SpreadCall, spread_call, NULL, 1, 3, 1, JOF_BYTE|JOF_INVOKE|JOF_SPREAD|JOF_TYPESET|JOF_IC) \
    /*
     * Push true if `arr` is an array object that can be passed directly as the
     * `args` argument to `JSOp::SpreadCall`.
     *
     * This instruction and the branch around the iterator loop are emitted
     * only when `arr` is itself a rest parameter, as in `(...arr) =>
     * f(...arr)`, a strong hint that it's a packed Array whose prototype is
     * `Array.prototype`.
     *
     * See `js::OptimizeSpreadCall`.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: arr => arr, optimized
     */ \
    MACRO(OptimizeSpreadCall, optimize_spread_call, NULL, 1, 1, 2, JOF_BYTE) \
    /*
     * Perform a direct eval in the current environment if `callee` is the
     * builtin `eval` function, otherwise follow same behaviour as `JSOp::Call`.
     *
     * All direct evals use one of the JSOp::*Eval instructions here and these
     * opcodes are only used when the syntactic conditions for a direct eval
     * are met. If the builtin `eval` function is called though other means, it
     * becomes an indirect eval.
     *
     * Direct eval causes all bindings in *enclosing* non-global scopes to be
     * marked "aliased". The optimization that puts bindings in stack slots has
     * to prove that the bindings won't need to be captured by closures or
     * accessed using `JSOp::{Get,Bind,Set,Del}Name` instructions. Direct eval
     * makes that analysis impossible.
     *
     * Implements: [Function Call Evaluation][1], steps 5-7 and 9, when the
     * syntactic critera for direct eval in step 6 are all met.
     *
     * [1]: https://tc39.es/ecma262/#sec-function-calls-runtime-semantics-evaluation
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint16_t argc
     *   Stack: callee, this, args[0], ..., args[argc-1] => rval
     */ \
    MACRO(Eval, eval, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_CHECKSLOPPY|JOF_IC) \
    /*
     * Spread-call variant of `JSOp::Eval`.
     *
     * See `JSOp::SpreadCall` for restrictions on `args`.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: callee, this, args => rval
     */ \
    MACRO(SpreadEval, spread_eval, NULL, 1, 3, 1, JOF_BYTE|JOF_INVOKE|JOF_SPREAD|JOF_TYPESET|JOF_CHECKSLOPPY|JOF_IC) \
    /*
     * Like `JSOp::Eval`, but for strict mode code.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint16_t argc
     *   Stack: evalFn, this, args[0], ..., args[argc-1] => rval
     */ \
    MACRO(StrictEval, strict_eval, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_TYPESET|JOF_CHECKSTRICT|JOF_IC) \
    /*
     * Spread-call variant of `JSOp::StrictEval`.
     *
     * See `JSOp::SpreadCall` for restrictions on `args`.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: callee, this, args => rval
     */ \
    MACRO(StrictSpreadEval, strict_spread_eval, NULL, 1, 3, 1, JOF_BYTE|JOF_INVOKE|JOF_SPREAD|JOF_TYPESET|JOF_CHECKSTRICT|JOF_IC) \
    /*
     * Push the implicit `this` value for an unqualified function call, like
     * `foo()`. `nameIndex` gives the name of the function we're calling.
     *
     * The result is always `undefined` except when the name refers to a `with`
     * binding.  For example, in `with (date) { getFullYear(); }`, the
     * implicit `this` passed to `getFullYear` is `date`, not `undefined`.
     *
     * This walks the run-time environment chain looking for the environment
     * record that contains the function. If the function call is not inside a
     * `with` statement, use `JSOp::GImplicitThis` instead. If the function call
     * definitely refers to a local binding, use `JSOp::Undefined`.
     *
     * Implements: [EvaluateCall][1] step 1.b. But not entirely correctly.
     * See [bug 1166408][2].
     *
     * [1]: https://tc39.es/ecma262/#sec-evaluatecall
     * [2]: https://bugzilla.mozilla.org/show_bug.cgi?id=1166408
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint32_t nameIndex
     *   Stack: => this
     */ \
    MACRO(ImplicitThis, implicit_this, "", 5, 0, 1, JOF_ATOM) \
    /*
     * Like `JSOp::ImplicitThis`, but the name must not be bound in any local
     * environments.
     *
     * The result is always `undefined` except when the name refers to a
     * binding in a non-syntactic `with` environment.
     *
     * Note: The frontend has to emit `JSOp::GImplicitThis` (and not
     * `JSOp::Undefined`) for global unqualified function calls, even when
     * `CompileOptions::nonSyntacticScope == false`, because later
     * `js::CloneGlobalScript` can be called with `ScopeKind::NonSyntactic` to
     * clone the script into a non-syntactic environment, with the bytecode
     * reused, unchanged.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint32_t nameIndex
     *   Stack: => this
     */ \
    MACRO(GImplicitThis, g_implicit_this, "", 5, 0, 1, JOF_ATOM) \
    /*
     * Push the call site object for a tagged template call.
     *
     * `script->getObject(objectIndex)` is the call site object;
     * `script->getObject(objectIndex + 1)` is the raw object.
     *
     * The first time this instruction runs for a given template, it assembles
     * the final value, defining the `.raw` property on the call site object
     * and freezing both objects.
     *
     * Implements: [GetTemplateObject][1], steps 4 and 12-16.
     *
     * [1]: https://tc39.es/ecma262/#sec-gettemplateobject
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint32_t objectIndex
     *   Stack: => callSiteObj
     */ \
    MACRO(CallSiteObj, call_site_obj, NULL, 5, 0, 1, JOF_OBJECT) \
    /*
     * Push `MagicValue(JS_IS_CONSTRUCTING)`.
     *
     * This magic value is a required argument to the `JSOp::New` and
     * `JSOp::SuperCall` instructions and must not be used any other way.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: => JS_IS_CONSTRUCTING
     */ \
    MACRO(IsConstructing, is_constructing, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Invoke `callee` as a constructor with `args` and `newTarget`, and push
     * the return value. Throw a TypeError if `callee` isn't a constructor.
     *
     * `isConstructing` must be the value pushed by `JSOp::IsConstructing`.
     *
     * `JSOp::SuperCall` behaves exactly like `JSOp::New`, but is used for
     * *SuperCall* expressions, to allow JITs to distinguish them from `new`
     * expressions.
     *
     * Implements: [EvaluateConstruct][1] steps 7 and 8.
     *
     * [1]: https://tc39.es/ecma262/#sec-evaluatenew
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands: uint16_t argc
     *   Stack: callee, isConstructing, args[0], ..., args[argc-1], newTarget => rval
     */ \
    MACRO(New, new_, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_CONSTRUCT|JOF_TYPESET|JOF_IC|JOF_IC) \
    MACRO(SuperCall, super_call, NULL, 3, -1, 1, JOF_ARGC|JOF_INVOKE|JOF_CONSTRUCT|JOF_TYPESET|JOF_IC) \
    /*
     * Spread-call variant of `JSOp::New`.
     *
     * Invokes `callee` as a constructor with `args` and `newTarget`, and
     * pushes the return value onto the stack.
     *
     * `isConstructing` must be the value pushed by `JSOp::IsConstructing`.
     * See `JSOp::SpreadCall` for restrictions on `args`.
     *
     * `JSOp::SpreadSuperCall` behaves exactly like `JSOp::SpreadNew`, but is
     * used for *SuperCall* expressions.
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: callee, isConstructing, args, newTarget => rval
     */ \
    MACRO(SpreadNew, spread_new, NULL, 1, 4, 1, JOF_BYTE|JOF_INVOKE|JOF_CONSTRUCT|JOF_SPREAD|JOF_TYPESET|JOF_IC) \
    MACRO(SpreadSuperCall, spread_super_call, NULL, 1, 4, 1, JOF_BYTE|JOF_INVOKE|JOF_CONSTRUCT|JOF_SPREAD|JOF_TYPESET|JOF_IC) \
    /*
     * Push the prototype of `callee` in preparation for calling `super()`.
     * Throw a TypeError if that value is not a constructor.
     *
     * `callee` must be a derived class constructor.
     *
     * Implements: [GetSuperConstructor][1], steps 4-7.
     *
     * [1]: https://tc39.es/ecma262/#sec-getsuperconstructor
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: callee => superFun
     */ \
    MACRO(SuperFun, super_fun, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Throw a ReferenceError if `thisval` is not
     * `MagicValue(JS_UNINITIALIZED_LEXICAL)`. Used in derived class
     * constructors to prohibit calling `super` more than once.
     *
     * Implements: [BindThisValue][1], step 3.
     *
     * [1]: https://tc39.es/ecma262/#sec-bindthisvalue
     *
     *   Category: Functions
     *   Type: Calls
     *   Operands:
     *   Stack: thisval => thisval
     */ \
    MACRO(CheckThisReinit, check_this_reinit, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Initializes generator frame, creates a generator and pushes it on the
     * stack.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: => generator
     */ \
    MACRO(Generator, generator, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Pops the generator from the top of the stack, suspends it and stops
     * execution.
     *
     * When resuming execution, JSOp::Resume pushes the rval, gen and resumeKind
     * values. resumeKind is the GeneratorResumeKind stored as int32.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands: uint24_t resumeIndex
     *   Stack: gen => rval, gen, resumeKind
     */ \
    MACRO(InitialYield, initial_yield, NULL, 4, 1, 3, JOF_RESUMEINDEX) \
    /*
     * Bytecode emitted after 'yield' expressions. This is useful for the
     * Debugger and `AbstractGeneratorObject::isAfterYieldOrAwait`. It's
     * treated as jump target op so that the Baseline Interpreter can
     * efficiently restore the frame's interpreterICEntry when resuming a
     * generator.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands: uint32_t icIndex
     *   Stack: =>
     */ \
    MACRO(AfterYield, after_yield, NULL, 5, 0, 0, JOF_ICINDEX) \
    /*
     * Pops the generator and suspends and closes it. Yields the value in the
     * frame's return value slot.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: gen =>
     */ \
    MACRO(FinalYieldRval, final_yield_rval, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Pops the generator and the return value 'rval1', stops execution and
     * returns 'rval1'.
     *
     * When resuming execution, JSOp::Resume pushes the rval2, gen and resumeKind
     * values.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands: uint24_t resumeIndex
     *   Stack: rval1, gen => rval2, gen, resumeKind
     */ \
    MACRO(Yield, yield, NULL, 4, 2, 3, JOF_RESUMEINDEX) \
    /*
     * Pushes a boolean indicating whether the top of the stack is
     * `MagicValue(JS_GENERATOR_CLOSING)`.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: val => val, res
     */ \
    MACRO(IsGenClosing, is_gen_closing, NULL, 1, 1, 2, JOF_BYTE) \
    /*
     * Pops the top two values 'value' and 'gen' from the stack, then starts
     * "awaiting" for 'value' to be resolved, which will then resume the
     * execution of 'gen'. Pushes the async function promise on the stack, so
     * that it'll be returned to the caller on the very first "await".
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: value, gen => promise
     */ \
    MACRO(AsyncAwait, async_await, NULL, 1, 2, 1, JOF_BYTE) \
    /*
     * Pops the top two values 'valueOrReason' and 'gen' from the stack, then
     * pushes the promise resolved with 'valueOrReason'. `gen` must be the
     * internal generator object created in async functions. The pushed promise
     * is the async function's result promise, which is stored in `gen`.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands: uint8_t fulfillOrReject
     *   Stack: valueOrReason, gen => promise
     */ \
    MACRO(AsyncResolve, async_resolve, NULL, 2, 2, 1, JOF_UINT8) \
    /*
     * Pops the generator and the return value 'promise', stops execution and
     * returns 'promise'.
     *
     * When resuming execution, JSOp::Resume pushes the resolved, gen and
     * resumeKind values. resumeKind is the GeneratorResumeKind stored as int32.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands: uint24_t resumeIndex
     *   Stack: promise, gen => resolved, gen, resumeKind
     */ \
    MACRO(Await, await, NULL, 4, 2, 3, JOF_RESUMEINDEX) \
    /*
     * Pops the top of stack value as 'value', checks if the await for 'value'
     * can be skipped. If the await operation can be skipped and the resolution
     * value for 'value' can be acquired, pushes the resolution value and
     * 'true' onto the stack. Otherwise, pushes 'value' and 'false' on the
     * stack.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: value => value_or_resolved, canskip
     */ \
    MACRO(TrySkipAwait, try_skip_await, NULL, 1, 1, 2, JOF_BYTE) \
    /*
     * Pushes one of the GeneratorResumeKind values as Int32Value.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands: GeneratorResumeKind resumeKind (encoded as uint8_t)
     *   Stack: => resumeKind
     */ \
    MACRO(ResumeKind, resume_kind, NULL, 2, 0, 1, JOF_UINT8) \
    /*
     * Pops the generator and resumeKind values. resumeKind is the
     * GeneratorResumeKind stored as int32. If resumeKind is Next, continue
     * execution. If resumeKind is Throw or Return, these completions are
     * handled by throwing an exception. See GeneratorThrowOrReturn.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: rval, gen, resumeKind => rval
     */ \
    MACRO(CheckResumeKind, check_resume_kind, NULL, 1, 3, 1, JOF_BYTE) \
    /*
     * Pops the generator, argument and resumeKind from the stack, pushes a new
     * generator frame and resumes execution of it. Pushes the return value
     * after the generator yields.
     *
     *   Category: Functions
     *   Type: Generators and async functions
     *   Operands:
     *   Stack: gen, val, resumeKind => rval
     */ \
    MACRO(Resume, resume, NULL, 1, 3, 1, JOF_BYTE|JOF_INVOKE) \
    /*
     * No-op instruction marking the target of a jump instruction.
     *
     * This instruction and a few others (see `js::BytecodeIsJumpTarget`) are
     * jump target instructions. The Baseline Interpreter uses these
     * instructions to sync the frame's `interpreterICEntry` after a jump. Ion
     * uses them to find block boundaries when translating bytecode to MIR.
     *
     *   Category: Control flow
     *   Type: Jump targets
     *   Operands: uint32_t icIndex
     *   Stack: =>
     */ \
    MACRO(JumpTarget, jump_target, NULL, 5, 0, 0, JOF_ICINDEX) \
    /*
     * Marks the target of the backwards jump for some loop.
     *
     * This is a jump target instruction (see `JSOp::JumpTarget`). Additionally,
     * it checks for interrupts and handles JIT tiering.
     *
     * The `depthHint` operand is a loop depth hint for Ion. It starts at 1 and
     * deeply nested loops all have the same value.
     *
     * For the convenience of the JITs, scripts must not start with this
     * instruction. See bug 1602390.
     *
     *   Category: Control flow
     *   Type: Jump targets
     *   Operands: uint32_t icIndex, uint8_t depthHint
     *   Stack: =>
     */ \
    MACRO(LoopHead, loop_head, NULL, 6, 0, 0, JOF_LOOPHEAD) \
    /*
     * Jump to a 32-bit offset from the current bytecode.
     *
     * See "Jump instructions" above for details.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t offset
     *   Stack: =>
     */ \
    MACRO(Goto, goto_, NULL, 5, 0, 0, JOF_JUMP) \
    /*
     * If ToBoolean(`cond`) is false, jumps to a 32-bit offset from the current
     * instruction.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t forwardOffset
     *   Stack: cond =>
     */ \
    MACRO(IfEq, if_eq, NULL, 5, 1, 0, JOF_JUMP|JOF_DETECTING|JOF_IC) \
    /*
     * If ToBoolean(`cond`) is true, jump to a 32-bit offset from the current
     * instruction.
     *
     * `offset` may be positive or negative. This is the instruction used at the
     * end of a do-while loop to jump back to the top.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t offset
     *   Stack: cond =>
     */ \
    MACRO(IfNe, if_ne, NULL, 5, 1, 0, JOF_JUMP|JOF_IC) \
    /*
     * Short-circuit for logical AND.
     *
     * If ToBoolean(`cond`) is false, jump to a 32-bit offset from the current
     * instruction. The value remains on the stack.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t forwardOffset
     *   Stack: cond => cond
     */ \
    MACRO(And, and_, NULL, 5, 1, 1, JOF_JUMP|JOF_DETECTING|JOF_IC) \
    /*
     * Short-circuit for logical OR.
     *
     * If ToBoolean(`cond`) is true, jump to a 32-bit offset from the current
     * instruction. The value remains on the stack.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t forwardOffset
     *   Stack: cond => cond
     */ \
    MACRO(Or, or_, NULL, 5, 1, 1, JOF_JUMP|JOF_DETECTING|JOF_IC) \
    /*
     * Short-circuiting for nullish coalescing.
     *
     * If `val` is not null or undefined, jump to a 32-bit offset from the
     * current instruction.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t forwardOffset
     *   Stack: val => val
     */ \
    MACRO(Coalesce, coalesce, NULL, 5, 1, 1, JOF_JUMP|JOF_DETECTING) \
     /*
     * Like `JSOp::IfNe` ("jump if true"), but if the branch is taken,
     * pop and discard an additional stack value.
     *
     * This is used to implement `switch` statements when the
     * `JSOp::TableSwitch` optimization is not possible. The switch statement
     *
     *     switch (expr) {
     *         case A: stmt1;
     *         case B: stmt2;
     *     }
     *
     * compiles to this bytecode:
     *
     *         # dispatch code - evaluate expr, check it against each `case`,
     *         # jump to the right place in the body or to the end.
     *         <expr>
     *         Dup; <A>; StrictEq; Case L1; JumpTarget
     *         Dup; <B>; StrictEq; Case L2; JumpTarget
     *         Default LE
     *
     *         # body code
     *     L1: JumpTarget; <stmt1>
     *     L2: JumpTarget; <stmt2>
     *     LE: JumpTarget
     *
     * This opcode is weird: it's the only one whose ndefs varies depending on
     * which way a conditional branch goes. We could implement switch
     * statements using `JSOp::IfNe` and `JSOp::Pop`, but that would also be
     * awkward--putting the `JSOp::Pop` inside the `switch` body would
     * complicate fallthrough.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t forwardOffset
     *   Stack: val, cond => val (if !cond)
     */ \
    MACRO(Case, case_, NULL, 5, 2, 1, JOF_JUMP) \
    /*
     * Like `JSOp::Goto`, but pop and discard an additional stack value.
     *
     * This appears after all cases for a non-optimized `switch` statement. If
     * there's a `default:` label, it jumps to that point in the body;
     * otherwise it jumps to the next statement.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t forwardOffset
     *   Stack: lval =>
     */ \
    MACRO(Default, default_, NULL, 5, 1, 0, JOF_JUMP) \
    /*
     * Optimized switch-statement dispatch, used when all `case` labels are
     * small integer constants.
     *
     * If `low <= i <= high`, jump to the instruction at the offset given by
     * `script->resumeOffsets()[firstResumeIndex + i - low]`, in bytes from the
     * start of the current script's bytecode. Otherwise, jump to the
     * instruction at `defaultOffset` from the current instruction. All of
     * these offsets must be in range for the current script and must point to
     * `JSOp::JumpTarget` instructions.
     *
     * The following inequalities must hold: `low <= high` and
     * `firstResumeIndex + high - low < resumeOffsets().size()`.
     *
     *   Category: Control flow
     *   Type: Jumps
     *   Operands: int32_t defaultOffset, int32_t low, int32_t high,
     *             uint24_t firstResumeIndex
     *   Stack: i =>
     */ \
    MACRO(TableSwitch, table_switch, NULL, 16, 1, 0, JOF_TABLESWITCH|JOF_DETECTING) \
    /*
     * Return `rval`.
     *
     * This must not be used in derived class constructors. Instead use
     * `JSOp::SetRval`, `JSOp::CheckReturn`, and `JSOp::RetRval`.
     *
     *   Category: Control flow
     *   Type: Return
     *   Operands:
     *   Stack: rval =>
     */ \
    MACRO(Return, return_, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Push the current stack frame's `returnValue`. If no `JSOp::SetRval`
     * instruction has been executed in this stack frame, this is `undefined`.
     *
     * Every stack frame has a `returnValue` slot, used by top-level scripts,
     * generators, async functions, and derived class constructors. Plain
     * functions usually use `JSOp::Return` instead.
     *
     *   Category: Control flow
     *   Type: Return
     *   Operands:
     *   Stack: => rval
     */ \
    MACRO(GetRval, get_rval, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Store `rval` in the current stack frame's `returnValue` slot.
     *
     *   Category: Control flow
     *   Type: Return
     *   Operands:
     *   Stack: rval =>
     */ \
    MACRO(SetRval, set_rval, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Stop execution and return the current stack frame's `returnValue`. If no
     * `JSOp::SetRval` instruction has been executed in this stack frame, this
     * is `undefined`.
     *
     * Also emitted at end of every script so consumers don't need to worry
     * about running off the end.
     *
     * If the current script is a derived class constructor, `returnValue` must
     * be an object. The script can use `JSOp::CheckReturn` to ensure this.
     *
     *   Category: Control flow
     *   Type: Return
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(RetRval, ret_rval, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Check the return value in a derived class constructor.
     *
     * -   If the current stack frame's `returnValue` is an object, do nothing.
     *
     * -   Otherwise, if the `returnValue` is undefined and `thisval` is an
     *     object, store `thisval` in the `returnValue` slot.
     *
     * -   Otherwise, throw a TypeError.
     *
     * This is exactly what has to happen when a derived class constructor
     * returns. `thisval` should be the current value of `this`, or
     * `MagicValue(JS_UNINITIALIZED_LEXICAL)` if `this` is uninitialized.
     *
     * Implements: [The [[Construct]] internal method of JS functions][1],
     * steps 13 and 15.
     *
     * [1]: https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget
     *
     *   Category: Control flow
     *   Type: Return
     *   Operands:
     *   Stack: thisval =>
     */ \
    MACRO(CheckReturn, check_return, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Throw `exc`. (ノಠ益ಠ)ノ彡┴──┴
     *
     * This sets the pending exception to `exc` and jumps to error-handling
     * code. If we're in a `try` block, error handling adjusts the stack and
     * environment chain and resumes execution at the top of the `catch` or
     * `finally` block. Otherwise it starts unwinding the stack.
     *
     * Implements: [*ThrowStatement* Evaluation][1], step 3.
     *
     * This is also used in for-of loops. If the body of the loop throws an
     * exception, we catch it, close the iterator, then use `JSOp::Throw` to
     * rethrow.
     *
     * [1]: https://tc39.es/ecma262/#sec-throw-statement-runtime-semantics-evaluation
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands:
     *   Stack: exc =>
     */ \
    MACRO(Throw, throw_, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Create and throw an Error object.
     *
     * Sometimes we know at emit time that an operation always throws. For
     * example, `delete super.prop;` is allowed in methods, but always throws a
     * ReferenceError.
     *
     * `msgNumber` must be one of the error codes listed in js/src/js.msg; it
     * determines the `.message` and [[Prototype]] of the new Error object. The
     * number of arguments in the error message must be 0.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands: uint16_t msgNumber
     *   Stack: =>
     */ \
    MACRO(ThrowMsg, throw_msg, NULL, 3, 0, 0, JOF_UINT16) \
    /*
     * Throw a TypeError for invalid assignment to a `const`. The environment
     * coordinate is used to get the variable name for the error message.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands: uint8_t hops, uint24_t slot
     *   Stack: v => v
     */ \
    MACRO(ThrowSetAliasedConst, throw_set_aliased_const, NULL, 5, 1, 1, JOF_ENVCOORD|JOF_NAME|JOF_DETECTING) \
    /*
     * Throw a TypeError for invalid assignment to the callee binding in a named
     * lambda, which is always a `const` binding. This is a different bytecode
     * than `JSOp::ThrowSetConst` because the named lambda callee, if not closed
     * over, does not have a frame slot to look up the name with for the error
     * message.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands:
     *   Stack: v => v
     */ \
    MACRO(ThrowSetCallee, throw_set_callee, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Throws a runtime TypeError for invalid assignment to an optimized
     * `const` binding. `localno` is used to get the variable name for the
     * error message.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands: uint24_t localno
     *   Stack: v => v
     */ \
    MACRO(ThrowSetConst, throw_set_const, NULL, 4, 1, 1, JOF_LOCAL|JOF_NAME|JOF_DETECTING) \
    /*
     * No-op instruction that marks the top of the bytecode for a
     * *TryStatement*.
     *
     * The `jumpAtEndOffset` operand is the offset (relative to the current op)
     * of the `JSOp::Goto` at the end of the try-block body. This is used by
     * bytecode analysis and JIT compilation.
     *
     * Location information for catch/finally blocks is stored in a side table,
     * `script->trynotes()`.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands: int32_t jumpAtEndOffset
     *   Stack: =>
     */ \
    MACRO(Try, try_, NULL, 5, 0, 0, JOF_CODE_OFFSET) \
    /*
     * No-op instruction used by the exception unwinder to determine the
     * correct environment to unwind to when performing IteratorClose due to
     * destructuring.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(TryDestructuring, try_destructuring, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Push and clear the pending exception. ┬──┬◡ノ(° -°ノ)
     *
     * This must be used only in the fixed sequence of instructions following a
     * `JSTRY_CATCH` span (see "Bytecode Invariants" above), as that's the only
     * way instructions would run with an exception pending.
     *
     * Used to implement catch-blocks, including the implicit ones generated as
     * part of for-of iteration.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands:
     *   Stack: => exception
     */ \
    MACRO(Exception, exception, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Push `resumeIndex`.
     *
     * This value must be used only by `JSOp::Gosub`, `JSOp::Finally`, and `JSOp::Retsub`.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands: uint24_t resumeIndex
     *   Stack: => resumeIndex
     */ \
    MACRO(ResumeIndex, resume_index, NULL, 4, 0, 1, JOF_RESUMEINDEX) \
    /*
     * Jump to the start of a `finally` block.
     *
     * `JSOp::Gosub` is unusual: if the finally block finishes normally, it will
     * reach the `JSOp::Retsub` instruction at the end, and control then
     * "returns" to the `JSOp::Gosub` and picks up at the next instruction, like
     * a function call but within a single script and stack frame. (It's named
     * after the thing in BASIC.)
     *
     * We need this because a `try` block can terminate in several different
     * ways: control can flow off the end, return, throw an exception, `break`
     * with or without a label, or `continue`. Exceptions are handled
     * separately; but all those success paths are written as bytecode, and
     * each one needs to run the `finally` block before continuing with
     * whatever they were doing. They use `JSOp::Gosub` for this. It is thus
     * normal for multiple `Gosub` instructions in a script to target the same
     * `finally` block.
     *
     * Rules: `forwardOffset` must be positive and must target a
     * `JSOp::JumpTarget` instruction followed by `JSOp::Finally`. The
     * instruction immediately following `JSOp::Gosub` in the script must be a
     * `JSOp::JumpTarget` instruction, and `resumeIndex` must be the index into
     * `script->resumeOffsets()` that points to that instruction.
     *
     * Note: This op doesn't actually push or pop any values. Its use count of
     * 2 is a lie to make the stack depth math work for this very odd control
     * flow instruction.
     *
     * `JSOp::Gosub` is considered to have two "successors": the target of
     * `offset`, which is the actual next instruction to run; and the
     * instruction immediately following `JSOp::Gosub`, even though it won't run
     * until later. We define the successor graph this way in order to support
     * knowing the stack depth at that instruction without first reading the
     * whole `finally` block.
     *
     * The stack depth at that instruction is, as it happens, the current stack
     * depth minus 2. So this instruction gets nuses == 2.
     *
     * Unfortunately there is a price to be paid in horribleness. When
     * `JSOp::Gosub` runs, it leaves two values on the stack that the stack
     * depth math doesn't know about. It jumps to the finally block, where
     * `JSOp::Finally` again does nothing to the stack, but with a bogus def
     * count of 2, restoring balance to the accounting. If `JSOp::Retsub` is
     * reached, it pops the two values (for real this time) and control
     * resumes at the instruction that follows JSOp::Gosub in memory.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands: int32_t forwardOffset
     *   Stack: false, resumeIndex =>
     */ \
    MACRO(Gosub, gosub, NULL, 5, 2, 0, JOF_JUMP) \
    /*
     * No-op instruction that marks the start of a `finally` block. This has a
     * def count of 2, but the values are already on the stack (they're
     * actually left on the stack by `JSOp::Gosub`).
     *
     * These two values must not be used except by `JSOp::Retsub`.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands:
     *   Stack: => false, resumeIndex
     */ \
    MACRO(Finally, finally, NULL, 1, 0, 2, JOF_BYTE) \
    /*
     * Jump back to the next instruction, or rethrow an exception, at the end
     * of a `finally` block. See `JSOp::Gosub` for the explanation.
     *
     * If `throwing` is true, throw `v`. Otherwise, `v` must be a resume index;
     * jump to the corresponding offset within the script.
     *
     * The two values popped must be the ones notionally pushed by
     * `JSOp::Finally`.
     *
     *   Category: Control flow
     *   Type: Exceptions
     *   Operands:
     *   Stack: throwing, v =>
     */ \
    MACRO(Retsub, retsub, NULL, 1, 2, 0, JOF_BYTE) \
    /*
     * Push `MagicValue(JS_UNINITIALIZED_LEXICAL)`, a magic value used to mark
     * a binding as uninitialized.
     *
     * This magic value must be used only by `JSOp::Init*Lexical`.
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands:
     *   Stack: => uninitialized
     */ \
    MACRO(Uninitialized, uninitialized, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Initialize an optimized local lexical binding; or mark it as
     * uninitialized.
     *
     * This stores the value `v` in the fixed slot `localno` in the current
     * stack frame. If `v` is the magic value produced by `JSOp::Uninitialized`,
     * this marks the binding as uninitialized. Otherwise this initializes the
     * binding with value `v`.
     *
     * Implements: [CreateMutableBinding][1] step 3, substep "record that it is
     * uninitialized", and [InitializeBinding][2], for optimized locals. (Note:
     * this is how `const` bindings are initialized.)
     *
     * [1]: https://tc39.es/ecma262/#sec-declarative-environment-records-createmutablebinding-n-d
     * [2]: https://tc39.es/ecma262/#sec-declarative-environment-records-initializebinding-n-v
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands: uint24_t localno
     *   Stack: v => v
     */ \
    MACRO(InitLexical, init_lexical, NULL, 4, 1, 1, JOF_LOCAL|JOF_NAME|JOF_DETECTING) \
    /*
     * Initialize a global lexical binding; or mark it as uninitialized.
     *
     * Like `JSOp::InitLexical` but for global lexicals.
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands: uint32_t nameIndex
     *   Stack: val => val
     */ \
    MACRO(InitGLexical, init_g_lexical, NULL, 5, 1, 1, JOF_ATOM|JOF_NAME|JOF_PROPINIT|JOF_GNAME|JOF_IC) \
    /*
     * Initialize an aliased lexical binding; or mark it as uninitialized.
     *
     * Like `JSOp::InitLexical` but for aliased bindings.
     *
     * Note: There is no even-less-optimized `InitName` instruction because JS
     * doesn't need it. We always know statically which binding we're
     * initializing.
     *
     * `hops` is usually 0, but in `function f(a=eval("var b;")) { }`, the
     * argument `a` is initialized from inside a nested scope, so `hops == 1`.
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands: uint8_t hops, uint24_t slot
     *   Stack: v => v
     */ \
    MACRO(InitAliasedLexical, init_aliased_lexical, NULL, 5, 1, 1, JOF_ENVCOORD|JOF_NAME|JOF_PROPINIT|JOF_DETECTING) \
    /*
     * Throw a ReferenceError if the optimized local `localno` is
     * uninitialized.
     *
     * `localno` must be the number of a fixed slot in the current stack frame
     * previously initialized or marked uninitialized using `JSOp::InitLexical`.
     *
     * Typically used before `JSOp::GetLocal` or `JSOp::SetLocal`.
     *
     * Implements: [GetBindingValue][1] step 3 and [SetMutableBinding][2] step
     * 4 for declarative Environment Records.
     *
     * [1]: https://tc39.es/ecma262/#sec-declarative-environment-records-getbindingvalue-n-s
     * [2]: https://tc39.es/ecma262/#sec-declarative-environment-records-setmutablebinding-n-v-s
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands: uint24_t localno
     *   Stack: =>
     */ \
    MACRO(CheckLexical, check_lexical, NULL, 4, 0, 0, JOF_LOCAL|JOF_NAME) \
    /*
     * Like `JSOp::CheckLexical` but for aliased bindings.
     *
     * Note: There are no `CheckName` or `CheckGName` instructions because
     * they're unnecessary. `JSOp::{Get,Set}{Name,GName}` all check for
     * uninitialized lexicals and throw if needed.
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands: uint8_t hops, uint24_t slot
     *   Stack: =>
     */ \
    MACRO(CheckAliasedLexical, check_aliased_lexical, NULL, 5, 0, 0, JOF_ENVCOORD|JOF_NAME) \
    /*
     * Throw a ReferenceError if the value on top of the stack is
     * `MagicValue(JS_UNINITIALIZED_LEXICAL)`. Used in derived class
     * constructors to check `this` (which needs to be initialized before use,
     * by calling `super()`).
     *
     * Implements: [GetThisBinding][1] step 3.
     *
     * [1]: https://tc39.es/ecma262/#sec-function-environment-records-getthisbinding
     *
     *   Category: Variables and scopes
     *   Type: Initialization
     *   Operands:
     *   Stack: this => this
     */ \
    MACRO(CheckThis, check_this, NULL, 1, 1, 1, JOF_BYTE) \
    /*
     * Push the global environment onto the stack, unless the script has a
     * non-syntactic global scope. In that case, this acts like JSOp::BindName.
     *
     * `nameIndex` is only used when acting like JSOp::BindName.
     *
     *   Category: Variables and scopes
     *   Type: Looking up bindings
     *   Operands: uint32_t nameIndex
     *   Stack: => global
     */ \
    MACRO(BindGName, bind_g_name, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_GNAME|JOF_IC) \
    /*
     * Look up a name on the environment chain and push the environment which
     * contains a binding for that name. If no such binding exists, push the
     * global lexical environment.
     *
     *   Category: Variables and scopes
     *   Type: Looking up bindings
     *   Operands: uint32_t nameIndex
     *   Stack: => env
     */ \
    MACRO(BindName, bind_name, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_IC) \
    /*
     * Find a binding on the environment chain and push its value.
     *
     * If the binding is an uninitialized lexical, throw a ReferenceError. If
     * no such binding exists, throw a ReferenceError unless the next
     * instruction is `JSOp::Typeof`, in which case push `undefined`.
     *
     * Implements: [ResolveBinding][1] followed by [GetValue][2]
     * (adjusted hackily for `typeof`).
     *
     * This is the fallback `Get` instruction that handles all unoptimized
     * cases. Optimized instructions follow.
     *
     * [1]: https://tc39.es/ecma262/#sec-resolvebinding
     * [2]: https://tc39.es/ecma262/#sec-getvalue
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: => val
     */ \
    MACRO(GetName, get_name, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_TYPESET|JOF_IC) \
    /*
     * Find a global binding and push its value.
     *
     * This searches the global lexical environment and, failing that, the
     * global object. (Unlike most declarative environments, the global lexical
     * environment can gain more bindings after compilation, possibly shadowing
     * global object properties.)
     *
     * This is an optimized version of `JSOp::GetName` that skips all local
     * scopes, for use when the name doesn't refer to any local binding.
     * `NonSyntacticVariablesObject`s break this optimization, so if the
     * current script has a non-syntactic global scope, this acts like
     * `JSOp::GetName`.
     *
     * Like `JSOp::GetName`, this throws a ReferenceError if no such binding is
     * found (unless the next instruction is `JSOp::Typeof`) or if the binding
     * is an uninitialized lexical.
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: => val
     */ \
    MACRO(GetGName, get_g_name, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_TYPESET|JOF_GNAME|JOF_IC) \
    /*
     * Push the value of an argument that is stored in the stack frame
     * or in an `ArgumentsObject`.
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint16_t argno
     *   Stack: => arguments[argno]
     */ \
    MACRO(GetArg, get_arg, NULL, 3, 0, 1, JOF_QARG|JOF_NAME) \
    /*
     * Push the value of an optimized local variable.
     *
     * If the variable is an uninitialized lexical, push
     * `MagicValue(JS_UNINIITALIZED_LEXICAL)`.
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint24_t localno
     *   Stack: => val
     */ \
    MACRO(GetLocal, get_local, NULL, 4, 0, 1, JOF_LOCAL|JOF_NAME) \
    /*
     * Push the value of an aliased binding.
     *
     * Local bindings that aren't closed over or dynamically accessed are
     * stored in stack slots. Global and `with` bindings are object properties.
     * All other bindings are called "aliased" and stored in
     * `EnvironmentObject`s.
     *
     * Where possible, `Aliased` instructions are used to access aliased
     * bindings.  (There's no difference in meaning between `AliasedVar` and
     * `AliasedLexical`.) Each of these instructions has operands `hops` and
     * `slot` that encode an [`EnvironmentCoordinate`][1], directions to the
     * binding from the current environment object.
     *
     * `hops` and `slot` must be valid for the current scope.
     *
     * `Aliased` instructions can't be used when there's a dynamic scope (due
     * to non-strict `eval` or `with`) that might shadow the aliased binding.
     *
     * [1]: https://searchfox.org/mozilla-central/search?q=symbol:T_js%3A%3AEnvironmentCoordinate
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint8_t hops, uint24_t slot
     *   Stack: => aliasedVar
     */ \
    MACRO(GetAliasedVar, get_aliased_var, NULL, 5, 0, 1, JOF_ENVCOORD|JOF_NAME|JOF_TYPESET|JOF_IC) \
    /*
     * Get the value of a module import by name and pushes it onto the stack.
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: => val
     */ \
    MACRO(GetImport, get_import, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_TYPESET|JOF_IC) \
    /*
     * Get the value of a binding from the environment `env`. If the name is
     * not bound in `env`, throw a ReferenceError.
     *
     * `env` must be an environment currently on the environment chain, pushed
     * by `JSOp::BindName`.
     *
     * Note: `JSOp::BindName` and `JSOp::GetBoundName` are the two halves of the
     * `JSOp::GetName` operation: finding and reading a variable. This
     * decomposed version is needed to implement the compound assignment and
     * increment/decrement operators, which get and then set a variable. The
     * spec says the variable lookup is done only once. If we did the lookup
     * twice, there would be observable bugs, thanks to dynamic scoping. We
     * could set the wrong variable or call proxy traps incorrectly.
     *
     * Implements: [GetValue][1] steps 4 and 6.
     *
     * [1]: https://tc39.es/ecma262/#sec-getvalue
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: env => v
     */ \
    MACRO(GetBoundName, get_bound_name, NULL, 5, 1, 1, JOF_ATOM|JOF_NAME|JOF_TYPESET|JOF_IC) \
    /*
     * Push the value of an intrinsic onto the stack.
     *
     * Non-standard. Intrinsics are slots in the intrinsics holder object (see
     * `GlobalObject::getIntrinsicsHolder`), which is used in lieu of global
     * bindings in self-hosting code.
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: => intrinsic[name]
     */ \
    MACRO(GetIntrinsic, get_intrinsic, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_TYPESET|JOF_IC) \
    /*
     * Pushes the currently executing function onto the stack.
     *
     * The current script must be a function script.
     *
     * Used to implement `super`. This is also used sometimes as a minor
     * optimization when a named function expression refers to itself by name:
     *
     *     f = function fac(n) {  ... fac(n - 1) ... };
     *
     * This lets us optimize away a lexical environment that contains only the
     * binding for `fac`, unless it's otherwise observable (via `with`, `eval`,
     * or a nested closure).
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands:
     *   Stack: => callee
     */ \
    MACRO(Callee, callee, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Load the callee stored in a CallObject on the environment chain. The
     * numHops operand is the number of environment objects to skip on the
     * environment chain.
     *
     *   Category: Variables and scopes
     *   Type: Getting binding values
     *   Operands: uint8_t numHops
     *   Stack: => callee
     */ \
    MACRO(EnvCallee, env_callee, NULL, 2, 0, 1, JOF_UINT8) \
    /*
     * Assign `val` to the binding in `env` with the name given by `nameIndex`.
     * Throw a ReferenceError if the binding is an uninitialized lexical.
     * This can call setters and/or proxy traps.
     *
     * `env` must be an environment currently on the environment chain,
     * pushed by `JSOp::BindName`.
     *
     * This is the fallback `Set` instruction that handles all unoptimized
     * cases. Optimized instructions follow.
     *
     * Implements: [PutValue][1] steps 5 and 7 for unoptimized bindings.
     *
     * Note: `JSOp::BindName` and `JSOp::SetName` are the two halves of simple
     * assignment: finding and setting a variable. They are two separate
     * instructions because, per spec, the "finding" part happens before
     * evaluating the right-hand side of the assignment, and the "setting" part
     * after. Optimized cases don't need a `Bind` instruction because the
     * "finding" is done statically.
     *
     * [1]: https://tc39.es/ecma262/#sec-putvalue
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: env, val => val
     */ \
    MACRO(SetName, set_name, NULL, 5, 2, 1, JOF_ATOM|JOF_NAME|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSLOPPY|JOF_IC) \
    /*
     * Like `JSOp::SetName`, but throw a TypeError if there is no binding for
     * the specified name in `env`, or if the binding is immutable (a `const`
     * or read-only property).
     *
     * Implements: [PutValue][1] steps 5 and 7 for strict mode code.
     *
     * [1]: https://tc39.es/ecma262/#sec-putvalue
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: env, val => val
     */ \
    MACRO(StrictSetName, strict_set_name, NULL, 5, 2, 1, JOF_ATOM|JOF_NAME|JOF_PROPSET|JOF_DETECTING|JOF_CHECKSTRICT|JOF_IC) \
    /*
     * Like `JSOp::SetName`, but for assigning to globals. `env` must be an
     * environment pushed by `JSOp::BindGName`.
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: env, val => val
     */ \
    MACRO(SetGName, set_g_name, NULL, 5, 2, 1, JOF_ATOM|JOF_NAME|JOF_PROPSET|JOF_DETECTING|JOF_GNAME|JOF_CHECKSLOPPY|JOF_IC) \
    /*
     * Like `JSOp::StrictSetGName`, but for assigning to globals. `env` must be
     * an environment pushed by `JSOp::BindGName`.
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: env, val => val
     */ \
    MACRO(StrictSetGName, strict_set_g_name, NULL, 5, 2, 1, JOF_ATOM|JOF_NAME|JOF_PROPSET|JOF_DETECTING|JOF_GNAME|JOF_CHECKSTRICT|JOF_IC) \
    /*
     * Assign `val` to an argument binding that's stored in the stack frame or
     * in an `ArgumentsObject`.
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint16_t argno
     *   Stack: val => val
     */ \
    MACRO(SetArg, set_arg, NULL, 3, 1, 1, JOF_QARG|JOF_NAME) \
    /*
     * Assign to an optimized local binding.
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint24_t localno
     *   Stack: v => v
     */ \
    MACRO(SetLocal, set_local, NULL, 4, 1, 1, JOF_LOCAL|JOF_NAME|JOF_DETECTING) \
    /*
     * Assign to an aliased binding.
     *
     * Implements: [SetMutableBinding for declarative Environment Records][1],
     * in certain cases where it's known that the binding exists, is mutable,
     * and has been initialized.
     *
     * [1]: https://tc39.es/ecma262/#sec-declarative-environment-records-setmutablebinding-n-v-s
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint8_t hops, uint24_t slot
     *   Stack: val => val
     */ \
    MACRO(SetAliasedVar, set_aliased_var, NULL, 5, 1, 1, JOF_ENVCOORD|JOF_NAME|JOF_PROPSET|JOF_DETECTING) \
    /*
     * Assign to an intrinsic.
     *
     * Nonstandard. Intrinsics are used in lieu of global bindings in self-
     * hosted code. The value is actually stored in the intrinsics holder
     * object, `GlobalObject::getIntrinsicsHolder`. (Self-hosted code doesn't
     * have many global `var`s, but it has many `function`s.)
     *
     *   Category: Variables and scopes
     *   Type: Setting binding values
     *   Operands: uint32_t nameIndex
     *   Stack: val => val
     */ \
    MACRO(SetIntrinsic, set_intrinsic, NULL, 5, 1, 1, JOF_ATOM|JOF_NAME|JOF_DETECTING) \
    /*
     * Push a lexical environment onto the environment chain.
     *
     * The `LexicalScope` indicated by `lexicalScopeIndex` determines the shape
     * of the new `LexicalEnvironmentObject`. All bindings in the new
     * environment are marked as uninitialized.
     *
     * Implements: [Evaluation of *Block*][1], steps 1-4.
     *
     * #### Fine print for environment chain instructions
     *
     * The following rules for `JSOp::{Push,Pop}LexicalEnv` also apply to
     * `JSOp::{Push,Pop}VarEnv` and `JSOp::{Enter,Leave}With`.
     *
     * Each `JSOp::PopLexicalEnv` instruction matches a particular
     * `JSOp::PushLexicalEnv` instruction in the same script and must have the
     * same scope and stack depth as the instruction immediately after that
     * `PushLexicalEnv`.
     *
     * `JSOp::PushLexicalEnv` enters a scope that extends to some set of
     * instructions in the script. Code must not jump into or out of this
     * region: control can enter only by executing `PushLexicalEnv` and can
     * exit only by executing a `PopLexicalEnv` or by exception unwinding. (A
     * `JSOp::PopLexicalEnv` is always emitted at the end of the block, and
     * extra copies are emitted on "exit slides", where a `break`, `continue`,
     * or `return` statement exits the scope.)
     *
     * The script's `JSScript::scopeNotes()` must identify exactly which
     * instructions begin executing in this scope. Typically this means a
     * single entry marking the contiguous chunk of bytecode from the
     * instruction after `JSOp::PushLexicalEnv` to `JSOp::PopLexicalEnv`
     * (inclusive); but if that range contains any instructions on exit slides,
     * after a `JSOp::PopLexicalEnv`, then those must be correctly noted as
     * *outside* the scope.
     *
     * [1]: https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands: uint32_t lexicalScopeIndex
     *   Stack: =>
     */ \
    MACRO(PushLexicalEnv, push_lexical_env, NULL, 5, 0, 0, JOF_SCOPE) \
    /*
     * Pop a lexical environment from the environment chain.
     *
     * See `JSOp::PushLexicalEnv` for the fine print.
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(PopLexicalEnv, pop_lexical_env, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * No-op instruction that indicates leaving an optimized lexical scope.
     *
     * If all bindings in a lexical scope are optimized into stack slots, then
     * the runtime environment objects for that scope are optimized away. No
     * `JSOp::{Push,Pop}LexicalEnv` instructions are emitted. However, the
     * debugger still needs to be notified when control exits a scope; that's
     * what this instruction does.
     *
     * The last instruction in a lexical scope, as indicated by scope notes,
     * must be either this instruction (if the scope is optimized) or
     * `JSOp::PopLexicalEnv` (if not).
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(DebugLeaveLexicalEnv, debug_leave_lexical_env, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Recreate the current block on the environment chain with a fresh block
     * with uninitialized bindings. This implements the behavior of inducing a
     * fresh lexical environment for every iteration of a for-in/of loop whose
     * loop-head has a (captured) lexical declaration.
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(RecreateLexicalEnv, recreate_lexical_env, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Replace the current block on the environment chain with a fresh block
     * that copies all the bindings in the block. This implements the behavior
     * of inducing a fresh lexical environment for every iteration of a
     * `for(let ...; ...; ...)` loop, if any declarations induced by such a
     * loop are captured within the loop.
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(FreshenLexicalEnv, freshen_lexical_env, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Push a var environment onto the environment chain.
     *
     * Like `JSOp::PushLexicalEnv`, but pushes a `VarEnvironmentObject` rather
     * than a `LexicalEnvironmentObject`. The difference is that non-strict
     * direct `eval` can add bindings to a var environment; see `VarScope` in
     * Scope.h.
     *
     * See `JSOp::PushLexicalEnv` for the fine print.
     *
     * Implements: Places in the spec where the VariableEnvironment is set:
     *
     * -   The bit in [PerformEval][1] where, in strict direct eval, the new
     *     eval scope is taken as *varEnv* and becomes "*runningContext*'s
     *     VariableEnvironment".
     *
     * -   The weird scoping rules for functions with default parameter
     *     expressions, as specified in [FunctionDeclarationInstantiation][2]
     *     step 28 ("NOTE: A separate Environment Record is needed...") and
     *     [IteratorBindingInitialization for *FormalParameter* and
     *     *FormalRestParameter*][3].
     *
     * Note: The spec also pushes a new VariableEnvironment on entry to every
     * function, but the VM takes care of that as part of pushing the stack
     * frame, before the function script starts to run, so `JSOp::PushVarEnv` is
     * not needed.
     *
     * [1]: https://tc39.es/ecma262/#sec-performeval
     * [2]: https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
     * [3]: https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-iteratorbindinginitialization
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands: uint32_t scopeIndex
     *   Stack: =>
     */ \
    MACRO(PushVarEnv, push_var_env, NULL, 5, 0, 0, JOF_SCOPE) \
    /*
     * Pop a `VarEnvironmentObject` from the environment chain.
     *
     * See `JSOp::PushLexicalEnv` for the fine print.
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(PopVarEnv, pop_var_env, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Push a `WithEnvironmentObject` wrapping ToObject(`val`) to the
     * environment chain.
     *
     * Implements: [Evaluation of `with` statements][1], steps 2-6.
     *
     * Operations that may need to consult a WithEnvironment can't be correctly
     * implemented using optimized instructions like `JSOp::GetLocal`. A script
     * must use the deoptimized `JSOp::GetName`, `BindName`, `SetName`, and
     * `DelName` instead. Since those instructions don't work correctly with
     * optimized locals and arguments, all bindings in scopes enclosing a
     * `with` statement are marked as "aliased" and deoptimized too.
     *
     * See `JSOp::PushLexicalEnv` for the fine print.
     *
     * [1]: https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands: uint32_t staticWithIndex
     *   Stack: val =>
     */ \
    MACRO(EnterWith, enter_with, NULL, 5, 1, 0, JOF_SCOPE) \
    /*
     * Pop a `WithEnvironmentObject` from the environment chain.
     *
     * See `JSOp::PushLexicalEnv` for the fine print.
     *
     * Implements: [Evaluation of `with` statements][1], step 8.
     *
     * [1]: https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation
     *
     *   Category: Variables and scopes
     *   Type: Entering and leaving environments
     *   Operands:
     *   Stack: =>
     */ \
    MACRO(LeaveWith, leave_with, NULL, 1, 0, 0, JOF_BYTE) \
    /*
     * Push the current VariableEnvironment (the environment on the environment
     * chain designated to receive new variables).
     *
     * Implements: [Annex B.3.3.1, changes to FunctionDeclarationInstantiation
     * for block-level functions][1], step 1.a.ii.3.a, and similar steps in
     * other Annex B.3.3 algorithms, when setting the function's second binding
     * can't be optimized.
     *
     * [1]: https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
     *
     *   Category: Variables and scopes
     *   Type: Creating and deleting bindings
     *   Operands:
     *   Stack: => env
     */ \
    MACRO(BindVar, bind_var, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Create a new binding on the current VariableEnvironment (the environment
     * on the environment chain designated to receive new variables).
     *
     * `JSOp::Def{Var,Let,Const,Fun}` instructions must appear in the script
     * before anything else that might add bindings to the environment, and
     * only once per binding. There must be a correct entry for the new binding
     * in `script->bodyScope()`. (All this ensures that at run time, there is
     * no existing conflicting binding. We check before running the script, in
     * `js::CheckGlobalOrEvalDeclarationConflicts`.)
     *
     * Throw a SyntaxError if the current VariableEnvironment is the global
     * environment and a binding with the same name exists on the global
     * lexical environment.
     *
     * This is used for global scripts and also in some cases for function
     * scripts where use of dynamic scoping inhibits optimization.
     *
     *   Category: Variables and scopes
     *   Type: Creating and deleting bindings
     *   Operands: uint32_t nameIndex
     *   Stack: =>
     */ \
    MACRO(DefVar, def_var, NULL, 5, 0, 0, JOF_ATOM) \
    /*
     * Create a new binding for the given function on the current scope.
     *
     * `fun` must be a function object with an explicit name. The new
     * variable's name is `fun->explicitName()`, and its value is `fun`. In
     * global scope, this creates a new property on the global object.
     *
     * Implements: The body of the loop in [GlobalDeclarationInstantiation][1]
     * step 17 ("For each Parse Node *f* in *functionsToInitialize*...") and
     * the corresponding loop in [EvalDeclarationInstantiation][2].
     *
     * [1]: https://tc39.es/ecma262/#sec-globaldeclarationinstantiation
     * [2]: https://tc39.es/ecma262/#sec-evaldeclarationinstantiation
     *
     *   Category: Variables and scopes
     *   Type: Creating and deleting bindings
     *   Operands:
     *   Stack: fun =>
     */ \
    MACRO(DefFun, def_fun, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Create a new mutable binding in the global lexical environment. Throw a
     * SyntaxError if a binding with the same name already exists on that
     * environment, or if a var binding with the same name exists on the
     * global.
     *
     *   Category: Variables and scopes
     *   Type: Creating and deleting bindings
     *   Operands: uint32_t nameIndex
     *   Stack: =>
     */ \
    MACRO(DefLet, def_let, NULL, 5, 0, 0, JOF_ATOM) \
    /*
     * Create a new constant binding in the global lexical environment.
     *
     * Throw a SyntaxError if a binding with the same name already exists in
     * that environment, or if a var binding with the same name exists on the
     * global.
     *
     *   Category: Variables and scopes
     *   Type: Creating and deleting bindings
     *   Operands: uint32_t nameIndex
     *   Stack: =>
     */ \
    MACRO(DefConst, def_const, NULL, 5, 0, 0, JOF_ATOM) \
    /*
     * Look up a variable on the environment chain and delete it. Push `true`
     * on success (if a binding was deleted, or if no such binding existed in
     * the first place), `false` otherwise (most kinds of bindings can't be
     * deleted).
     *
     * Implements: [`delete` *Identifier*][1], which [is a SyntaxError][2] in
     * strict mode code.
     *
     *    [1]: https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
     *    [2]: https://tc39.es/ecma262/#sec-delete-operator-static-semantics-early-errors
     *
     *   Category: Variables and scopes
     *   Type: Creating and deleting bindings
     *   Operands: uint32_t nameIndex
     *   Stack: => succeeded
     */ \
    MACRO(DelName, del_name, NULL, 5, 0, 1, JOF_ATOM|JOF_NAME|JOF_CHECKSLOPPY) \
    /*
     * Create and push the `arguments` object for the current function activation.
     *
     * When it exists, `arguments` is stored in an ordinary local variable.
     * `JSOp::Arguments` is used in function preludes, to populate that variable
     * before the function body runs, *not* each time `arguments` appears in a
     * function.
     *
     * If a function clearly doesn't use `arguments`, we optimize it away when
     * emitting bytecode. The function's script won't use `JSOp::Arguments` at
     * all.
     *
     * The current script must be a function script. This instruction must
     * execute at most once per function activation.
     *
     * #### Optimized arguments
     *
     * If `script->needsArgsObj()` is false, no ArgumentsObject is created.
     * Instead, `MagicValue(JS_OPTIMIZED_ARGUMENTS)` is pushed.
     *
     * This optimization imposes no restrictions on bytecode. Rather,
     * `js::jit::AnalyzeArgumentsUsage` examines the bytecode and enables the
     * optimization only if all uses of `arguments` are optimizable.  Each
     * execution engine must know what the analysis considers optimizable and
     * cope with the magic value when it is used in those ways.
     *
     * Example 1: `arguments[0]` is supported; therefore the interpreter's
     * implementation of `JSOp::GetElem` checks for optimized arguments (see
     * `GetElemOptimizedArguments`).
     *
     * Example 2: `f.apply(this, arguments)` is supported; therefore our
     * implementation of `Function.prototype.apply` checks for optimized
     * arguments (`see js::fun_apply`), and all `JSOp::FunApply` implementations
     * must check for cases where `f.apply` turns out to be any other function
     * (see `GuardFunApplyArgumentsOptimization`).
     *
     * It's not documented anywhere exactly which opcodes support
     * `JS_OPTIMIZED_ARGUMENTS`; see the source of `AnalyzeArgumentsUsage`.
     *
     *   Category: Variables and scopes
     *   Type: Function environment setup
     *   Operands:
     *   Stack: => arguments
     */ \
    MACRO(Arguments, arguments, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Create and push the rest parameter array for current function call.
     *
     * This must appear only in function scripts.
     *
     *   Category: Variables and scopes
     *   Type: Function environment setup
     *   Operands:
     *   Stack: => rest
     */ \
    MACRO(Rest, rest, NULL, 1, 0, 1, JOF_BYTE|JOF_TYPESET|JOF_IC) \
    /*
     * Determines the `this` value for current function frame and pushes it
     * onto the stack.
     *
     * In functions, `this` is stored in a local variable. This instruction is
     * used in the function prologue to get the value to initialize that
     * variable.  (This doesn't apply to arrow functions, becauses they don't
     * have a `this` binding; also, `this` is optimized away if it's unused.)
     *
     * Functions that have a `this` binding have a local variable named
     * `".this"`, which is initialized using this instruction in the function
     * prologue.
     *
     *   Category: Variables and scopes
     *   Type: Function environment setup
     *   Operands:
     *   Stack: => this
     */ \
    MACRO(FunctionThis, function_this, NULL, 1, 0, 1, JOF_BYTE) \
    /*
     * Pop the top value from the stack and discard it.
     *
     *   Category: Stack operations
     *   Operands:
     *   Stack: v =>
     */ \
    MACRO(Pop, pop, NULL, 1, 1, 0, JOF_BYTE) \
    /*
     * Pop the top `n` values from the stack. `n` must be <= the current stack
     * depth.
     *
     *   Category: Stack operations
     *   Operands: uint16_t n
     *   Stack: v[n-1], ..., v[1], v[0] =>
     */ \
    MACRO(PopN, pop_n, NULL, 3, -1, 0, JOF_UINT16) \
    /*
     * Push a copy of the top value on the stack.
     *
     *   Category: Stack operations
     *   Operands:
     *   Stack: v => v, v
     */ \
    MACRO(Dup, dup, NULL, 1, 1, 2, JOF_BYTE) \
    /*
     * Duplicate the top two values on the stack.
     *
     *   Category: Stack operations
     *   Operands:
     *   Stack: v1, v2 => v1, v2, v1, v2
     */ \
    MACRO(Dup2, dup2, NULL, 1, 2, 4, JOF_BYTE) \
    /*