DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (f2644bf19c9f)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_pump_win.h"

#include <math.h>

#include "base/message_loop.h"
#include "base/histogram.h"
#include "base/win_util.h"
#include "WinUtils.h"
#include "GeckoProfiler.h"

using base::Time;

namespace base {

static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";

// Message sent to get an additional time slice for pumping (processing) another
// task (a series of such messages creates a continuous task pump).
static const int kMsgHaveWork = WM_USER + 1;

//-----------------------------------------------------------------------------
// MessagePumpWin public:

void MessagePumpWin::AddObserver(Observer* observer) {
  observers_.AddObserver(observer);
}

void MessagePumpWin::RemoveObserver(Observer* observer) {
  observers_.RemoveObserver(observer);
}

void MessagePumpWin::WillProcessMessage(const MSG& msg) {
  FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
}

void MessagePumpWin::DidProcessMessage(const MSG& msg) {
  FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
}

void MessagePumpWin::RunWithDispatcher(Delegate* delegate,
                                       Dispatcher* dispatcher) {
  RunState s;
  s.delegate = delegate;
  s.dispatcher = dispatcher;
  s.should_quit = false;
  s.run_depth = state_ ? state_->run_depth + 1 : 1;

  RunState* previous_state = state_;
  state_ = &s;

  DoRunLoop();

  state_ = previous_state;
}

void MessagePumpWin::Quit() {
  DCHECK(state_);
  state_->should_quit = true;
}

//-----------------------------------------------------------------------------
// MessagePumpWin protected:

int MessagePumpWin::GetCurrentDelay() const {
  if (delayed_work_time_.is_null()) return -1;

  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
  // 6?  It should be 6 to avoid executing delayed work too early.
  double timeout =
      ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());

  // If this value is negative, then we need to run delayed work soon.
  int delay = static_cast<int>(timeout);
  if (delay < 0) delay = 0;

  return delay;
}

//-----------------------------------------------------------------------------
// MessagePumpForUI public:

MessagePumpForUI::MessagePumpForUI() { InitMessageWnd(); }

MessagePumpForUI::~MessagePumpForUI() {
  DestroyWindow(message_hwnd_);
  UnregisterClass(kWndClass, GetModuleHandle(NULL));
}

void MessagePumpForUI::ScheduleWork() {
  if (InterlockedExchange(&have_work_, 1))
    return;  // Someone else continued the pumping.

  // Make sure the MessagePump does some work for us.
  PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);

  // In order to wake up any cross-process COM calls which may currently be
  // pending on the main thread, we also have to post a UI message.
  PostMessage(message_hwnd_, WM_NULL, 0, 0);
}

void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
  //
  // We would *like* to provide high resolution timers.  Windows timers using
  // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
  // mechanism because the application can enter modal windows loops where it
  // is not running our MessageLoop; the only way to have our timers fire in
  // these cases is to post messages there.
  //
  // To provide sub-10ms timers, we process timers directly from our run loop.
  // For the common case, timers will be processed there as the run loop does
  // its normal work.  However, we *also* set the system timer so that WM_TIMER
  // events fire.  This mops up the case of timers not being able to work in
  // modal message loops.  It is possible for the SetTimer to pop and have no
  // pending timers, because they could have already been processed by the
  // run loop itself.
  //
  // We use a single SetTimer corresponding to the timer that will expire
  // soonest.  As new timers are created and destroyed, we update SetTimer.
  // Getting a spurrious SetTimer event firing is benign, as we'll just be
  // processing an empty timer queue.
  //
  delayed_work_time_ = delayed_work_time;

  int delay_msec = GetCurrentDelay();
  DCHECK(delay_msec >= 0);
  if (delay_msec < USER_TIMER_MINIMUM) delay_msec = USER_TIMER_MINIMUM;

  // Create a WM_TIMER event that will wake us up to check for any pending
  // timers (in case we are running within a nested, external sub-pump).
  SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
}

void MessagePumpForUI::PumpOutPendingPaintMessages() {
  // If we are being called outside of the context of Run, then don't try to do
  // any work.
  if (!state_) return;

  // Create a mini-message-pump to force immediate processing of only Windows
  // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
  // to get the job done.  Actual common max is 4 peeks, but we'll be a little
  // safe here.
  const int kMaxPeekCount = 20;
  int peek_count;
  for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
    MSG msg;
    if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) break;
    ProcessMessageHelper(msg);
    if (state_->should_quit)  // Handle WM_QUIT.
      break;
  }
}

//-----------------------------------------------------------------------------
// MessagePumpForUI private:

// static
LRESULT CALLBACK MessagePumpForUI::WndProcThunk(HWND hwnd, UINT message,
                                                WPARAM wparam, LPARAM lparam) {
  switch (message) {
    case kMsgHaveWork:
      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
      break;
    case WM_TIMER:
      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
      break;
  }
  return DefWindowProc(hwnd, message, wparam, lparam);
}

void MessagePumpForUI::DoRunLoop() {
  // IF this was just a simple PeekMessage() loop (servicing all possible work
  // queues), then Windows would try to achieve the following order according
  // to MSDN documentation about PeekMessage with no filter):
  //    * Sent messages
  //    * Posted messages
  //    * Sent messages (again)
  //    * WM_PAINT messages
  //    * WM_TIMER messages
  //
  // Summary: none of the above classes is starved, and sent messages has twice
  // the chance of being processed (i.e., reduced service time).

  for (;;) {
    // If we do any work, we may create more messages etc., and more work may
    // possibly be waiting in another task group.  When we (for example)
    // ProcessNextWindowsMessage(), there is a good chance there are still more
    // messages waiting.  On the other hand, when any of these methods return
    // having done no work, then it is pretty unlikely that calling them again
    // quickly will find any work to do.  Finally, if they all say they had no
    // work, then it is a good time to consider sleeping (waiting) for more
    // work.

    bool more_work_is_plausible = ProcessNextWindowsMessage();
    if (state_->should_quit) break;

    more_work_is_plausible |= state_->delegate->DoWork();
    if (state_->should_quit) break;

    more_work_is_plausible |=
        state_->delegate->DoDelayedWork(&delayed_work_time_);
    // If we did not process any delayed work, then we can assume that our
    // existing WM_TIMER if any will fire when delayed work should run.  We
    // don't want to disturb that timer if it is already in flight.  However,
    // if we did do all remaining delayed work, then lets kill the WM_TIMER.
    if (more_work_is_plausible && delayed_work_time_.is_null())
      KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    if (state_->should_quit) break;

    if (more_work_is_plausible) continue;

    more_work_is_plausible = state_->delegate->DoIdleWork();
    if (state_->should_quit) break;

    if (more_work_is_plausible) continue;

    WaitForWork();  // Wait (sleep) until we have work to do again.
  }
}

void MessagePumpForUI::InitMessageWnd() {
  HINSTANCE hinst = GetModuleHandle(NULL);

  WNDCLASSEX wc = {0};
  wc.cbSize = sizeof(wc);
  wc.lpfnWndProc = WndProcThunk;
  wc.hInstance = hinst;
  wc.lpszClassName = kWndClass;
  RegisterClassEx(&wc);

  message_hwnd_ =
      CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
  DCHECK(message_hwnd_);
}

void MessagePumpForUI::WaitForWork() {
  AUTO_PROFILER_LABEL("MessagePumpForUI::WaitForWork", IDLE);

  // Wait until a message is available, up to the time needed by the timer
  // manager to fire the next set of timers.
  int delay = GetCurrentDelay();
  if (delay < 0)  // Negative value means no timers waiting.
    delay = INFINITE;

  AUTO_PROFILER_THREAD_SLEEP;

  mozilla::widget::WinUtils::WaitForMessage(delay);
}

void MessagePumpForUI::HandleWorkMessage() {
  // If we are being called outside of the context of Run, then don't try to do
  // any work.  This could correspond to a MessageBox call or something of that
  // sort.
  if (!state_) {
    // Since we handled a kMsgHaveWork message, we must still update this flag.
    InterlockedExchange(&have_work_, 0);
    return;
  }

  // Let whatever would have run had we not been putting messages in the queue
  // run now.  This is an attempt to make our dummy message not starve other
  // messages that may be in the Windows message queue.
  ProcessPumpReplacementMessage();

  // Now give the delegate a chance to do some work.  He'll let us know if he
  // needs to do more work.
  if (state_->delegate->DoWork()) ScheduleWork();
}

void MessagePumpForUI::HandleTimerMessage() {
  KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));

  // If we are being called outside of the context of Run, then don't do
  // anything.  This could correspond to a MessageBox call or something of
  // that sort.
  if (!state_) return;

  state_->delegate->DoDelayedWork(&delayed_work_time_);
  if (!delayed_work_time_.is_null()) {
    // A bit gratuitous to set delayed_work_time_ again, but oh well.
    ScheduleDelayedWork(delayed_work_time_);
  }
}

bool MessagePumpForUI::ProcessNextWindowsMessage() {
  // If there are sent messages in the queue then PeekMessage internally
  // dispatches the message and returns false. We return true in this
  // case to ensure that the message loop peeks again instead of calling
  // MsgWaitForMultipleObjectsEx again.
  bool sent_messages_in_queue = false;
  DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
  if (HIWORD(queue_status) & QS_SENDMESSAGE) sent_messages_in_queue = true;

  MSG msg;
  if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
    return ProcessMessageHelper(msg);

  return sent_messages_in_queue;
}

bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
  if (WM_QUIT == msg.message) {
    // Repost the QUIT message so that it will be retrieved by the primary
    // GetMessage() loop.
    state_->should_quit = true;
    PostQuitMessage(static_cast<int>(msg.wParam));
    return false;
  }

  // While running our main message pump, we discard kMsgHaveWork messages.
  if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
    return ProcessPumpReplacementMessage();

  WillProcessMessage(msg);

  if (state_->dispatcher) {
    if (!state_->dispatcher->Dispatch(msg)) state_->should_quit = true;
  } else {
    TranslateMessage(&msg);
    DispatchMessage(&msg);
  }

  DidProcessMessage(msg);
  return true;
}

bool MessagePumpForUI::ProcessPumpReplacementMessage() {
  // When we encounter a kMsgHaveWork message, this method is called to peek
  // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
  // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
  // a continuous stream of such messages are posted.  This method carefully
  // peeks a message while there is no chance for a kMsgHaveWork to be pending,
  // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
  // possibly be posted), and finally dispatches that peeked replacement.  Note
  // that the re-post of kMsgHaveWork may be asynchronous to this thread!!

  MSG msg;
  bool have_message = false;
  if (MessageLoop::current()->os_modal_loop()) {
    // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
    have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
                   PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
  } else {
    have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));

    if (have_message && msg.message == WM_NULL)
      have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
  }

  DCHECK(!have_message || kMsgHaveWork != msg.message ||
         msg.hwnd != message_hwnd_);

  // Since we discarded a kMsgHaveWork message, we must update the flag.
  int old_have_work = InterlockedExchange(&have_work_, 0);
  DCHECK(old_have_work);

  // We don't need a special time slice if we didn't have_message to process.
  if (!have_message) return false;

  // Guarantee we'll get another time slice in the case where we go into native
  // windows code.   This ScheduleWork() may hurt performance a tiny bit when
  // tasks appear very infrequently, but when the event queue is busy, the
  // kMsgHaveWork events get (percentage wise) rarer and rarer.
  ScheduleWork();
  return ProcessMessageHelper(msg);
}

//-----------------------------------------------------------------------------
// MessagePumpForIO public:

MessagePumpForIO::MessagePumpForIO() {
  port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 1));
  DCHECK(port_.IsValid());
}

void MessagePumpForIO::ScheduleWork() {
  if (InterlockedExchange(&have_work_, 1))
    return;  // Someone else continued the pumping.

  // Make sure the MessagePump does some work for us.
  BOOL ret =
      PostQueuedCompletionStatus(port_, 0, reinterpret_cast<ULONG_PTR>(this),
                                 reinterpret_cast<OVERLAPPED*>(this));
  DCHECK(ret);
}

void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
  // We know that we can't be blocked right now since this method can only be
  // called on the same thread as Run, so we only need to update our record of
  // how long to sleep when we do sleep.
  delayed_work_time_ = delayed_work_time;
}

void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
                                         IOHandler* handler) {
  ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
  HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
  DCHECK(port == port_.Get());
}

//-----------------------------------------------------------------------------
// MessagePumpForIO private:

void MessagePumpForIO::DoRunLoop() {
  for (;;) {
    // If we do any work, we may create more messages etc., and more work may
    // possibly be waiting in another task group.  When we (for example)
    // WaitForIOCompletion(), there is a good chance there are still more
    // messages waiting.  On the other hand, when any of these methods return
    // having done no work, then it is pretty unlikely that calling them
    // again quickly will find any work to do.  Finally, if they all say they
    // had no work, then it is a good time to consider sleeping (waiting) for
    // more work.

    bool more_work_is_plausible = state_->delegate->DoWork();
    if (state_->should_quit) break;

    more_work_is_plausible |= WaitForIOCompletion(0, NULL);
    if (state_->should_quit) break;

    more_work_is_plausible |=
        state_->delegate->DoDelayedWork(&delayed_work_time_);
    if (state_->should_quit) break;

    if (more_work_is_plausible) continue;

    more_work_is_plausible = state_->delegate->DoIdleWork();
    if (state_->should_quit) break;

    if (more_work_is_plausible) continue;

    WaitForWork();  // Wait (sleep) until we have work to do again.
  }
}

// Wait until IO completes, up to the time needed by the timer manager to fire
// the next set of timers.
void MessagePumpForIO::WaitForWork() {
  // We do not support nested IO message loops. This is to avoid messy
  // recursion problems.
  DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";

  int timeout = GetCurrentDelay();
  if (timeout < 0)  // Negative value means no timers waiting.
    timeout = INFINITE;

  WaitForIOCompletion(timeout, NULL);
}

bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
  IOItem item;
  if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
    // We have to ask the system for another IO completion.
    if (!GetIOItem(timeout, &item)) return false;

    if (ProcessInternalIOItem(item)) return true;
  }

  if (item.context->handler) {
    if (filter && item.handler != filter) {
      // Save this item for later
      completed_io_.push_back(item);
    } else {
      DCHECK(item.context->handler == item.handler);
      item.handler->OnIOCompleted(item.context, item.bytes_transfered,
                                  item.error);
    }
  } else {
    // The handler must be gone by now, just cleanup the mess.
    delete item.context;
  }
  return true;
}

// Asks the OS for another IO completion result.
bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
  memset(item, 0, sizeof(*item));
  ULONG_PTR key = 0;
  OVERLAPPED* overlapped = NULL;
  if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
                                 &overlapped, timeout)) {
    if (!overlapped) return false;  // Nothing in the queue.
    item->error = GetLastError();
    item->bytes_transfered = 0;
  }

  item->handler = reinterpret_cast<IOHandler*>(key);
  item->context = reinterpret_cast<IOContext*>(overlapped);
  return true;
}

bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
  if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
      this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
    // This is our internal completion.
    DCHECK(!item.bytes_transfered);
    InterlockedExchange(&have_work_, 0);
    return true;
  }
  return false;
}

// Returns a completion item that was previously received.
bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
  DCHECK(!completed_io_.empty());
  for (std::list<IOItem>::iterator it = completed_io_.begin();
       it != completed_io_.end(); ++it) {
    if (!filter || it->handler == filter) {
      *item = *it;
      completed_io_.erase(it);
      return true;
    }
  }
  return false;
}

}  // namespace base