DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (20d57b9c4183)

VCS Links

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/Allocator.h"

#include "jscntxt.h"

#include "gc/GCInternals.h"
#include "gc/GCTrace.h"
#include "gc/Nursery.h"
#include "jit/JitCompartment.h"
#include "threading/CpuCount.h"
#include "vm/Runtime.h"
#include "vm/String.h"

#include "jsobjinlines.h"

#include "gc/Heap-inl.h"

using namespace js;
using namespace gc;

template <typename T, AllowGC allowGC /* = CanGC */>
JSObject*
js::Allocate(JSContext* cx, AllocKind kind, size_t nDynamicSlots, InitialHeap heap,
             const Class* clasp)
{
    static_assert(mozilla::IsConvertible<T*, JSObject*>::value, "must be JSObject derived");
    MOZ_ASSERT(IsObjectAllocKind(kind));
    size_t thingSize = Arena::thingSize(kind);

    MOZ_ASSERT(thingSize == Arena::thingSize(kind));
    MOZ_ASSERT(thingSize >= sizeof(JSObject_Slots0));
    static_assert(sizeof(JSObject_Slots0) >= MinCellSize,
                  "All allocations must be at least the allocator-imposed minimum size.");

    MOZ_ASSERT_IF(nDynamicSlots != 0, clasp->isNative() || clasp->isProxy());

    // Off-thread alloc cannot trigger GC or make runtime assertions.
    if (cx->helperThread()) {
        JSObject* obj = GCRuntime::tryNewTenuredObject<NoGC>(cx, kind, thingSize, nDynamicSlots);
        if (MOZ_UNLIKELY(allowGC && !obj))
            ReportOutOfMemory(cx);
        return obj;
    }

    JSRuntime* rt = cx->runtime();
    if (!rt->gc.checkAllocatorState<allowGC>(cx, kind))
        return nullptr;

    if (cx->nursery().isEnabled() && heap != TenuredHeap) {
        JSObject* obj = rt->gc.tryNewNurseryObject<allowGC>(cx, thingSize, nDynamicSlots, clasp);
        if (obj)
            return obj;

        // Our most common non-jit allocation path is NoGC; thus, if we fail the
        // alloc and cannot GC, we *must* return nullptr here so that the caller
        // will do a CanGC allocation to clear the nursery. Failing to do so will
        // cause all allocations on this path to land in Tenured, and we will not
        // get the benefit of the nursery.
        if (!allowGC)
            return nullptr;
    }

    return GCRuntime::tryNewTenuredObject<allowGC>(cx, kind, thingSize, nDynamicSlots);
}
template JSObject* js::Allocate<JSObject, NoGC>(JSContext* cx, gc::AllocKind kind,
                                                size_t nDynamicSlots, gc::InitialHeap heap,
                                                const Class* clasp);
template JSObject* js::Allocate<JSObject, CanGC>(JSContext* cx, gc::AllocKind kind,
                                                 size_t nDynamicSlots, gc::InitialHeap heap,
                                                 const Class* clasp);

// Attempt to allocate a new GC thing out of the nursery. If there is not enough
// room in the nursery or there is an OOM, this method will return nullptr.
template <AllowGC allowGC>
JSObject*
GCRuntime::tryNewNurseryObject(JSContext* cx, size_t thingSize, size_t nDynamicSlots, const Class* clasp)
{
    MOZ_ASSERT(cx->isNurseryAllocAllowed());
    MOZ_ASSERT(!cx->helperThread());
    MOZ_ASSERT(!IsAtomsCompartment(cx->compartment()));
    JSObject* obj = cx->nursery().allocateObject(cx, thingSize, nDynamicSlots, clasp);
    if (obj)
        return obj;

    if (allowGC && !cx->suppressGC) {
        cx->runtime()->gc.minorGC(JS::gcreason::OUT_OF_NURSERY);

        // Exceeding gcMaxBytes while tenuring can disable the Nursery.
        if (cx->nursery().isEnabled()) {
            JSObject* obj = cx->nursery().allocateObject(cx, thingSize, nDynamicSlots, clasp);
            MOZ_ASSERT(obj);
            return obj;
        }
    }
    return nullptr;
}

template <AllowGC allowGC>
JSObject*
GCRuntime::tryNewTenuredObject(JSContext* cx, AllocKind kind, size_t thingSize,
                               size_t nDynamicSlots)
{
    HeapSlot* slots = nullptr;
    if (nDynamicSlots) {
        slots = cx->zone()->pod_malloc<HeapSlot>(nDynamicSlots);
        if (MOZ_UNLIKELY(!slots)) {
            if (allowGC)
                ReportOutOfMemory(cx);
            return nullptr;
        }
        Debug_SetSlotRangeToCrashOnTouch(slots, nDynamicSlots);
    }

    JSObject* obj = tryNewTenuredThing<JSObject, allowGC>(cx, kind, thingSize);

    if (obj)
        obj->setInitialSlotsMaybeNonNative(slots);
    else
        js_free(slots);

    return obj;
}

template <typename T, AllowGC allowGC /* = CanGC */>
T*
js::Allocate(JSContext* cx)
{
    static_assert(!mozilla::IsConvertible<T*, JSObject*>::value, "must not be JSObject derived");
    static_assert(sizeof(T) >= MinCellSize,
                  "All allocations must be at least the allocator-imposed minimum size.");

    AllocKind kind = MapTypeToFinalizeKind<T>::kind;
    size_t thingSize = sizeof(T);
    MOZ_ASSERT(thingSize == Arena::thingSize(kind));

    if (!cx->helperThread()) {
        if (!cx->runtime()->gc.checkAllocatorState<allowGC>(cx, kind))
            return nullptr;
    }

    return GCRuntime::tryNewTenuredThing<T, allowGC>(cx, kind, thingSize);
}

#define DECL_ALLOCATOR_INSTANCES(allocKind, traceKind, type, sizedType) \
    template type* js::Allocate<type, NoGC>(JSContext* cx);\
    template type* js::Allocate<type, CanGC>(JSContext* cx);
FOR_EACH_NONOBJECT_ALLOCKIND(DECL_ALLOCATOR_INSTANCES)
#undef DECL_ALLOCATOR_INSTANCES

template <typename T, AllowGC allowGC>
/* static */ T*
GCRuntime::tryNewTenuredThing(JSContext* cx, AllocKind kind, size_t thingSize)
{
    // Bump allocate in the arena's current free-list span.
    T* t = reinterpret_cast<T*>(cx->arenas()->allocateFromFreeList(kind, thingSize));
    if (MOZ_UNLIKELY(!t)) {
        // Get the next available free list and allocate out of it. This may
        // acquire a new arena, which will lock the chunk list. If there are no
        // chunks available it may also allocate new memory directly.
        t = reinterpret_cast<T*>(refillFreeListFromAnyThread(cx, kind, thingSize));

        if (MOZ_UNLIKELY(!t && allowGC && !cx->helperThread())) {
            // We have no memory available for a new chunk; perform an
            // all-compartments, non-incremental, shrinking GC and wait for
            // sweeping to finish.
            JS::PrepareForFullGC(cx);
            cx->runtime()->gc.gc(GC_SHRINK, JS::gcreason::LAST_DITCH);
            cx->runtime()->gc.waitBackgroundSweepOrAllocEnd();

            t = tryNewTenuredThing<T, NoGC>(cx, kind, thingSize);
            if (!t)
                ReportOutOfMemory(cx);
        }
    }

    checkIncrementalZoneState(cx, t);
    TraceTenuredAlloc(t, kind);
    return t;
}

template <AllowGC allowGC>
bool
GCRuntime::checkAllocatorState(JSContext* cx, AllocKind kind)
{
    if (allowGC) {
        if (!gcIfNeededAtAllocation(cx))
            return false;
    }

#if defined(JS_GC_ZEAL) || defined(DEBUG)
    MOZ_ASSERT_IF(cx->compartment()->isAtomsCompartment(),
                  kind == AllocKind::ATOM ||
                  kind == AllocKind::FAT_INLINE_ATOM ||
                  kind == AllocKind::SYMBOL ||
                  kind == AllocKind::JITCODE ||
                  kind == AllocKind::SCOPE);
    MOZ_ASSERT_IF(!cx->compartment()->isAtomsCompartment(),
                  kind != AllocKind::ATOM &&
                  kind != AllocKind::FAT_INLINE_ATOM);
    MOZ_ASSERT(!JS::CurrentThreadIsHeapBusy());
    MOZ_ASSERT(cx->isAllocAllowed());
#endif

    // Crash if we perform a GC action when it is not safe.
    if (allowGC && !cx->suppressGC)
        cx->verifyIsSafeToGC();

    // For testing out of memory conditions
    if (js::oom::ShouldFailWithOOM()) {
        // If we are doing a fallible allocation, percolate up the OOM
        // instead of reporting it.
        if (allowGC)
            ReportOutOfMemory(cx);
        return false;
    }

    return true;
}

bool
GCRuntime::gcIfNeededAtAllocation(JSContext* cx)
{
#ifdef JS_GC_ZEAL
    if (needZealousGC())
        runDebugGC();
#endif

    // Invoking the interrupt callback can fail and we can't usefully
    // handle that here. Just check in case we need to collect instead.
    if (cx->hasPendingInterrupt())
        gcIfRequested();

    // If we have grown past our GC heap threshold while in the middle of
    // an incremental GC, we're growing faster than we're GCing, so stop
    // the world and do a full, non-incremental GC right now, if possible.
    if (isIncrementalGCInProgress() &&
        cx->zone()->usage.gcBytes() > cx->zone()->threshold.gcTriggerBytes())
    {
        PrepareZoneForGC(cx->zone());
        gc(GC_NORMAL, JS::gcreason::INCREMENTAL_TOO_SLOW);
    }

    return true;
}

template <typename T>
/* static */ void
GCRuntime::checkIncrementalZoneState(JSContext* cx, T* t)
{
#ifdef DEBUG
    if (cx->helperThread())
        return;

    Zone* zone = cx->zone();
    MOZ_ASSERT_IF(t && zone->wasGCStarted() && (zone->isGCMarking() || zone->isGCSweeping()),
                  t->asTenured().arena()->allocatedDuringIncremental);
#endif
}


// ///////////  Arena -> Thing Allocator  //////////////////////////////////////

void
GCRuntime::startBackgroundAllocTaskIfIdle()
{
    AutoLockHelperThreadState helperLock;
    if (allocTask.isRunningWithLockHeld(helperLock))
        return;

    // Join the previous invocation of the task. This will return immediately
    // if the thread has never been started.
    allocTask.joinWithLockHeld(helperLock);
    allocTask.startWithLockHeld(helperLock);
}

/* static */ TenuredCell*
GCRuntime::refillFreeListFromAnyThread(JSContext* cx, AllocKind thingKind, size_t thingSize)
{
    cx->arenas()->checkEmptyFreeList(thingKind);

    if (!cx->helperThread())
        return refillFreeListFromActiveCooperatingThread(cx, thingKind, thingSize);

    return refillFreeListFromHelperThread(cx, thingKind);
}

/* static */ TenuredCell*
GCRuntime::refillFreeListFromActiveCooperatingThread(JSContext* cx, AllocKind thingKind, size_t thingSize)
{
    // It should not be possible to allocate on the active thread while we are
    // inside a GC.
    Zone *zone = cx->zone();
    MOZ_ASSERT(!JS::CurrentThreadIsHeapBusy(), "allocating while under GC");

    AutoMaybeStartBackgroundAllocation maybeStartBGAlloc;
    return cx->arenas()->allocateFromArena(zone, thingKind, CheckThresholds, maybeStartBGAlloc);
}

/* static */ TenuredCell*
GCRuntime::refillFreeListFromHelperThread(JSContext* cx, AllocKind thingKind)
{
    // A GC may be happening on the active thread, but zones used by off thread
    // tasks are never collected.
    Zone* zone = cx->zone();
    MOZ_ASSERT(!zone->wasGCStarted());

    AutoMaybeStartBackgroundAllocation maybeStartBGAlloc;
    return cx->arenas()->allocateFromArena(zone, thingKind, CheckThresholds, maybeStartBGAlloc);
}

/* static */ TenuredCell*
GCRuntime::refillFreeListInGC(Zone* zone, AllocKind thingKind)
{
    /*
     * Called by compacting GC to refill a free list while we are in a GC.
     */

    zone->arenas.checkEmptyFreeList(thingKind);
    mozilla::DebugOnly<JSRuntime*> rt = zone->runtimeFromActiveCooperatingThread();
    MOZ_ASSERT(JS::CurrentThreadIsHeapCollecting());
    MOZ_ASSERT_IF(!JS::CurrentThreadIsHeapMinorCollecting(), !rt->gc.isBackgroundSweeping());

    AutoMaybeStartBackgroundAllocation maybeStartBackgroundAllocation;
    return zone->arenas.allocateFromArena(zone, thingKind, DontCheckThresholds,
                                          maybeStartBackgroundAllocation);
}

TenuredCell*
ArenaLists::allocateFromArena(JS::Zone* zone, AllocKind thingKind,
                              ShouldCheckThresholds checkThresholds,
                              AutoMaybeStartBackgroundAllocation& maybeStartBGAlloc)
{
    JSRuntime* rt = zone->runtimeFromAnyThread();

    mozilla::Maybe<AutoLockGC> maybeLock;

    // See if we can proceed without taking the GC lock.
    if (backgroundFinalizeState(thingKind) != BFS_DONE)
        maybeLock.emplace(rt);

    ArenaList& al = arenaLists(thingKind);
    Arena* arena = al.takeNextArena();
    if (arena) {
        // Empty arenas should be immediately freed.
        MOZ_ASSERT(!arena->isEmpty());

        return allocateFromArenaInner(zone, arena, thingKind);
    }

    // Parallel threads have their own ArenaLists, but chunks are shared;
    // if we haven't already, take the GC lock now to avoid racing.
    if (maybeLock.isNothing())
        maybeLock.emplace(rt);

    Chunk* chunk = rt->gc.pickChunk(maybeLock.ref(), maybeStartBGAlloc);
    if (!chunk)
        return nullptr;

    // Although our chunk should definitely have enough space for another arena,
    // there are other valid reasons why Chunk::allocateArena() may fail.
    arena = rt->gc.allocateArena(chunk, zone, thingKind, checkThresholds, maybeLock.ref());
    if (!arena)
        return nullptr;

    MOZ_ASSERT(al.isCursorAtEnd());
    al.insertBeforeCursor(arena);

    return allocateFromArenaInner(zone, arena, thingKind);
}

inline TenuredCell*
ArenaLists::allocateFromArenaInner(JS::Zone* zone, Arena* arena, AllocKind kind)
{
    size_t thingSize = Arena::thingSize(kind);

    freeLists(kind) = arena->getFirstFreeSpan();

    if (MOZ_UNLIKELY(zone->wasGCStarted()))
        zone->runtimeFromAnyThread()->gc.arenaAllocatedDuringGC(zone, arena);
    TenuredCell* thing = freeLists(kind)->allocate(thingSize);
    MOZ_ASSERT(thing); // This allocation is infallible.
    return thing;
}

void
GCRuntime::arenaAllocatedDuringGC(JS::Zone* zone, Arena* arena)
{
    if (zone->needsIncrementalBarrier()) {
        arena->allocatedDuringIncremental = true;
        marker.delayMarkingArena(arena);
    } else if (zone->isGCSweeping()) {
        arena->setNextAllocDuringSweep(arenasAllocatedDuringSweep);
        arenasAllocatedDuringSweep = arena;
    }
}


// ///////////  Chunk -> Arena Allocator  //////////////////////////////////////

bool
GCRuntime::wantBackgroundAllocation(const AutoLockGC& lock) const
{
    // To minimize memory waste, we do not want to run the background chunk
    // allocation if we already have some empty chunks or when the runtime has
    // a small heap size (and therefore likely has a small growth rate).
    return allocTask.enabled() &&
           emptyChunks(lock).count() < tunables.minEmptyChunkCount(lock) &&
           (fullChunks(lock).count() + availableChunks(lock).count()) >= 4;
}

Arena*
GCRuntime::allocateArena(Chunk* chunk, Zone* zone, AllocKind thingKind,
                         ShouldCheckThresholds checkThresholds, const AutoLockGC& lock)
{
    MOZ_ASSERT(chunk->hasAvailableArenas());

    // Fail the allocation if we are over our heap size limits.
    if (checkThresholds && usage.gcBytes() >= tunables.gcMaxBytes())
        return nullptr;

    Arena* arena = chunk->allocateArena(rt, zone, thingKind, lock);
    zone->usage.addGCArena();

    // Trigger an incremental slice if needed.
    if (checkThresholds)
        maybeAllocTriggerGC(zone, lock);

    return arena;
}

Arena*
Chunk::allocateArena(JSRuntime* rt, Zone* zone, AllocKind thingKind, const AutoLockGC& lock)
{
    Arena* arena = info.numArenasFreeCommitted > 0
                   ? fetchNextFreeArena(rt)
                   : fetchNextDecommittedArena();
    arena->init(zone, thingKind);
    updateChunkListAfterAlloc(rt, lock);
    return arena;
}

inline void
GCRuntime::updateOnFreeArenaAlloc(const ChunkInfo& info)
{
    MOZ_ASSERT(info.numArenasFreeCommitted <= numArenasFreeCommitted);
    --numArenasFreeCommitted;
}

Arena*
Chunk::fetchNextFreeArena(JSRuntime* rt)
{
    MOZ_ASSERT(info.numArenasFreeCommitted > 0);
    MOZ_ASSERT(info.numArenasFreeCommitted <= info.numArenasFree);

    Arena* arena = info.freeArenasHead;
    info.freeArenasHead = arena->next;
    --info.numArenasFreeCommitted;
    --info.numArenasFree;
    rt->gc.updateOnFreeArenaAlloc(info);

    return arena;
}

Arena*
Chunk::fetchNextDecommittedArena()
{
    MOZ_ASSERT(info.numArenasFreeCommitted == 0);
    MOZ_ASSERT(info.numArenasFree > 0);

    unsigned offset = findDecommittedArenaOffset();
    info.lastDecommittedArenaOffset = offset + 1;
    --info.numArenasFree;
    decommittedArenas.unset(offset);

    Arena* arena = &arenas[offset];
    MarkPagesInUse(arena, ArenaSize);
    arena->setAsNotAllocated();

    return arena;
}

/*
 * Search for and return the next decommitted Arena. Our goal is to keep
 * lastDecommittedArenaOffset "close" to a free arena. We do this by setting
 * it to the most recently freed arena when we free, and forcing it to
 * the last alloc + 1 when we allocate.
 */
uint32_t
Chunk::findDecommittedArenaOffset()
{
    /* Note: lastFreeArenaOffset can be past the end of the list. */
    for (unsigned i = info.lastDecommittedArenaOffset; i < ArenasPerChunk; i++) {
        if (decommittedArenas.get(i))
            return i;
    }
    for (unsigned i = 0; i < info.lastDecommittedArenaOffset; i++) {
        if (decommittedArenas.get(i))
            return i;
    }
    MOZ_CRASH("No decommitted arenas found.");
}


// ///////////  System -> Chunk Allocator  /////////////////////////////////////

Chunk*
GCRuntime::getOrAllocChunk(const AutoLockGC& lock,
                           AutoMaybeStartBackgroundAllocation& maybeStartBackgroundAllocation)
{
    Chunk* chunk = emptyChunks(lock).pop();
    if (!chunk) {
        chunk = Chunk::allocate(rt);
        if (!chunk)
            return nullptr;
        MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
    }

    if (wantBackgroundAllocation(lock))
        maybeStartBackgroundAllocation.tryToStartBackgroundAllocation(rt->gc);

    return chunk;
}

void
GCRuntime::recycleChunk(Chunk* chunk, const AutoLockGC& lock)
{
    emptyChunks(lock).push(chunk);
}

Chunk*
GCRuntime::pickChunk(const AutoLockGC& lock,