Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "Common.h"
#include "AnimationSurfaceProvider.h"
#include "DecodePool.h"
#include "Decoder.h"
#include "DecoderFactory.h"
#include "decoders/nsBMPDecoder.h"
#include "IDecodingTask.h"
#include "ImageOps.h"
#include "imgIContainer.h"
#include "ImageFactory.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/gfx/2D.h"
#include "nsComponentManagerUtils.h"
#include "nsCOMPtr.h"
#include "nsIInputStream.h"
#include "mozilla/RefPtr.h"
#include "nsStreamUtils.h"
#include "nsString.h"
#include "nsThreadUtils.h"
#include "ProgressTracker.h"
#include "SourceBuffer.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
static already_AddRefed<SourceSurface> CheckDecoderState(
const ImageTestCase& aTestCase, image::Decoder* aDecoder) {
// image::Decoder should match what we asked for in the MIME type.
EXPECT_NE(aDecoder->GetType(), DecoderType::UNKNOWN);
EXPECT_EQ(aDecoder->GetType(),
DecoderFactory::GetDecoderType(aTestCase.mMimeType));
EXPECT_TRUE(aDecoder->GetDecodeDone());
EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_HAS_ERROR), aDecoder->HasError());
// Verify that the decoder made the expected progress.
Progress progress = aDecoder->TakeProgress();
EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_HAS_ERROR),
bool(progress & FLAG_HAS_ERROR));
if (aTestCase.mFlags & TEST_CASE_HAS_ERROR) {
return nullptr; // That's all we can check for bad images.
}
EXPECT_TRUE(bool(progress & FLAG_SIZE_AVAILABLE));
EXPECT_TRUE(bool(progress & FLAG_DECODE_COMPLETE));
EXPECT_TRUE(bool(progress & FLAG_FRAME_COMPLETE));
EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_IS_TRANSPARENT),
bool(progress & FLAG_HAS_TRANSPARENCY));
EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_IS_ANIMATED),
bool(progress & FLAG_IS_ANIMATED));
// The decoder should get the correct size.
OrientedIntSize size = aDecoder->Size();
EXPECT_EQ(aTestCase.mSize.width, size.width);
EXPECT_EQ(aTestCase.mSize.height, size.height);
// Get the current frame, which is always the first frame of the image
// because CreateAnonymousDecoder() forces a first-frame-only decode.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
// Verify that the resulting surfaces matches our expectations.
EXPECT_TRUE(surface->IsDataSourceSurface());
EXPECT_TRUE(surface->GetFormat() == SurfaceFormat::OS_RGBX ||
surface->GetFormat() == SurfaceFormat::OS_RGBA);
EXPECT_EQ(aTestCase.mOutputSize, surface->GetSize());
return surface.forget();
}
static void CheckDecoderResults(const ImageTestCase& aTestCase,
image::Decoder* aDecoder) {
RefPtr<SourceSurface> surface = CheckDecoderState(aTestCase, aDecoder);
if (!surface) {
return;
}
if (aTestCase.mFlags & TEST_CASE_IGNORE_OUTPUT) {
return;
}
// Check the output.
EXPECT_TRUE(IsSolidColor(surface, aTestCase.Color(), aTestCase.Fuzz()));
}
template <typename Func>
void WithBadBufferDecode(const ImageTestCase& aTestCase,
const Maybe<IntSize>& aOutputSize,
Func aResultChecker) {
// Prepare a SourceBuffer with an error that will immediately move iterators
// to COMPLETE.
auto sourceBuffer = MakeNotNull<RefPtr<SourceBuffer>>();
sourceBuffer->ExpectLength(SIZE_MAX);
// Create a decoder.
DecoderType decoderType = DecoderFactory::GetDecoderType(aTestCase.mMimeType);
RefPtr<image::Decoder> decoder = DecoderFactory::CreateAnonymousDecoder(
decoderType, sourceBuffer, aOutputSize, DecoderFlags::FIRST_FRAME_ONLY,
aTestCase.mSurfaceFlags);
ASSERT_TRUE(decoder != nullptr);
RefPtr<IDecodingTask> task =
new AnonymousDecodingTask(WrapNotNull(decoder), /* aResumable */ false);
// Run the full decoder synchronously on the main thread.
task->Run();
// Call the lambda to verify the expected results.
aResultChecker(decoder);
}
static void CheckDecoderBadBuffer(const ImageTestCase& aTestCase) {
WithBadBufferDecode(aTestCase, Nothing(), [&](image::Decoder* aDecoder) {
CheckDecoderResults(aTestCase, aDecoder);
});
}
template <typename Func>
void WithSingleChunkDecode(const ImageTestCase& aTestCase,
const Maybe<IntSize>& aOutputSize,
bool aUseDecodePool, Func aResultChecker) {
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Write the data into a SourceBuffer.
auto sourceBuffer = MakeNotNull<RefPtr<SourceBuffer>>();
sourceBuffer->ExpectLength(length);
rv = sourceBuffer->AppendFromInputStream(inputStream, length);
ASSERT_NS_SUCCEEDED(rv);
sourceBuffer->Complete(NS_OK);
// Create a decoder.
DecoderType decoderType = DecoderFactory::GetDecoderType(aTestCase.mMimeType);
DecoderFlags decoderFlags =
DecoderFactory::GetDefaultDecoderFlagsForType(decoderType) |
DecoderFlags::FIRST_FRAME_ONLY;
RefPtr<image::Decoder> decoder = DecoderFactory::CreateAnonymousDecoder(
decoderType, sourceBuffer, aOutputSize, decoderFlags,
aTestCase.mSurfaceFlags);
ASSERT_TRUE(decoder != nullptr);
RefPtr<IDecodingTask> task =
new AnonymousDecodingTask(WrapNotNull(decoder), /* aResumable */ false);
if (aUseDecodePool) {
DecodePool::Singleton()->AsyncRun(task.get());
while (!decoder->GetDecodeDone()) {
task->Resume();
}
} else { // Run the full decoder synchronously on the main thread.
task->Run();
}
// Call the lambda to verify the expected results.
aResultChecker(decoder);
}
static void CheckDecoderSingleChunk(const ImageTestCase& aTestCase,
bool aUseDecodePool = false) {
WithSingleChunkDecode(aTestCase, Nothing(), aUseDecodePool,
[&](image::Decoder* aDecoder) {
CheckDecoderResults(aTestCase, aDecoder);
});
}
template <typename Func>
void WithDelayedChunkDecode(const ImageTestCase& aTestCase,
const Maybe<IntSize>& aOutputSize,
Func aResultChecker) {
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Prepare an empty SourceBuffer.
auto sourceBuffer = MakeNotNull<RefPtr<SourceBuffer>>();
// Create a decoder.
DecoderType decoderType = DecoderFactory::GetDecoderType(aTestCase.mMimeType);
RefPtr<image::Decoder> decoder = DecoderFactory::CreateAnonymousDecoder(
decoderType, sourceBuffer, aOutputSize, DecoderFlags::FIRST_FRAME_ONLY,
aTestCase.mSurfaceFlags);
ASSERT_TRUE(decoder != nullptr);
RefPtr<IDecodingTask> task =
new AnonymousDecodingTask(WrapNotNull(decoder), /* aResumable */ true);
// Run the full decoder synchronously. It should now be waiting on
// the iterator to yield some data since we haven't written anything yet.
task->Run();
// Writing all of the data should wake up the decoder to complete.
sourceBuffer->ExpectLength(length);
rv = sourceBuffer->AppendFromInputStream(inputStream, length);
ASSERT_NS_SUCCEEDED(rv);
sourceBuffer->Complete(NS_OK);
// It would have gotten posted to the main thread to avoid mutex contention.
SpinPendingEvents();
// Call the lambda to verify the expected results.
aResultChecker(decoder);
}
static void CheckDecoderDelayedChunk(const ImageTestCase& aTestCase) {
WithDelayedChunkDecode(aTestCase, Nothing(), [&](image::Decoder* aDecoder) {
CheckDecoderResults(aTestCase, aDecoder);
});
}
static void CheckDecoderMultiChunk(const ImageTestCase& aTestCase,
uint64_t aChunkSize = 1) {
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Create a SourceBuffer and a decoder.
auto sourceBuffer = MakeNotNull<RefPtr<SourceBuffer>>();
sourceBuffer->ExpectLength(length);
DecoderType decoderType = DecoderFactory::GetDecoderType(aTestCase.mMimeType);
DecoderFlags decoderFlags =
DecoderFactory::GetDefaultDecoderFlagsForType(decoderType) |
DecoderFlags::FIRST_FRAME_ONLY;
RefPtr<image::Decoder> decoder = DecoderFactory::CreateAnonymousDecoder(
decoderType, sourceBuffer, Nothing(), decoderFlags,
aTestCase.mSurfaceFlags);
ASSERT_TRUE(decoder != nullptr);
RefPtr<IDecodingTask> task =
new AnonymousDecodingTask(WrapNotNull(decoder), /* aResumable */ true);
// Run the full decoder synchronously. It should now be waiting on
// the iterator to yield some data since we haven't written anything yet.
task->Run();
while (length > 0) {
uint64_t read = length > aChunkSize ? aChunkSize : length;
length -= read;
uint64_t available = 0;
rv = inputStream->Available(&available);
ASSERT_TRUE(available >= read);
ASSERT_NS_SUCCEEDED(rv);
// Writing any data should wake up the decoder to complete.
rv = sourceBuffer->AppendFromInputStream(inputStream, read);
ASSERT_NS_SUCCEEDED(rv);
// It would have gotten posted to the main thread to avoid mutex contention.
SpinPendingEvents();
}
sourceBuffer->Complete(NS_OK);
SpinPendingEvents();
CheckDecoderResults(aTestCase, decoder);
}
static void CheckDownscaleDuringDecode(const ImageTestCase& aTestCase) {
// This function expects that |aTestCase| consists of 25 lines of green,
// followed by 25 lines of red, followed by 25 lines of green, followed by 25
// more lines of red. We'll downscale it from 100x100 to 20x20.
IntSize outputSize(20, 20);
WithSingleChunkDecode(
aTestCase, Some(outputSize), /* aUseDecodePool */ false,
[&](image::Decoder* aDecoder) {
RefPtr<SourceSurface> surface = CheckDecoderState(aTestCase, aDecoder);
// There are no downscale-during-decode tests that have
// TEST_CASE_HAS_ERROR set, so we expect to always get a surface here.
EXPECT_TRUE(surface != nullptr);
if (aTestCase.mFlags & TEST_CASE_IGNORE_OUTPUT) {
return;
}
// Check that the downscaled image is correct. Note that we skip rows
// near the transitions between colors, since the downscaler does not
// produce a sharp boundary at these points. Even some of the rows we
// test need a small amount of fuzz; this is just the nature of Lanczos
// downscaling.
EXPECT_TRUE(RowsAreSolidColor(surface, 0, 4,
aTestCase.ChooseColor(BGRAColor::Green()),
/* aFuzz = */ 47));
EXPECT_TRUE(RowsAreSolidColor(surface, 6, 3,
aTestCase.ChooseColor(BGRAColor::Red()),
/* aFuzz = */ 27));
EXPECT_TRUE(RowsAreSolidColor(surface, 11, 3, BGRAColor::Green(),
/* aFuzz = */ 47));
EXPECT_TRUE(RowsAreSolidColor(surface, 16, 4,
aTestCase.ChooseColor(BGRAColor::Red()),
/* aFuzz = */ 27));
});
}
static void CheckAnimationDecoderResults(const ImageTestCase& aTestCase,
AnimationSurfaceProvider* aProvider,
image::Decoder* aDecoder) {
EXPECT_TRUE(aDecoder->GetDecodeDone());
EXPECT_EQ(bool(aTestCase.mFlags & TEST_CASE_HAS_ERROR), aDecoder->HasError());
if (aTestCase.mFlags & TEST_CASE_HAS_ERROR) {
return; // That's all we can check for bad images.
}
// The decoder should get the correct size.
OrientedIntSize size = aDecoder->Size();
EXPECT_EQ(aTestCase.mSize.width, size.width);
EXPECT_EQ(aTestCase.mSize.height, size.height);
if (aTestCase.mFlags & TEST_CASE_IGNORE_OUTPUT) {
return;
}
// Check the output.
AutoTArray<BGRAColor, 2> framePixels;
framePixels.AppendElement(aTestCase.ChooseColor(BGRAColor::Green()));
framePixels.AppendElement(
aTestCase.ChooseColor(BGRAColor(0x7F, 0x7F, 0x7F, 0xFF)));
DrawableSurface drawableSurface(WrapNotNull(aProvider));
for (size_t i = 0; i < framePixels.Length(); ++i) {
nsresult rv = drawableSurface.Seek(i);
EXPECT_NS_SUCCEEDED(rv);
// Check the first frame, all green.
RawAccessFrameRef rawFrame = drawableSurface->RawAccessRef();
RefPtr<SourceSurface> surface = rawFrame->GetSourceSurface();
// Verify that the resulting surfaces matches our expectations.
EXPECT_TRUE(surface->IsDataSourceSurface());
EXPECT_TRUE(surface->GetFormat() == SurfaceFormat::OS_RGBX ||
surface->GetFormat() == SurfaceFormat::OS_RGBA);
EXPECT_EQ(aTestCase.mOutputSize, surface->GetSize());
EXPECT_TRUE(IsSolidColor(surface, framePixels[i], aTestCase.Fuzz()));
}
// Should be no more frames.
nsresult rv = drawableSurface.Seek(framePixels.Length());
EXPECT_NS_FAILED(rv);
}
template <typename Func>
static void WithSingleChunkAnimationDecode(const ImageTestCase& aTestCase,
Func aResultChecker) {
// Create an image.
RefPtr<Image> image = ImageFactory::CreateAnonymousImage(
nsDependentCString(aTestCase.mMimeType));
ASSERT_TRUE(!image->HasError());
NotNull<RefPtr<RasterImage>> rasterImage =
WrapNotNull(static_cast<RasterImage*>(image.get()));
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Write the data into a SourceBuffer.
NotNull<RefPtr<SourceBuffer>> sourceBuffer = WrapNotNull(new SourceBuffer());
sourceBuffer->ExpectLength(length);
rv = sourceBuffer->AppendFromInputStream(inputStream, length);
ASSERT_NS_SUCCEEDED(rv);
sourceBuffer->Complete(NS_OK);
// Create a metadata decoder first, because otherwise RasterImage will get
// unhappy about finding out the image is animated during a full decode.
DecoderType decoderType = DecoderFactory::GetDecoderType(aTestCase.mMimeType);
DecoderFlags decoderFlags =
DecoderFactory::GetDefaultDecoderFlagsForType(decoderType);
RefPtr<IDecodingTask> task = DecoderFactory::CreateMetadataDecoder(
decoderType, rasterImage, decoderFlags, sourceBuffer);
ASSERT_TRUE(task != nullptr);
// Run the metadata decoder synchronously.
task->Run();
// Create a decoder.
SurfaceFlags surfaceFlags = aTestCase.mSurfaceFlags;
RefPtr<image::Decoder> decoder = DecoderFactory::CreateAnonymousDecoder(
decoderType, sourceBuffer, Nothing(), decoderFlags, surfaceFlags);
ASSERT_TRUE(decoder != nullptr);
// Create an AnimationSurfaceProvider which will manage the decoding process
// and make this decoder's output available in the surface cache.
SurfaceKey surfaceKey = RasterSurfaceKey(aTestCase.mOutputSize, surfaceFlags,
PlaybackType::eAnimated);
RefPtr<AnimationSurfaceProvider> provider = new AnimationSurfaceProvider(
rasterImage, surfaceKey, WrapNotNull(decoder),
/* aCurrentFrame */ 0);
// Run the full decoder synchronously.
provider->Run();
// Call the lambda to verify the expected results.
aResultChecker(provider, decoder);
}
static void CheckAnimationDecoderSingleChunk(const ImageTestCase& aTestCase) {
WithSingleChunkAnimationDecode(
aTestCase,
[&](AnimationSurfaceProvider* aProvider, image::Decoder* aDecoder) {
CheckAnimationDecoderResults(aTestCase, aProvider, aDecoder);
});
}
static void CheckDecoderFrameFirst(const ImageTestCase& aTestCase) {
// Verify that we can decode this test case and retrieve the first frame using
// imgIContainer::FRAME_FIRST. This ensures that we correctly trigger a
// single-frame decode rather than an animated decode when
// imgIContainer::FRAME_FIRST is requested.
// Create an image.
RefPtr<Image> image = ImageFactory::CreateAnonymousImage(
nsDependentCString(aTestCase.mMimeType));
ASSERT_TRUE(!image->HasError());
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Write the data into the image.
rv = image->OnImageDataAvailable(nullptr, inputStream, 0,
static_cast<uint32_t>(length));
ASSERT_NS_SUCCEEDED(rv);
// Let the image know we've sent all the data.
rv = image->OnImageDataComplete(nullptr, NS_OK, true);
ASSERT_NS_SUCCEEDED(rv);
RefPtr<ProgressTracker> tracker = image->GetProgressTracker();
tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE);
// Lock the image so its surfaces don't disappear during the test.
image->LockImage();
auto unlock = mozilla::MakeScopeExit([&] { image->UnlockImage(); });
// Use GetFrame() to force a sync decode of the image, specifying FRAME_FIRST
// to ensure that we don't get an animated decode.
RefPtr<SourceSurface> surface = image->GetFrame(
imgIContainer::FRAME_FIRST, imgIContainer::FLAG_SYNC_DECODE);
// Ensure that the image's metadata meets our expectations.
IntSize imageSize(0, 0);
rv = image->GetWidth(&imageSize.width);
EXPECT_NS_SUCCEEDED(rv);
rv = image->GetHeight(&imageSize.height);
EXPECT_NS_SUCCEEDED(rv);
EXPECT_EQ(aTestCase.mSize.width, imageSize.width);
EXPECT_EQ(aTestCase.mSize.height, imageSize.height);
Progress imageProgress = tracker->GetProgress();
EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false);
EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true);
// Ensure that we decoded the static version of the image.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eStatic),
/* aMarkUsed = */ false);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_TRUE(bool(result.Surface()));
}
// Ensure that we didn't decode the animated version of the image.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eAnimated),
/* aMarkUsed = */ false);
ASSERT_EQ(MatchType::NOT_FOUND, result.Type());
}
// Use GetFrame() to force a sync decode of the image, this time specifying
// FRAME_CURRENT to ensure that we get an animated decode.
RefPtr<SourceSurface> animatedSurface = image->GetFrame(
imgIContainer::FRAME_CURRENT, imgIContainer::FLAG_SYNC_DECODE);
// Ensure that we decoded both frames of the animated version of the image.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eAnimated),
/* aMarkUsed = */ true);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_NS_SUCCEEDED(result.Surface().Seek(0));
EXPECT_TRUE(bool(result.Surface()));
RefPtr<imgFrame> partialFrame = result.Surface().GetFrame(1);
EXPECT_TRUE(bool(partialFrame));
}
// Ensure that the static version is still around.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eStatic),
/* aMarkUsed = */ true);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_TRUE(bool(result.Surface()));
}
}
static void CheckDecoderFrameCurrent(const ImageTestCase& aTestCase) {
// Verify that we can decode this test case and retrieve the entire sequence
// of frames using imgIContainer::FRAME_CURRENT. This ensures that we
// correctly trigger an animated decode rather than a single-frame decode when
// imgIContainer::FRAME_CURRENT is requested.
// Create an image.
RefPtr<Image> image = ImageFactory::CreateAnonymousImage(
nsDependentCString(aTestCase.mMimeType));
ASSERT_TRUE(!image->HasError());
nsCOMPtr<nsIInputStream> inputStream = LoadFile(aTestCase.mPath);
ASSERT_TRUE(inputStream);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Write the data into the image.
rv = image->OnImageDataAvailable(nullptr, inputStream, 0,
static_cast<uint32_t>(length));
ASSERT_NS_SUCCEEDED(rv);
// Let the image know we've sent all the data.
rv = image->OnImageDataComplete(nullptr, NS_OK, true);
ASSERT_NS_SUCCEEDED(rv);
RefPtr<ProgressTracker> tracker = image->GetProgressTracker();
tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE);
// Lock the image so its surfaces don't disappear during the test.
image->LockImage();
// Use GetFrame() to force a sync decode of the image, specifying
// FRAME_CURRENT to ensure we get an animated decode.
RefPtr<SourceSurface> surface = image->GetFrame(
imgIContainer::FRAME_CURRENT, imgIContainer::FLAG_SYNC_DECODE);
// Ensure that the image's metadata meets our expectations.
IntSize imageSize(0, 0);
rv = image->GetWidth(&imageSize.width);
EXPECT_NS_SUCCEEDED(rv);
rv = image->GetHeight(&imageSize.height);
EXPECT_NS_SUCCEEDED(rv);
EXPECT_EQ(aTestCase.mSize.width, imageSize.width);
EXPECT_EQ(aTestCase.mSize.height, imageSize.height);
Progress imageProgress = tracker->GetProgress();
EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false);
EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true);
// Ensure that we decoded both frames of the animated version of the image.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eAnimated),
/* aMarkUsed = */ true);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_NS_SUCCEEDED(result.Surface().Seek(0));
EXPECT_TRUE(bool(result.Surface()));
RefPtr<imgFrame> partialFrame = result.Surface().GetFrame(1);
EXPECT_TRUE(bool(partialFrame));
}
// Ensure that we didn't decode the static version of the image.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eStatic),
/* aMarkUsed = */ false);
ASSERT_EQ(MatchType::NOT_FOUND, result.Type());
}
// Use GetFrame() to force a sync decode of the image, this time specifying
// FRAME_FIRST to ensure that we get a single-frame decode.
RefPtr<SourceSurface> animatedSurface = image->GetFrame(
imgIContainer::FRAME_FIRST, imgIContainer::FLAG_SYNC_DECODE);
// Ensure that we decoded the static version of the image.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eStatic),
/* aMarkUsed = */ true);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_TRUE(bool(result.Surface()));
}
// Ensure that both frames of the animated version are still around.
{
LookupResult result = SurfaceCache::Lookup(
ImageKey(image.get()),
RasterSurfaceKey(imageSize, aTestCase.mSurfaceFlags,
PlaybackType::eAnimated),
/* aMarkUsed = */ true);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_NS_SUCCEEDED(result.Surface().Seek(0));
EXPECT_TRUE(bool(result.Surface()));
RefPtr<imgFrame> partialFrame = result.Surface().GetFrame(1);
EXPECT_TRUE(bool(partialFrame));
}
}
class ImageDecoders : public ::testing::Test {
protected:
AutoInitializeImageLib mInit;
};
#define IMAGE_GTEST_DECODER_BASE_F(test_prefix) \
TEST_F(ImageDecoders, test_prefix##SingleChunk) { \
CheckDecoderSingleChunk(Green##test_prefix##TestCase()); \
} \
\
TEST_F(ImageDecoders, test_prefix##DelayedChunk) { \
CheckDecoderDelayedChunk(Green##test_prefix##TestCase()); \
} \
\
TEST_F(ImageDecoders, test_prefix##MultiChunk) { \
CheckDecoderMultiChunk(Green##test_prefix##TestCase()); \
} \
\
TEST_F(ImageDecoders, test_prefix##DownscaleDuringDecode) { \
CheckDownscaleDuringDecode(Downscaled##test_prefix##TestCase()); \
} \
\
TEST_F(ImageDecoders, test_prefix##ForceSRGB) { \
CheckDecoderSingleChunk(Green##test_prefix##TestCase().WithSurfaceFlags( \
SurfaceFlags::TO_SRGB_COLORSPACE)); \
} \
\
TEST_F(ImageDecoders, test_prefix##BadBuffer) { \
CheckDecoderBadBuffer(Green##test_prefix##TestCase().WithFlags( \
TEST_CASE_HAS_ERROR | TEST_CASE_IGNORE_OUTPUT)); \
}
IMAGE_GTEST_DECODER_BASE_F(PNG)
IMAGE_GTEST_DECODER_BASE_F(GIF)
IMAGE_GTEST_DECODER_BASE_F(JPG)
IMAGE_GTEST_DECODER_BASE_F(BMP)
IMAGE_GTEST_DECODER_BASE_F(ICO)
IMAGE_GTEST_DECODER_BASE_F(Icon)
IMAGE_GTEST_DECODER_BASE_F(WebP)
#ifdef MOZ_JXL
IMAGE_GTEST_DECODER_BASE_F(JXL)
#endif
TEST_F(ImageDecoders, ICOWithANDMaskDownscaleDuringDecode) {
CheckDownscaleDuringDecode(DownscaledTransparentICOWithANDMaskTestCase());
}
TEST_F(ImageDecoders, WebPLargeMultiChunk) {
CheckDecoderMultiChunk(LargeWebPTestCase(), /* aChunkSize */ 64);
}
TEST_F(ImageDecoders, WebPIccSrgbMultiChunk) {
CheckDecoderMultiChunk(GreenWebPIccSrgbTestCase());
}
TEST_F(ImageDecoders, WebPTransparentSingleChunk) {
CheckDecoderSingleChunk(TransparentWebPTestCase());
}
TEST_F(ImageDecoders, WebPTransparentNoAlphaHeaderSingleChunk) {
CheckDecoderSingleChunk(TransparentNoAlphaHeaderWebPTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunk) {
CheckDecoderSingleChunk(GreenAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkNonzeroReserved) {
CheckDecoderSingleChunk(NonzeroReservedAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkMultipleColr) {
CheckDecoderSingleChunk(MultipleColrAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent10bit420) {
CheckDecoderSingleChunk(Transparent10bit420AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent10bit422) {
CheckDecoderSingleChunk(Transparent10bit422AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent10bit444) {
CheckDecoderSingleChunk(Transparent10bit444AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent12bit420) {
CheckDecoderSingleChunk(Transparent12bit420AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent12bit422) {
CheckDecoderSingleChunk(Transparent12bit422AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent12bit444) {
CheckDecoderSingleChunk(Transparent12bit444AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent8bit420) {
CheckDecoderSingleChunk(Transparent8bit420AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent8bit422) {
CheckDecoderSingleChunk(Transparent8bit422AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkTransparent8bit444) {
CheckDecoderSingleChunk(Transparent8bit444AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitLimitedRangeBT601) {
CheckDecoderSingleChunk(Gray8bitLimitedRangeBT601AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitLimitedRangeBT709) {
CheckDecoderSingleChunk(Gray8bitLimitedRangeBT709AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitLimitedRangeBT2020) {
CheckDecoderSingleChunk(Gray8bitLimitedRangeBT2020AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitFullRangeBT601) {
CheckDecoderSingleChunk(Gray8bitFullRangeBT601AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitFullRangeBT709) {
CheckDecoderSingleChunk(Gray8bitFullRangeBT709AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitFullRangeBT2020) {
CheckDecoderSingleChunk(Gray8bitFullRangeBT2020AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitLimitedRangeBT601) {
CheckDecoderSingleChunk(Gray10bitLimitedRangeBT601AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitLimitedRangeBT709) {
CheckDecoderSingleChunk(Gray10bitLimitedRangeBT709AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitLimitedRangeBT2020) {
CheckDecoderSingleChunk(Gray10bitLimitedRangeBT2020AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitFullRangeBT601) {
CheckDecoderSingleChunk(Gray10bitFullRangeBT601AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitFullRangeBT709) {
CheckDecoderSingleChunk(Gray10bitFullRangeBT709AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitFullRangeBT2020) {
CheckDecoderSingleChunk(Gray10bitFullRangeBT2020AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitLimitedRangeBT601) {
CheckDecoderSingleChunk(Gray12bitLimitedRangeBT601AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitLimitedRangeBT709) {
CheckDecoderSingleChunk(Gray12bitLimitedRangeBT709AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitLimitedRangeBT2020) {
CheckDecoderSingleChunk(Gray12bitLimitedRangeBT2020AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitFullRangeBT601) {
CheckDecoderSingleChunk(Gray12bitFullRangeBT601AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitFullRangeBT709) {
CheckDecoderSingleChunk(Gray12bitFullRangeBT709AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitFullRangeBT2020) {
CheckDecoderSingleChunk(Gray12bitFullRangeBT2020AVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitLimitedRangeGrayscale) {
CheckDecoderSingleChunk(Gray8bitLimitedRangeGrayscaleAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray8bitFullRangeGrayscale) {
CheckDecoderSingleChunk(Gray8bitFullRangeGrayscaleAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitLimitedRangeGrayscale) {
CheckDecoderSingleChunk(Gray10bitLimitedRangeGrayscaleAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray10bitFullRangeGrayscale) {
CheckDecoderSingleChunk(Gray10bitFullRangeGrayscaleAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitLimitedRangeGrayscale) {
CheckDecoderSingleChunk(Gray12bitLimitedRangeGrayscaleAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFSingleChunkGray12bitFullRangeGrayscale) {
CheckDecoderSingleChunk(Gray12bitFullRangeGrayscaleAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFMultiLayerSingleChunk) {
CheckDecoderSingleChunk(MultiLayerAVIFTestCase());
}
// This test must use the decode pool in order to check for regressions
// of crashing the dav1d decoder when the ImgDecoder threads have a standard-
// sized stack.
TEST_F(ImageDecoders, AVIFStackCheck) {
CheckDecoderSingleChunk(StackCheckAVIFTestCase(), /* aUseDecodePool */ true);
}
TEST_F(ImageDecoders, AVIFDelayedChunk) {
CheckDecoderDelayedChunk(GreenAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFMultiChunk) {
CheckDecoderMultiChunk(GreenAVIFTestCase());
}
TEST_F(ImageDecoders, AVIFLargeMultiChunk) {
CheckDecoderMultiChunk(LargeAVIFTestCase(), /* aChunkSize */ 64);
}
TEST_F(ImageDecoders, AVIFDownscaleDuringDecode) {
CheckDownscaleDuringDecode(DownscaledAVIFTestCase());
}
#ifdef MOZ_JXL
TEST_F(ImageDecoders, JXLLargeMultiChunk) {
CheckDecoderMultiChunk(LargeJXLTestCase(), /* aChunkSize */ 64);
}
#endif
TEST_F(ImageDecoders, AnimatedGIFSingleChunk) {
CheckDecoderSingleChunk(GreenFirstFrameAnimatedGIFTestCase());
}
TEST_F(ImageDecoders, AnimatedGIFMultiChunk) {
CheckDecoderMultiChunk(GreenFirstFrameAnimatedGIFTestCase());
}
TEST_F(ImageDecoders, AnimatedGIFWithBlendedFrames) {
CheckAnimationDecoderSingleChunk(GreenFirstFrameAnimatedGIFTestCase());
}
TEST_F(ImageDecoders, AnimatedPNGSingleChunk) {
CheckDecoderSingleChunk(GreenFirstFrameAnimatedPNGTestCase());
}
TEST_F(ImageDecoders, AnimatedPNGMultiChunk) {
CheckDecoderMultiChunk(GreenFirstFrameAnimatedPNGTestCase());
}
TEST_F(ImageDecoders, AnimatedPNGWithBlendedFrames) {
CheckAnimationDecoderSingleChunk(GreenFirstFrameAnimatedPNGTestCase());
}
TEST_F(ImageDecoders, AnimatedWebPSingleChunk) {
CheckDecoderSingleChunk(GreenFirstFrameAnimatedWebPTestCase());
}
TEST_F(ImageDecoders, AnimatedWebPMultiChunk) {
CheckDecoderMultiChunk(GreenFirstFrameAnimatedWebPTestCase());
}
TEST_F(ImageDecoders, AnimatedWebPWithBlendedFrames) {
CheckAnimationDecoderSingleChunk(GreenFirstFrameAnimatedWebPTestCase());
}
TEST_F(ImageDecoders, AnimatedAVIFSingleChunk) {
CheckDecoderSingleChunk(GreenFirstFrameAnimatedAVIFTestCase());
}
TEST_F(ImageDecoders, AnimatedAVIFMultiChunk) {
CheckDecoderMultiChunk(GreenFirstFrameAnimatedAVIFTestCase());
}
TEST_F(ImageDecoders, AnimatedAVIFWithBlendedFrames) {
CheckAnimationDecoderSingleChunk(GreenFirstFrameAnimatedAVIFTestCase());
}
TEST_F(ImageDecoders, CorruptSingleChunk) {
CheckDecoderSingleChunk(CorruptTestCase());
}
TEST_F(ImageDecoders, CorruptMultiChunk) {
CheckDecoderMultiChunk(CorruptTestCase());
}
TEST_F(ImageDecoders, CorruptBMPWithTruncatedHeaderSingleChunk) {
CheckDecoderSingleChunk(CorruptBMPWithTruncatedHeader());
}
TEST_F(ImageDecoders, CorruptBMPWithTruncatedHeaderMultiChunk) {
CheckDecoderMultiChunk(CorruptBMPWithTruncatedHeader());
}
TEST_F(ImageDecoders, CorruptICOWithBadBMPWidthSingleChunk) {
CheckDecoderSingleChunk(CorruptICOWithBadBMPWidthTestCase());
}
TEST_F(ImageDecoders, CorruptICOWithBadBMPWidthMultiChunk) {
CheckDecoderMultiChunk(CorruptICOWithBadBMPWidthTestCase());
}
TEST_F(ImageDecoders, CorruptICOWithBadBMPHeightSingleChunk) {
CheckDecoderSingleChunk(CorruptICOWithBadBMPHeightTestCase());
}
TEST_F(ImageDecoders, CorruptICOWithBadBMPHeightMultiChunk) {
CheckDecoderMultiChunk(CorruptICOWithBadBMPHeightTestCase());
}
TEST_F(ImageDecoders, CorruptICOWithBadBppSingleChunk) {
CheckDecoderSingleChunk(CorruptICOWithBadBppTestCase());
}
// Running this test under emulation for Android 7 on x86_64 seems to result
// in the large allocation succeeding, but leaving so little memory left the
// system falls over and it kills the test run, so we skip it instead.
// See bug 1655846 for more details.
#ifndef ANDROID
TEST_F(ImageDecoders, CorruptAVIFSingleChunk) {
CheckDecoderSingleChunk(CorruptAVIFTestCase());
}
#endif
TEST_F(ImageDecoders, AnimatedGIFWithFRAME_FIRST) {
CheckDecoderFrameFirst(GreenFirstFrameAnimatedGIFTestCase());
}
TEST_F(ImageDecoders, AnimatedGIFWithFRAME_CURRENT) {
CheckDecoderFrameCurrent(GreenFirstFrameAnimatedGIFTestCase());
}
TEST_F(ImageDecoders, AnimatedGIFWithExtraImageSubBlocks) {
ImageTestCase testCase = ExtraImageSubBlocksAnimatedGIFTestCase();
// Verify that we can decode this test case and get two frames, even though
// there are extra image sub blocks between the first and second frame. The
// extra data shouldn't confuse the decoder or cause the decode to fail.
// Create an image.
RefPtr<Image> image = TestCaseToDecodedImage(testCase);
// Ensure that the image's metadata meets our expectations.
IntSize imageSize(0, 0);
nsresult rv = image->GetWidth(&imageSize.width);
EXPECT_NS_SUCCEEDED(rv);
rv = image->GetHeight(&imageSize.height);
EXPECT_NS_SUCCEEDED(rv);
EXPECT_EQ(testCase.mSize.width, imageSize.width);
EXPECT_EQ(testCase.mSize.height, imageSize.height);
RefPtr<ProgressTracker> tracker = image->GetProgressTracker();
Progress imageProgress = tracker->GetProgress();
EXPECT_TRUE(bool(imageProgress & FLAG_HAS_TRANSPARENCY) == false);
EXPECT_TRUE(bool(imageProgress & FLAG_IS_ANIMATED) == true);
// Ensure that we decoded both frames of the image.
LookupResult result =
SurfaceCache::Lookup(ImageKey(image.get()),
RasterSurfaceKey(imageSize, testCase.mSurfaceFlags,
PlaybackType::eAnimated),
/* aMarkUsed = */ true);
ASSERT_EQ(MatchType::EXACT, result.Type());
EXPECT_NS_SUCCEEDED(result.Surface().Seek(0));
EXPECT_TRUE(bool(result.Surface()));
RefPtr<imgFrame> partialFrame = result.Surface().GetFrame(1);
EXPECT_TRUE(bool(partialFrame));
}
TEST_F(ImageDecoders, AnimatedWebPWithFRAME_FIRST) {
CheckDecoderFrameFirst(GreenFirstFrameAnimatedWebPTestCase());
}
TEST_F(ImageDecoders, AnimatedWebPWithFRAME_CURRENT) {
CheckDecoderFrameCurrent(GreenFirstFrameAnimatedWebPTestCase());
}
TEST_F(ImageDecoders, TruncatedSmallGIFSingleChunk) {
CheckDecoderSingleChunk(TruncatedSmallGIFTestCase());
}
TEST_F(ImageDecoders, LargeICOWithBMPSingleChunk) {
CheckDecoderSingleChunk(LargeICOWithBMPTestCase());
}
TEST_F(ImageDecoders, LargeICOWithBMPMultiChunk) {
CheckDecoderMultiChunk(LargeICOWithBMPTestCase(), /* aChunkSize */ 64);
}
TEST_F(ImageDecoders, LargeICOWithPNGSingleChunk) {
CheckDecoderSingleChunk(LargeICOWithPNGTestCase());
}
TEST_F(ImageDecoders, LargeICOWithPNGMultiChunk) {
CheckDecoderMultiChunk(LargeICOWithPNGTestCase());
}
TEST_F(ImageDecoders, MultipleSizesICOSingleChunk) {
ImageTestCase testCase = GreenMultipleSizesICOTestCase();
// Create an image.
RefPtr<Image> image = ImageFactory::CreateAnonymousImage(
nsDependentCString(testCase.mMimeType));
ASSERT_TRUE(!image->HasError());
nsCOMPtr<nsIInputStream> inputStream = LoadFile(testCase.mPath);
ASSERT_TRUE(inputStream);
// Figure out how much data we have.
uint64_t length;
nsresult rv = inputStream->Available(&length);
ASSERT_NS_SUCCEEDED(rv);
// Write the data into the image.
rv = image->OnImageDataAvailable(nullptr, inputStream, 0,
static_cast<uint32_t>(length));
ASSERT_NS_SUCCEEDED(rv);
// Let the image know we've sent all the data.
rv = image->OnImageDataComplete(nullptr, NS_OK, true);
ASSERT_NS_SUCCEEDED(rv);
RefPtr<ProgressTracker> tracker = image->GetProgressTracker();
tracker->SyncNotifyProgress(FLAG_LOAD_COMPLETE);
// Use GetFrame() to force a sync decode of the image.
RefPtr<SourceSurface> surface = image->GetFrame(
imgIContainer::FRAME_CURRENT, imgIContainer::FLAG_SYNC_DECODE);
// Ensure that the image's metadata meets our expectations.
IntSize imageSize(0, 0);
rv = image->GetWidth(&imageSize.width);
EXPECT_NS_SUCCEEDED(rv);
rv = image->GetHeight(&imageSize.height);
EXPECT_NS_SUCCEEDED(rv);
EXPECT_EQ(testCase.mSize.width, imageSize.width);
EXPECT_EQ(testCase.mSize.height, imageSize.height);
nsTArray<IntSize> nativeSizes;
rv = image->GetNativeSizes(nativeSizes);
EXPECT_NS_SUCCEEDED(rv);
ASSERT_EQ(6u, nativeSizes.Length());
IntSize expectedSizes[] = {IntSize(16, 16), IntSize(32, 32),
IntSize(64, 64), IntSize(128, 128),
IntSize(256, 256), IntSize(256, 128)};
for (int i = 0; i < 6; ++i) {
EXPECT_EQ(expectedSizes[i], nativeSizes[i]);
}
RefPtr<Image> image90 =
ImageOps::Orient(image, Orientation(Angle::D90, Flip::Unflipped));
rv = image90->GetNativeSizes(nativeSizes);
EXPECT_NS_SUCCEEDED(rv);
ASSERT_EQ(6u, nativeSizes.Length());
for (int i = 0; i < 5; ++i) {
EXPECT_EQ(expectedSizes[i], nativeSizes[i]);
}
EXPECT_EQ(IntSize(128, 256), nativeSizes[5]);
RefPtr<Image> image180 =
ImageOps::Orient(image, Orientation(Angle::D180, Flip::Unflipped));
rv = image180->GetNativeSizes(nativeSizes);
EXPECT_NS_SUCCEEDED(rv);
ASSERT_EQ(6u, nativeSizes.Length());
for (int i = 0; i < 6; ++i) {
EXPECT_EQ(expectedSizes[i], nativeSizes[i]);
}
}
TEST_F(ImageDecoders, ExifResolutionEven) {
RefPtr<Image> image = TestCaseToDecodedImage(ExifResolutionTestCase());
EXPECT_EQ(image->GetResolution(), Resolution(2.0, 2.0));
}