Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_arm64_LIR_arm64_h
#define jit_arm64_LIR_arm64_h
namespace js {
namespace jit {
class LUnboxBase : public LInstructionHelper<1, 1, 0> {
public:
LUnboxBase(LNode::Opcode opcode, const LAllocation& input)
: LInstructionHelper(opcode) {
setOperand(0, input);
}
static const size_t Input = 0;
MUnbox* mir() const { return mir_->toUnbox(); }
};
class LUnbox : public LUnboxBase {
public:
LIR_HEADER(Unbox);
explicit LUnbox(const LAllocation& input) : LUnboxBase(classOpcode, input) {}
const char* extraName() const { return StringFromMIRType(mir()->type()); }
};
class LUnboxFloatingPoint : public LUnboxBase {
MIRType type_;
public:
LIR_HEADER(UnboxFloatingPoint);
LUnboxFloatingPoint(const LAllocation& input, MIRType type)
: LUnboxBase(classOpcode, input), type_(type) {}
MIRType type() const { return type_; }
const char* extraName() const { return StringFromMIRType(type_); }
};
// Convert a 32-bit unsigned integer to a double.
class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 0> {
public:
LIR_HEADER(WasmUint32ToDouble)
explicit LWasmUint32ToDouble(const LAllocation& input)
: LInstructionHelper(classOpcode) {
setOperand(0, input);
}
};
// Convert a 32-bit unsigned integer to a float32.
class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 0> {
public:
LIR_HEADER(WasmUint32ToFloat32)
explicit LWasmUint32ToFloat32(const LAllocation& input)
: LInstructionHelper(classOpcode) {
setOperand(0, input);
}
};
class LDivI : public LBinaryMath<1> {
public:
LIR_HEADER(DivI);
LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
MDiv* mir() const { return mir_->toDiv(); }
};
class LDivPowTwoI : public LInstructionHelper<1, 1, 0> {
const int32_t shift_;
const bool negativeDivisor_;
public:
LIR_HEADER(DivPowTwoI)
LDivPowTwoI(const LAllocation& lhs, int32_t shift, bool negativeDivisor)
: LInstructionHelper(classOpcode),
shift_(shift),
negativeDivisor_(negativeDivisor) {
setOperand(0, lhs);
}
const LAllocation* numerator() { return getOperand(0); }
int32_t shift() { return shift_; }
bool negativeDivisor() { return negativeDivisor_; }
MDiv* mir() const { return mir_->toDiv(); }
};
class LDivConstantI : public LInstructionHelper<1, 1, 1> {
const int32_t denominator_;
public:
LIR_HEADER(DivConstantI)
LDivConstantI(const LAllocation& lhs, int32_t denominator,
const LDefinition& temp)
: LInstructionHelper(classOpcode), denominator_(denominator) {
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() { return getOperand(0); }
const LDefinition* temp() { return getTemp(0); }
int32_t denominator() const { return denominator_; }
MDiv* mir() const { return mir_->toDiv(); }
bool canBeNegativeDividend() const { return mir()->canBeNegativeDividend(); }
};
class LUDivConstantI : public LInstructionHelper<1, 1, 1> {
const int32_t denominator_;
public:
LIR_HEADER(UDivConstantI)
LUDivConstantI(const LAllocation& lhs, int32_t denominator,
const LDefinition& temp)
: LInstructionHelper(classOpcode), denominator_(denominator) {
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() { return getOperand(0); }
const LDefinition* temp() { return getTemp(0); }
int32_t denominator() const { return denominator_; }
MDiv* mir() const { return mir_->toDiv(); }
};
class LModI : public LBinaryMath<0> {
public:
LIR_HEADER(ModI);
LModI(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
MMod* mir() const { return mir_->toMod(); }
};
class LModPowTwoI : public LInstructionHelper<1, 1, 0> {
const int32_t shift_;
public:
LIR_HEADER(ModPowTwoI);
int32_t shift() { return shift_; }
LModPowTwoI(const LAllocation& lhs, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
}
MMod* mir() const { return mir_->toMod(); }
};
class LModMaskI : public LInstructionHelper<1, 1, 2> {
const int32_t shift_;
public:
LIR_HEADER(ModMaskI);
LModMaskI(const LAllocation& lhs, const LDefinition& temp1,
const LDefinition& temp2, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
setTemp(0, temp1);
setTemp(1, temp2);
}
int32_t shift() const { return shift_; }
MMod* mir() const { return mir_->toMod(); }
};
// Takes a tableswitch with an integer to decide
class LTableSwitch : public LInstructionHelper<0, 1, 2> {
public:
LIR_HEADER(TableSwitch);
LTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setOperand(0, in);
setTemp(0, inputCopy);
setTemp(1, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
const LAllocation* index() { return getOperand(0); }
const LDefinition* tempInt() { return getTemp(0); }
// This is added to share the same CodeGenerator prefixes.
const LDefinition* tempPointer() { return getTemp(1); }
};
// Takes a tableswitch with an integer to decide
class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3> {
public:
LIR_HEADER(TableSwitchV);
LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy,
const LDefinition& floatCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setBoxOperand(InputValue, input);
setTemp(0, inputCopy);
setTemp(1, floatCopy);
setTemp(2, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
static const size_t InputValue = 0;
const LDefinition* tempInt() { return getTemp(0); }
const LDefinition* tempFloat() { return getTemp(1); }
const LDefinition* tempPointer() { return getTemp(2); }
};
class LMulI : public LBinaryMath<0> {
public:
LIR_HEADER(MulI);
LMulI() : LBinaryMath(classOpcode) {}
MMul* mir() { return mir_->toMul(); }
};
class LUDiv : public LBinaryMath<1> {
public:
LIR_HEADER(UDiv);
LUDiv(const LAllocation& lhs, const LAllocation& rhs,
const LDefinition& remainder)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, remainder);
}
const LDefinition* remainder() { return getTemp(0); }
MDiv* mir() { return mir_->toDiv(); }
};
class LUMod : public LBinaryMath<0> {
public:
LIR_HEADER(UMod);
LUMod(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
MMod* mir() { return mir_->toMod(); }
};
class LInt64ToFloatingPoint : public LInstructionHelper<1, 1, 0> {
public:
LIR_HEADER(Int64ToFloatingPoint);
explicit LInt64ToFloatingPoint(const LInt64Allocation& in)
: LInstructionHelper(classOpcode) {
setInt64Operand(0, in);
}
MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); }
};
class LWasmTruncateToInt64 : public LInstructionHelper<1, 1, 0> {
public:
LIR_HEADER(WasmTruncateToInt64);
explicit LWasmTruncateToInt64(const LAllocation& in)
: LInstructionHelper(classOpcode) {
setOperand(0, in);
}
MWasmTruncateToInt64* mir() const { return mir_->toWasmTruncateToInt64(); }
};
class LDivOrModI64 : public LBinaryMath<0> {
public:
LIR_HEADER(DivOrModI64)
LDivOrModI64(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeDivideByZero();
}
return mir_->toDiv()->canBeDivideByZero();
}
bool canBeNegativeOverflow() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeNegativeDividend();
}
return mir_->toDiv()->canBeNegativeOverflow();
}
wasm::BytecodeOffset bytecodeOffset() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
if (mir_->isMod()) {
return mir_->toMod()->bytecodeOffset();
}
return mir_->toDiv()->bytecodeOffset();
}
};
class LUDivOrModI64 : public LBinaryMath<0> {
public:
LIR_HEADER(UDivOrModI64);
LUDivOrModI64(const LAllocation& lhs, const LAllocation& rhs)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
}
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeDivideByZero();
}
return mir_->toDiv()->canBeDivideByZero();
}
wasm::BytecodeOffset bytecodeOffset() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
if (mir_->isMod()) {
return mir_->toMod()->bytecodeOffset();
}
return mir_->toDiv()->bytecodeOffset();
}
};
} // namespace jit
} // namespace js
#endif /* jit_arm64_LIR_arm64_h */