Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The high-level module responsible for interfacing with the GPU.
//!
//! Much of WebRender's design is driven by separating work into different
//! threads. To avoid the complexities of multi-threaded GPU access, we restrict
//! all communication with the GPU to one thread, the render thread. But since
//! issuing GPU commands is often a bottleneck, we move everything else (i.e.
//! the computation of what commands to issue) to another thread, the
//! RenderBackend thread. The RenderBackend, in turn, may delegate work to other
//! thread (like the SceneBuilder threads or Rayon workers), but the
//! Render-vs-RenderBackend distinction is the most important.
//!
//! The consumer is responsible for initializing the render thread before
//! calling into WebRender, which means that this module also serves as the
//! initial entry point into WebRender, and is responsible for spawning the
//! various other threads discussed above. That said, WebRender initialization
//! returns both the `Renderer` instance as well as a channel for communicating
//! directly with the `RenderBackend`. Aside from a few high-level operations
//! like 'render now', most of interesting commands from the consumer go over
//! that channel and operate on the `RenderBackend`.
//!
//! ## Space conversion guidelines
//! At this stage, we shuld be operating with `DevicePixel` and `FramebufferPixel` only.
//! "Framebuffer" space represents the final destination of our rendeing,
//! and it happens to be Y-flipped on OpenGL. The conversion is done as follows:
//! - for rasterized primitives, the orthographics projection transforms
//! the content rectangle to -1 to 1
//! - the viewport transformation is setup to map the whole range to
//! the framebuffer rectangle provided by the document view, stored in `DrawTarget`
//! - all the direct framebuffer operations, like blitting, reading pixels, and setting
//! up the scissor, are accepting already transformed coordinates, which we can get by
//! calling `DrawTarget::to_framebuffer_rect`
use api::{ColorF, ColorU, MixBlendMode};
use api::{DocumentId, Epoch, ExternalImageHandler, RenderReasons};
#[cfg(feature = "replay")]
use api::ExternalImageId;
use api::{ExternalImageSource, ExternalImageType, ImageFormat, PremultipliedColorF};
use api::{PipelineId, ImageRendering, Checkpoint, NotificationRequest, ImageBufferKind};
#[cfg(feature = "replay")]
use api::ExternalImage;
use api::FramePublishId;
use api::units::*;
use api::channel::{Sender, Receiver};
pub use api::DebugFlags;
use core::time::Duration;
use crate::pattern::PatternKind;
use crate::render_api::{DebugCommand, ApiMsg, MemoryReport};
use crate::batch::{AlphaBatchContainer, BatchKind, BatchFeatures, BatchTextures, BrushBatchKind, ClipBatchList};
use crate::batch::{ClipMaskInstanceList};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::capture::{CaptureConfig, ExternalCaptureImage, PlainExternalImage};
use crate::composite::{CompositeState, CompositeTileSurface, ResolvedExternalSurface, CompositorSurfaceTransform};
use crate::composite::{CompositorKind, Compositor, NativeTileId, CompositeFeatures, CompositeSurfaceFormat, ResolvedExternalSurfaceColorData};
use crate::composite::{CompositorConfig, NativeSurfaceOperationDetails, NativeSurfaceId, NativeSurfaceOperation};
use crate::composite::{TileKind};
use crate::debug_colors;
use crate::device::{DepthFunction, Device, DrawTarget, ExternalTexture, GpuFrameId, UploadPBOPool};
use crate::device::{ReadTarget, ShaderError, Texture, TextureFilter, TextureFlags, TextureSlot, Texel};
use crate::device::query::{GpuSampler, GpuTimer};
#[cfg(feature = "capture")]
use crate::device::FBOId;
use crate::debug_item::DebugItem;
use crate::frame_builder::Frame;
use glyph_rasterizer::GlyphFormat;
use crate::gpu_cache::{GpuCacheUpdate, GpuCacheUpdateList};
use crate::gpu_cache::{GpuCacheDebugChunk, GpuCacheDebugCmd};
use crate::gpu_types::{ScalingInstance, SvgFilterInstance, SVGFEFilterInstance, CopyInstance, PrimitiveInstanceData};
use crate::gpu_types::{BlurInstance, ClearInstance, CompositeInstance, CompositorTransform};
use crate::internal_types::{TextureSource, TextureCacheCategory, FrameId};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::internal_types::DebugOutput;
use crate::internal_types::{CacheTextureId, FastHashMap, FastHashSet, RenderedDocument, ResultMsg};
use crate::internal_types::{TextureCacheAllocInfo, TextureCacheAllocationKind, TextureUpdateList};
use crate::internal_types::{RenderTargetInfo, Swizzle, DeferredResolveIndex};
use crate::picture::ResolvedSurfaceTexture;
use crate::prim_store::DeferredResolve;
use crate::profiler::{self, GpuProfileTag, TransactionProfile};
use crate::profiler::{Profiler, add_event_marker, add_text_marker, thread_is_being_profiled};
use crate::device::query::GpuProfiler;
use crate::render_target::{ResolveOp};
use crate::render_task_graph::{RenderTaskGraph};
use crate::render_task::{RenderTask, RenderTaskKind, ReadbackTask};
use crate::screen_capture::AsyncScreenshotGrabber;
use crate::render_target::{AlphaRenderTarget, ColorRenderTarget, PictureCacheTarget, PictureCacheTargetKind};
use crate::render_target::{RenderTarget, TextureCacheRenderTarget};
use crate::render_target::{RenderTargetKind, BlitJob};
use crate::telemetry::Telemetry;
use crate::tile_cache::PictureCacheDebugInfo;
use crate::util::drain_filter;
use crate::rectangle_occlusion as occlusion;
use upload::{upload_to_texture_cache, UploadTexturePool};
use init::*;
use euclid::{rect, Transform3D, Scale, default};
use gleam::gl;
use malloc_size_of::MallocSizeOfOps;
#[cfg(feature = "replay")]
use std::sync::Arc;
use std::{
cell::RefCell,
collections::VecDeque,
f32,
ffi::c_void,
mem,
num::NonZeroUsize,
path::PathBuf,
rc::Rc,
};
#[cfg(any(feature = "capture", feature = "replay"))]
use std::collections::hash_map::Entry;
use time::precise_time_ns;
mod debug;
mod gpu_buffer;
mod gpu_cache;
mod shade;
mod vertex;
mod upload;
pub(crate) mod init;
pub use debug::DebugRenderer;
pub use shade::{Shaders, SharedShaders};
pub use vertex::{desc, VertexArrayKind, MAX_VERTEX_TEXTURE_WIDTH};
pub use gpu_buffer::{GpuBuffer, GpuBufferF, GpuBufferBuilderF, GpuBufferI, GpuBufferBuilderI, GpuBufferAddress, GpuBufferBuilder};
/// The size of the array of each type of vertex data texture that
/// is round-robin-ed each frame during bind_frame_data. Doing this
/// helps avoid driver stalls while updating the texture in some
/// drivers. The size of these textures are typically very small
/// (e.g. < 16 kB) so it's not a huge waste of memory. Despite that,
/// this is a short-term solution - we want to find a better way
/// to provide this frame data, which will likely involve some
/// combination of UBO/SSBO usage. Although this only affects some
/// platforms, it's enabled on all platforms to reduce testing
/// differences between platforms.
pub const VERTEX_DATA_TEXTURE_COUNT: usize = 3;
/// Number of GPU blocks per UV rectangle provided for an image.
pub const BLOCKS_PER_UV_RECT: usize = 2;
const GPU_TAG_BRUSH_OPACITY: GpuProfileTag = GpuProfileTag {
label: "B_Opacity",
color: debug_colors::DARKMAGENTA,
};
const GPU_TAG_BRUSH_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag {
label: "B_LinearGradient",
color: debug_colors::POWDERBLUE,
};
const GPU_TAG_BRUSH_YUV_IMAGE: GpuProfileTag = GpuProfileTag {
label: "B_YuvImage",
color: debug_colors::DARKGREEN,
};
const GPU_TAG_BRUSH_MIXBLEND: GpuProfileTag = GpuProfileTag {
label: "B_MixBlend",
color: debug_colors::MAGENTA,
};
const GPU_TAG_BRUSH_BLEND: GpuProfileTag = GpuProfileTag {
label: "B_Blend",
color: debug_colors::ORANGE,
};
const GPU_TAG_BRUSH_IMAGE: GpuProfileTag = GpuProfileTag {
label: "B_Image",
color: debug_colors::SPRINGGREEN,
};
const GPU_TAG_BRUSH_SOLID: GpuProfileTag = GpuProfileTag {
label: "B_Solid",
color: debug_colors::RED,
};
const GPU_TAG_CACHE_CLIP: GpuProfileTag = GpuProfileTag {
label: "C_Clip",
color: debug_colors::PURPLE,
};
const GPU_TAG_CACHE_BORDER: GpuProfileTag = GpuProfileTag {
label: "C_Border",
color: debug_colors::CORNSILK,
};
const GPU_TAG_CACHE_LINE_DECORATION: GpuProfileTag = GpuProfileTag {
label: "C_LineDecoration",
color: debug_colors::YELLOWGREEN,
};
const GPU_TAG_CACHE_FAST_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag {
label: "C_FastLinearGradient",
color: debug_colors::BROWN,
};
const GPU_TAG_CACHE_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag {
label: "C_LinearGradient",
color: debug_colors::BROWN,
};
const GPU_TAG_RADIAL_GRADIENT: GpuProfileTag = GpuProfileTag {
label: "C_RadialGradient",
color: debug_colors::BROWN,
};
const GPU_TAG_CONIC_GRADIENT: GpuProfileTag = GpuProfileTag {
label: "C_ConicGradient",
color: debug_colors::BROWN,
};
const GPU_TAG_SETUP_TARGET: GpuProfileTag = GpuProfileTag {
label: "target init",
color: debug_colors::SLATEGREY,
};
const GPU_TAG_SETUP_DATA: GpuProfileTag = GpuProfileTag {
label: "data init",
color: debug_colors::LIGHTGREY,
};
const GPU_TAG_PRIM_SPLIT_COMPOSITE: GpuProfileTag = GpuProfileTag {
label: "SplitComposite",
color: debug_colors::DARKBLUE,
};
const GPU_TAG_PRIM_TEXT_RUN: GpuProfileTag = GpuProfileTag {
label: "TextRun",
color: debug_colors::BLUE,
};
const GPU_TAG_PRIMITIVE: GpuProfileTag = GpuProfileTag {
label: "Primitive",
color: debug_colors::RED,
};
const GPU_TAG_INDIRECT_PRIM: GpuProfileTag = GpuProfileTag {
label: "Primitive (indirect)",
color: debug_colors::YELLOWGREEN,
};
const GPU_TAG_INDIRECT_MASK: GpuProfileTag = GpuProfileTag {
label: "Mask (indirect)",
color: debug_colors::IVORY,
};
const GPU_TAG_BLUR: GpuProfileTag = GpuProfileTag {
label: "Blur",
color: debug_colors::VIOLET,
};
const GPU_TAG_BLIT: GpuProfileTag = GpuProfileTag {
label: "Blit",
color: debug_colors::LIME,
};
const GPU_TAG_SCALE: GpuProfileTag = GpuProfileTag {
label: "Scale",
color: debug_colors::GHOSTWHITE,
};
const GPU_SAMPLER_TAG_ALPHA: GpuProfileTag = GpuProfileTag {
label: "Alpha targets",
color: debug_colors::BLACK,
};
const GPU_SAMPLER_TAG_OPAQUE: GpuProfileTag = GpuProfileTag {
label: "Opaque pass",
color: debug_colors::BLACK,
};
const GPU_SAMPLER_TAG_TRANSPARENT: GpuProfileTag = GpuProfileTag {
label: "Transparent pass",
color: debug_colors::BLACK,
};
const GPU_TAG_SVG_FILTER: GpuProfileTag = GpuProfileTag {
label: "SvgFilter",
color: debug_colors::LEMONCHIFFON,
};
const GPU_TAG_SVG_FILTER_NODES: GpuProfileTag = GpuProfileTag {
label: "SvgFilterNodes",
color: debug_colors::LEMONCHIFFON,
};
const GPU_TAG_COMPOSITE: GpuProfileTag = GpuProfileTag {
label: "Composite",
color: debug_colors::TOMATO,
};
const GPU_TAG_CLEAR: GpuProfileTag = GpuProfileTag {
label: "Clear",
color: debug_colors::CHOCOLATE,
};
/// The clear color used for the texture cache when the debug display is enabled.
/// We use a shade of blue so that we can still identify completely blue items in
/// the texture cache.
pub const TEXTURE_CACHE_DBG_CLEAR_COLOR: [f32; 4] = [0.0, 0.0, 0.8, 1.0];
impl BatchKind {
fn sampler_tag(&self) -> GpuProfileTag {
match *self {
BatchKind::SplitComposite => GPU_TAG_PRIM_SPLIT_COMPOSITE,
BatchKind::Brush(kind) => {
match kind {
BrushBatchKind::Solid => GPU_TAG_BRUSH_SOLID,
BrushBatchKind::Image(..) => GPU_TAG_BRUSH_IMAGE,
BrushBatchKind::Blend => GPU_TAG_BRUSH_BLEND,
BrushBatchKind::MixBlend { .. } => GPU_TAG_BRUSH_MIXBLEND,
BrushBatchKind::YuvImage(..) => GPU_TAG_BRUSH_YUV_IMAGE,
BrushBatchKind::LinearGradient => GPU_TAG_BRUSH_LINEAR_GRADIENT,
BrushBatchKind::Opacity => GPU_TAG_BRUSH_OPACITY,
}
}
BatchKind::TextRun(_) => GPU_TAG_PRIM_TEXT_RUN,
BatchKind::Quad(PatternKind::ColorOrTexture) => GPU_TAG_PRIMITIVE,
BatchKind::Quad(PatternKind::RadialGradient) => GPU_TAG_RADIAL_GRADIENT,
BatchKind::Quad(PatternKind::ConicGradient) => GPU_TAG_CONIC_GRADIENT,
BatchKind::Quad(PatternKind::Mask) => GPU_TAG_INDIRECT_MASK,
}
}
}
fn flag_changed(before: DebugFlags, after: DebugFlags, select: DebugFlags) -> Option<bool> {
if before & select != after & select {
Some(after.contains(select))
} else {
None
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
pub enum ShaderColorMode {
Alpha = 0,
SubpixelDualSource = 1,
BitmapShadow = 2,
ColorBitmap = 3,
Image = 4,
MultiplyDualSource = 5,
}
impl From<GlyphFormat> for ShaderColorMode {
fn from(format: GlyphFormat) -> ShaderColorMode {
match format {
GlyphFormat::Alpha |
GlyphFormat::TransformedAlpha |
GlyphFormat::Bitmap => ShaderColorMode::Alpha,
GlyphFormat::Subpixel | GlyphFormat::TransformedSubpixel => {
panic!("Subpixel glyph formats must be handled separately.");
}
GlyphFormat::ColorBitmap => ShaderColorMode::ColorBitmap,
}
}
}
/// Enumeration of the texture samplers used across the various WebRender shaders.
///
/// Each variant corresponds to a uniform declared in shader source. We only bind
/// the variants we need for a given shader, so not every variant is bound for every
/// batch.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum TextureSampler {
Color0,
Color1,
Color2,
GpuCache,
TransformPalette,
RenderTasks,
Dither,
PrimitiveHeadersF,
PrimitiveHeadersI,
ClipMask,
GpuBufferF,
GpuBufferI,
}
impl TextureSampler {
pub(crate) fn color(n: usize) -> TextureSampler {
match n {
0 => TextureSampler::Color0,
1 => TextureSampler::Color1,
2 => TextureSampler::Color2,
_ => {
panic!("There are only 3 color samplers.");
}
}
}
}
impl Into<TextureSlot> for TextureSampler {
fn into(self) -> TextureSlot {
match self {
TextureSampler::Color0 => TextureSlot(0),
TextureSampler::Color1 => TextureSlot(1),
TextureSampler::Color2 => TextureSlot(2),
TextureSampler::GpuCache => TextureSlot(3),
TextureSampler::TransformPalette => TextureSlot(4),
TextureSampler::RenderTasks => TextureSlot(5),
TextureSampler::Dither => TextureSlot(6),
TextureSampler::PrimitiveHeadersF => TextureSlot(7),
TextureSampler::PrimitiveHeadersI => TextureSlot(8),
TextureSampler::ClipMask => TextureSlot(9),
TextureSampler::GpuBufferF => TextureSlot(10),
TextureSampler::GpuBufferI => TextureSlot(11),
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum GraphicsApi {
OpenGL,
}
#[derive(Clone, Debug)]
pub struct GraphicsApiInfo {
pub kind: GraphicsApi,
pub renderer: String,
pub version: String,
}
#[derive(Debug)]
pub struct GpuProfile {
pub frame_id: GpuFrameId,
pub paint_time_ns: u64,
}
impl GpuProfile {
fn new(frame_id: GpuFrameId, timers: &[GpuTimer]) -> GpuProfile {
let mut paint_time_ns = 0;
for timer in timers {
paint_time_ns += timer.time_ns;
}
GpuProfile {
frame_id,
paint_time_ns,
}
}
}
#[derive(Debug)]
pub struct CpuProfile {
pub frame_id: GpuFrameId,
pub backend_time_ns: u64,
pub composite_time_ns: u64,
pub draw_calls: usize,
}
impl CpuProfile {
fn new(
frame_id: GpuFrameId,
backend_time_ns: u64,
composite_time_ns: u64,
draw_calls: usize,
) -> CpuProfile {
CpuProfile {
frame_id,
backend_time_ns,
composite_time_ns,
draw_calls,
}
}
}
/// The selected partial present mode for a given frame.
#[derive(Debug, Copy, Clone)]
enum PartialPresentMode {
/// The device supports fewer dirty rects than the number of dirty rects
/// that WR produced. In this case, the WR dirty rects are union'ed into
/// a single dirty rect, that is provided to the caller.
Single {
dirty_rect: DeviceRect,
},
}
struct CacheTexture {
texture: Texture,
category: TextureCacheCategory,
}
/// Helper struct for resolving device Textures for use during rendering passes.
///
/// Manages the mapping between the at-a-distance texture handles used by the
/// `RenderBackend` (which does not directly interface with the GPU) and actual
/// device texture handles.
struct TextureResolver {
/// A map to resolve texture cache IDs to native textures.
texture_cache_map: FastHashMap<CacheTextureId, CacheTexture>,
/// Map of external image IDs to native textures.
external_images: FastHashMap<DeferredResolveIndex, ExternalTexture>,
/// A special 1x1 dummy texture used for shaders that expect to work with
/// the output of the previous pass but are actually running in the first
/// pass.
dummy_cache_texture: Texture,
}
impl TextureResolver {
fn new(device: &mut Device) -> TextureResolver {
let dummy_cache_texture = device
.create_texture(
ImageBufferKind::Texture2D,
ImageFormat::RGBA8,
1,
1,
TextureFilter::Linear,
None,
);
device.upload_texture_immediate(
&dummy_cache_texture,
&[0xff, 0xff, 0xff, 0xff],
);
TextureResolver {
texture_cache_map: FastHashMap::default(),
external_images: FastHashMap::default(),
dummy_cache_texture,
}
}
fn deinit(self, device: &mut Device) {
device.delete_texture(self.dummy_cache_texture);
for (_id, item) in self.texture_cache_map {
device.delete_texture(item.texture);
}
}
fn begin_frame(&mut self) {
}
fn end_pass(
&mut self,
device: &mut Device,
textures_to_invalidate: &[CacheTextureId],
) {
// For any texture that is no longer needed, immediately
// invalidate it so that tiled GPUs don't need to resolve it
// back to memory.
for texture_id in textures_to_invalidate {
let render_target = &self.texture_cache_map[texture_id].texture;
device.invalidate_render_target(render_target);
}
}
// Bind a source texture to the device.
fn bind(&self, texture_id: &TextureSource, sampler: TextureSampler, device: &mut Device) -> Swizzle {
match *texture_id {
TextureSource::Invalid => {
Swizzle::default()
}
TextureSource::Dummy => {
let swizzle = Swizzle::default();
device.bind_texture(sampler, &self.dummy_cache_texture, swizzle);
swizzle
}
TextureSource::External(ref index, _) => {
let texture = self.external_images
.get(index)
.expect("BUG: External image should be resolved by now");
device.bind_external_texture(sampler, texture);
Swizzle::default()
}
TextureSource::TextureCache(index, swizzle) => {
let texture = &self.texture_cache_map[&index].texture;
device.bind_texture(sampler, texture, swizzle);
swizzle
}
}
}
// Get the real (OpenGL) texture ID for a given source texture.
// For a texture cache texture, the IDs are stored in a vector
// map for fast access.
fn resolve(&self, texture_id: &TextureSource) -> Option<(&Texture, Swizzle)> {
match *texture_id {
TextureSource::Invalid => None,
TextureSource::Dummy => {
Some((&self.dummy_cache_texture, Swizzle::default()))
}
TextureSource::External(..) => {
panic!("BUG: External textures cannot be resolved, they can only be bound.");
}
TextureSource::TextureCache(index, swizzle) => {
Some((&self.texture_cache_map[&index].texture, swizzle))
}
}
}
// Retrieve the deferred / resolved UV rect if an external texture, otherwise
// return the default supplied UV rect.
fn get_uv_rect(
&self,
source: &TextureSource,
default_value: TexelRect,
) -> TexelRect {
match source {
TextureSource::External(ref index, _) => {
let texture = self.external_images
.get(index)
.expect("BUG: External image should be resolved by now");
texture.get_uv_rect()
}
_ => {
default_value
}
}
}
/// Returns the size of the texture in pixels
fn get_texture_size(&self, texture: &TextureSource) -> DeviceIntSize {
match *texture {
TextureSource::Invalid => DeviceIntSize::zero(),
TextureSource::TextureCache(id, _) => {
self.texture_cache_map[&id].texture.get_dimensions()
},
TextureSource::External(index, _) => {
let uv_rect = self.external_images[&index].get_uv_rect();
(uv_rect.uv1 - uv_rect.uv0).abs().to_size().to_i32()
},
TextureSource::Dummy => DeviceIntSize::new(1, 1),
}
}
fn report_memory(&self) -> MemoryReport {
let mut report = MemoryReport::default();
// We're reporting GPU memory rather than heap-allocations, so we don't
// use size_of_op.
for item in self.texture_cache_map.values() {
let counter = match item.category {
TextureCacheCategory::Atlas => &mut report.atlas_textures,
TextureCacheCategory::Standalone => &mut report.standalone_textures,
TextureCacheCategory::PictureTile => &mut report.picture_tile_textures,
TextureCacheCategory::RenderTarget => &mut report.render_target_textures,
};
*counter += item.texture.size_in_bytes();
}
report
}
fn update_profile(&self, profile: &mut TransactionProfile) {
let mut external_image_bytes = 0;
for img in self.external_images.values() {
let uv_rect = img.get_uv_rect();
let size = (uv_rect.uv1 - uv_rect.uv0).abs().to_size().to_i32();
// Assume 4 bytes per pixels which is true most of the time but
// not always.
let bpp = 4;
external_image_bytes += size.area() as usize * bpp;
}
profile.set(profiler::EXTERNAL_IMAGE_BYTES, profiler::bytes_to_mb(external_image_bytes));
}
fn get_cache_texture_mut(&mut self, id: &CacheTextureId) -> &mut Texture {
&mut self.texture_cache_map
.get_mut(id)
.expect("bug: texture not allocated")
.texture
}
}
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum BlendMode {
None,
Alpha,
PremultipliedAlpha,
PremultipliedDestOut,
SubpixelDualSource,
Advanced(MixBlendMode),
MultiplyDualSource,
Screen,
Exclusion,
PlusLighter,
}
impl BlendMode {
/// Decides when a given mix-blend-mode can be implemented in terms of
/// simple blending, dual-source blending, advanced blending, or not at
/// all based on available capabilities.
pub fn from_mix_blend_mode(
mode: MixBlendMode,
advanced_blend: bool,
coherent: bool,
dual_source: bool,
) -> Option<BlendMode> {
// If we emulate a mix-blend-mode via simple or dual-source blending,
// care must be taken to output alpha As + Ad*(1-As) regardless of what
// the RGB output is to comply with the mix-blend-mode spec.
Some(match mode {
// If we have coherent advanced blend, just use that.
_ if advanced_blend && coherent => BlendMode::Advanced(mode),
// Screen can be implemented as Cs + Cd - Cs*Cd => Cs + Cd*(1-Cs)
MixBlendMode::Screen => BlendMode::Screen,
// Exclusion can be implemented as Cs + Cd - 2*Cs*Cd => Cs*(1-Cd) + Cd*(1-Cs)
MixBlendMode::Exclusion => BlendMode::Exclusion,
// PlusLighter is basically a clamped add.
MixBlendMode::PlusLighter => BlendMode::PlusLighter,
// Multiply can be implemented as Cs*Cd + Cs*(1-Ad) + Cd*(1-As) => Cs*(1-Ad) + Cd*(1 - SRC1=(As-Cs))
MixBlendMode::Multiply if dual_source => BlendMode::MultiplyDualSource,
// Otherwise, use advanced blend without coherency if available.
_ if advanced_blend => BlendMode::Advanced(mode),
// If advanced blend is not available, then we have to use brush_mix_blend.
_ => return None,
})
}
}
/// Information about the state of the debugging / profiler overlay in native compositing mode.
struct DebugOverlayState {
/// True if any of the current debug flags will result in drawing a debug overlay.
is_enabled: bool,
/// The current size of the debug overlay surface. None implies that the
/// debug surface isn't currently allocated.
current_size: Option<DeviceIntSize>,
}
impl DebugOverlayState {
fn new() -> Self {
DebugOverlayState {
is_enabled: false,
current_size: None,
}
}
}
/// Tracks buffer damage rects over a series of frames.
#[derive(Debug, Default)]
pub(crate) struct BufferDamageTracker {
damage_rects: [DeviceRect; 2],
current_offset: usize,
}
impl BufferDamageTracker {
/// Sets the damage rect for the current frame. Should only be called *after*
/// get_damage_rect() has been called to get the current backbuffer's damage rect.
fn push_dirty_rect(&mut self, rect: &DeviceRect) {
self.damage_rects[self.current_offset] = rect.clone();
self.current_offset = match self.current_offset {
0 => self.damage_rects.len() - 1,
n => n - 1,
}
}
/// Gets the damage rect for the current backbuffer, given the backbuffer's age.
/// (The number of frames since it was previously the backbuffer.)
/// Returns an empty rect if the buffer is valid, and None if the entire buffer is invalid.
fn get_damage_rect(&self, buffer_age: usize) -> Option<DeviceRect> {
match buffer_age {
// 0 means this is a new buffer, so is completely invalid.
0 => None,
// 1 means this backbuffer was also the previous frame's backbuffer
// (so must have been copied to the frontbuffer). It is therefore entirely valid.
1 => Some(DeviceRect::zero()),
// We must calculate the union of the damage rects since this buffer was previously
// the backbuffer.
n if n <= self.damage_rects.len() + 1 => {
Some(
self.damage_rects.iter()
.cycle()
.skip(self.current_offset + 1)
.take(n - 1)
.fold(DeviceRect::zero(), |acc, r| acc.union(r))
)
}
// The backbuffer is older than the number of frames for which we track,
// so we treat it as entirely invalid.
_ => None,
}
}
}
/// The renderer is responsible for submitting to the GPU the work prepared by the
/// RenderBackend.
///
/// We have a separate `Renderer` instance for each instance of WebRender (generally
/// one per OS window), and all instances share the same thread.
pub struct Renderer {
result_rx: Receiver<ResultMsg>,
api_tx: Sender<ApiMsg>,
pub device: Device,
pending_texture_updates: Vec<TextureUpdateList>,
/// True if there are any TextureCacheUpdate pending.
pending_texture_cache_updates: bool,
pending_native_surface_updates: Vec<NativeSurfaceOperation>,
pending_gpu_cache_updates: Vec<GpuCacheUpdateList>,
pending_gpu_cache_clear: bool,
pending_shader_updates: Vec<PathBuf>,
active_documents: FastHashMap<DocumentId, RenderedDocument>,
shaders: Rc<RefCell<Shaders>>,
max_recorded_profiles: usize,
clear_color: ColorF,
enable_clear_scissor: bool,
enable_advanced_blend_barriers: bool,
clear_caches_with_quads: bool,
clear_alpha_targets_with_quads: bool,
debug: debug::LazyInitializedDebugRenderer,
debug_flags: DebugFlags,
profile: TransactionProfile,
frame_counter: u64,
resource_upload_time: f64,
gpu_cache_upload_time: f64,
profiler: Profiler,
last_time: u64,
pub gpu_profiler: GpuProfiler,
vaos: vertex::RendererVAOs,
gpu_cache_texture: gpu_cache::GpuCacheTexture,
vertex_data_textures: Vec<vertex::VertexDataTextures>,
current_vertex_data_textures: usize,
/// When the GPU cache debugger is enabled, we keep track of the live blocks
/// in the GPU cache so that we can use them for the debug display. This
/// member stores those live blocks, indexed by row.
gpu_cache_debug_chunks: Vec<Vec<GpuCacheDebugChunk>>,
gpu_cache_frame_id: FrameId,
gpu_cache_overflow: bool,
pipeline_info: PipelineInfo,
// Manages and resolves source textures IDs to real texture IDs.
texture_resolver: TextureResolver,
texture_upload_pbo_pool: UploadPBOPool,
staging_texture_pool: UploadTexturePool,
dither_matrix_texture: Option<Texture>,
/// Optional trait object that allows the client
/// application to provide external buffers for image data.
external_image_handler: Option<Box<dyn ExternalImageHandler>>,
/// Optional function pointers for measuring memory used by a given
/// heap-allocated pointer.
size_of_ops: Option<MallocSizeOfOps>,
pub renderer_errors: Vec<RendererError>,
pub(in crate) async_frame_recorder: Option<AsyncScreenshotGrabber>,
pub(in crate) async_screenshots: Option<AsyncScreenshotGrabber>,
/// List of profile results from previous frames. Can be retrieved
/// via get_frame_profiles().
cpu_profiles: VecDeque<CpuProfile>,
gpu_profiles: VecDeque<GpuProfile>,
/// Notification requests to be fulfilled after rendering.
notifications: Vec<NotificationRequest>,
device_size: Option<DeviceIntSize>,
/// A lazily created texture for the zoom debugging widget.
zoom_debug_texture: Option<Texture>,
/// The current mouse position. This is used for debugging
/// functionality only, such as the debug zoom widget.
cursor_position: DeviceIntPoint,
/// Guards to check if we might be rendering a frame with expired texture
/// cache entries.
shared_texture_cache_cleared: bool,
/// The set of documents which we've seen a publish for since last render.
documents_seen: FastHashSet<DocumentId>,
#[cfg(feature = "capture")]
read_fbo: FBOId,
#[cfg(feature = "replay")]
owned_external_images: FastHashMap<(ExternalImageId, u8), ExternalTexture>,
/// The compositing config, affecting how WR composites into the final scene.
compositor_config: CompositorConfig,
current_compositor_kind: CompositorKind,
/// Maintains a set of allocated native composite surfaces. This allows any
/// currently allocated surfaces to be cleaned up as soon as deinit() is
/// called (the normal bookkeeping for native surfaces exists in the
/// render backend thread).
allocated_native_surfaces: FastHashSet<NativeSurfaceId>,
/// If true, partial present state has been reset and everything needs to
/// be drawn on the next render.
force_redraw: bool,
/// State related to the debug / profiling overlays
debug_overlay_state: DebugOverlayState,
/// Tracks the dirty rectangles from previous frames. Used on platforms
/// that require keeping the front buffer fully correct when doing
/// partial present (e.g. unix desktop with EGL_EXT_buffer_age).
buffer_damage_tracker: BufferDamageTracker,
max_primitive_instance_count: usize,
enable_instancing: bool,
/// Count consecutive oom frames to detectif we are stuck unable to render
/// in a loop.
consecutive_oom_frames: u32,
/// update() defers processing of ResultMsg, if frame_publish_id of
/// ResultMsg::PublishDocument exceeds target_frame_publish_id.
target_frame_publish_id: Option<FramePublishId>,
/// Hold a next ResultMsg that will be handled by update().
pending_result_msg: Option<ResultMsg>,
}
#[derive(Debug)]
pub enum RendererError {
Shader(ShaderError),
Thread(std::io::Error),
MaxTextureSize,
SoftwareRasterizer,
OutOfMemory,
}
impl From<ShaderError> for RendererError {
fn from(err: ShaderError) -> Self {
RendererError::Shader(err)
}
}
impl From<std::io::Error> for RendererError {
fn from(err: std::io::Error) -> Self {
RendererError::Thread(err)
}
}
impl Renderer {
pub fn device_size(&self) -> Option<DeviceIntSize> {
self.device_size
}
/// Update the current position of the debug cursor.
pub fn set_cursor_position(
&mut self,
position: DeviceIntPoint,
) {
self.cursor_position = position;
}
pub fn get_max_texture_size(&self) -> i32 {
self.device.max_texture_size()
}
pub fn get_graphics_api_info(&self) -> GraphicsApiInfo {
GraphicsApiInfo {
kind: GraphicsApi::OpenGL,
version: self.device.gl().get_string(gl::VERSION),
renderer: self.device.gl().get_string(gl::RENDERER),
}
}
pub fn preferred_color_format(&self) -> ImageFormat {
self.device.preferred_color_formats().external
}
pub fn required_texture_stride_alignment(&self, format: ImageFormat) -> usize {
self.device.required_pbo_stride().num_bytes(format).get()
}
pub fn set_clear_color(&mut self, color: ColorF) {
self.clear_color = color;
}
pub fn flush_pipeline_info(&mut self) -> PipelineInfo {
mem::replace(&mut self.pipeline_info, PipelineInfo::default())
}
/// Returns the Epoch of the current frame in a pipeline.
pub fn current_epoch(&self, document_id: DocumentId, pipeline_id: PipelineId) -> Option<Epoch> {
self.pipeline_info.epochs.get(&(pipeline_id, document_id)).cloned()
}
fn get_next_result_msg(&mut self) -> Option<ResultMsg> {
if self.pending_result_msg.is_none() {
if let Ok(msg) = self.result_rx.try_recv() {
self.pending_result_msg = Some(msg);
}
}
match (&self.pending_result_msg, &self.target_frame_publish_id) {
(Some(ResultMsg::PublishDocument(frame_publish_id, _, _, _)), Some(target_id)) => {
if frame_publish_id > target_id {
return None;
}
}
_ => {}
}
self.pending_result_msg.take()
}
/// Processes the result queue.
///
/// Should be called before `render()`, as texture cache updates are done here.
pub fn update(&mut self) {
profile_scope!("update");
// Pull any pending results and return the most recent.
while let Some(msg) = self.get_next_result_msg() {
match msg {
ResultMsg::PublishPipelineInfo(mut pipeline_info) => {
for ((pipeline_id, document_id), epoch) in pipeline_info.epochs {
self.pipeline_info.epochs.insert((pipeline_id, document_id), epoch);
}
self.pipeline_info.removed_pipelines.extend(pipeline_info.removed_pipelines.drain(..));
}
ResultMsg::PublishDocument(
_,
document_id,
mut doc,
resource_update_list,
) => {
// Add a new document to the active set
// If the document we are replacing must be drawn (in order to
// update the texture cache), issue a render just to
// off-screen targets, ie pass None to render_impl. We do this
// because a) we don't need to render to the main framebuffer
// so it is cheaper not to, and b) doing so without a
// subsequent present would break partial present.
if let Some(mut prev_doc) = self.active_documents.remove(&document_id) {
doc.profile.merge(&mut prev_doc.profile);
if prev_doc.frame.must_be_drawn() {
prev_doc.render_reasons |= RenderReasons::TEXTURE_CACHE_FLUSH;
self.render_impl(
document_id,
&mut prev_doc,
None,
0,
).ok();
}
}
self.active_documents.insert(document_id, doc);
// IMPORTANT: The pending texture cache updates must be applied
// *after* the previous frame has been rendered above
// (if neceessary for a texture cache update). For
// an example of why this is required:
// 1) Previous frame contains a render task that
// targets Texture X.
// 2) New frame contains a texture cache update which
// frees Texture X.
// 3) bad stuff happens.
//TODO: associate `document_id` with target window
self.pending_texture_cache_updates |= !resource_update_list.texture_updates.updates.is_empty();
self.pending_texture_updates.push(resource_update_list.texture_updates);
self.pending_native_surface_updates.extend(resource_update_list.native_surface_updates);
self.documents_seen.insert(document_id);
}
ResultMsg::UpdateGpuCache(mut list) => {
if list.clear {
self.pending_gpu_cache_clear = true;
}
if list.clear {
self.gpu_cache_debug_chunks = Vec::new();
}
for cmd in mem::replace(&mut list.debug_commands, Vec::new()) {
match cmd {
GpuCacheDebugCmd::Alloc(chunk) => {
let row = chunk.address.v as usize;
if row >= self.gpu_cache_debug_chunks.len() {
self.gpu_cache_debug_chunks.resize(row + 1, Vec::new());
}
self.gpu_cache_debug_chunks[row].push(chunk);
},
GpuCacheDebugCmd::Free(address) => {
let chunks = &mut self.gpu_cache_debug_chunks[address.v as usize];
let pos = chunks.iter()
.position(|x| x.address == address).unwrap();
chunks.remove(pos);
},
}
}
self.pending_gpu_cache_updates.push(list);
}
ResultMsg::UpdateResources {
resource_updates,
memory_pressure,
} => {
if memory_pressure {
// If a memory pressure event arrives _after_ a new scene has
// been published that writes persistent targets (i.e. cached
// render tasks to the texture cache, or picture cache tiles)
// but _before_ the next update/render loop, those targets
// will not be updated due to the active_documents list being
// cleared at the end of this message. To work around that,
// if any of the existing documents have not rendered yet, and
// have picture/texture cache targets, force a render so that
// those targets are updated.
let active_documents = mem::replace(
&mut self.active_documents,
FastHashMap::default(),
);
for (doc_id, mut doc) in active_documents {
if doc.frame.must_be_drawn() {
// As this render will not be presented, we must pass None to
// render_impl. This avoids interfering with partial present
// logic, as well as being more efficient.
self.render_impl(
doc_id,
&mut doc,
None,
0,
).ok();
}
}
}
self.pending_texture_cache_updates |= !resource_updates.texture_updates.updates.is_empty();
self.pending_texture_updates.push(resource_updates.texture_updates);
self.pending_native_surface_updates.extend(resource_updates.native_surface_updates);
self.device.begin_frame();
self.update_texture_cache();
self.update_native_surfaces();
// Flush the render target pool on memory pressure.
//
// This needs to be separate from the block below because
// the device module asserts if we delete textures while
// not in a frame.
if memory_pressure {
self.texture_upload_pbo_pool.on_memory_pressure(&mut self.device);
self.staging_texture_pool.delete_textures(&mut self.device);
}
self.device.end_frame();
}
ResultMsg::AppendNotificationRequests(mut notifications) => {
// We need to know specifically if there are any pending
// TextureCacheUpdate updates in any of the entries in
// pending_texture_updates. They may simply be nops, which do not
// need to prevent issuing the notification, and if so, may not
// cause a timely frame render to occur to wake up any listeners.
if !self.pending_texture_cache_updates {
drain_filter(
&mut notifications,
|n| { n.when() == Checkpoint::FrameTexturesUpdated },
|n| { n.notify(); },
);
}
self.notifications.append(&mut notifications);
}
ResultMsg::ForceRedraw => {
self.force_redraw = true;
}
ResultMsg::RefreshShader(path) => {
self.pending_shader_updates.push(path);
}
ResultMsg::SetParameter(ref param) => {
self.device.set_parameter(param);
}
ResultMsg::DebugOutput(output) => match output {
#[cfg(feature = "capture")]
DebugOutput::SaveCapture(config, deferred) => {
self.save_capture(config, deferred);
}
#[cfg(feature = "replay")]
DebugOutput::LoadCapture(config, plain_externals) => {
self.active_documents.clear();
self.load_capture(config, plain_externals);
}
},
ResultMsg::DebugCommand(command) => {
self.handle_debug_command(command);
}
}
}
}
/// update() defers processing of ResultMsg, if frame_publish_id of
/// ResultMsg::PublishDocument exceeds target_frame_publish_id.
pub fn set_target_frame_publish_id(&mut self, publish_id: FramePublishId) {
self.target_frame_publish_id = Some(publish_id);
}
fn handle_debug_command(&mut self, command: DebugCommand) {
match command {
DebugCommand::SetPictureTileSize(_) |
DebugCommand::SetMaximumSurfaceSize(_) => {
panic!("Should be handled by render backend");
}
DebugCommand::SaveCapture(..) |
DebugCommand::LoadCapture(..) |
DebugCommand::StartCaptureSequence(..) |
DebugCommand::StopCaptureSequence => {
panic!("Capture commands are not welcome here! Did you build with 'capture' feature?")
}
DebugCommand::ClearCaches(_)
| DebugCommand::SimulateLongSceneBuild(_)
| DebugCommand::EnableNativeCompositor(_)
| DebugCommand::SetBatchingLookback(_) => {}
DebugCommand::InvalidateGpuCache => {
self.gpu_cache_texture.invalidate();
}
DebugCommand::SetFlags(flags) => {
self.set_debug_flags(flags);
}
}
}
/// Set a callback for handling external images.
pub fn set_external_image_handler(&mut self, handler: Box<dyn ExternalImageHandler>) {
self.external_image_handler = Some(handler);
}
/// Retrieve (and clear) the current list of recorded frame profiles.
pub fn get_frame_profiles(&mut self) -> (Vec<CpuProfile>, Vec<GpuProfile>) {
let cpu_profiles = self.cpu_profiles.drain(..).collect();
let gpu_profiles = self.gpu_profiles.drain(..).collect();
(cpu_profiles, gpu_profiles)
}
/// Reset the current partial present state. This forces the entire framebuffer
/// to be refreshed next time `render` is called.
pub fn force_redraw(&mut self) {
self.force_redraw = true;
}
/// Renders the current frame.
///
/// A Frame is supplied by calling [`generate_frame()`][webrender_api::Transaction::generate_frame].
/// buffer_age is the age of the current backbuffer. It is only relevant if partial present
/// is active, otherwise 0 should be passed here.
pub fn render(
&mut self,
device_size: DeviceIntSize,
buffer_age: usize,
) -> Result<RenderResults, Vec<RendererError>> {
self.device_size = Some(device_size);
// TODO(gw): We want to make the active document that is
// being rendered configurable via the public
// API in future. For now, just select the last
// added document as the active one to render
// (Gecko only ever creates a single document
// per renderer right now).
let doc_id = self.active_documents.keys().last().cloned();
let result = match doc_id {
Some(doc_id) => {
// Remove the doc from the map to appease the borrow checker
let mut doc = self.active_documents
.remove(&doc_id)
.unwrap();
let result = self.render_impl(
doc_id,
&mut doc,
Some(device_size),
buffer_age,
);
self.active_documents.insert(doc_id, doc);
result
}
None => {
self.last_time = precise_time_ns();
Ok(RenderResults::default())
}
};
drain_filter(
&mut self.notifications,
|n| { n.when() == Checkpoint::FrameRendered },
|n| { n.notify(); },
);
let mut oom = false;
if let Err(ref errors) = result {
for error in errors {
if matches!(error, &RendererError::OutOfMemory) {
oom = true;
break;
}
}
}
if oom {
let _ = self.api_tx.send(ApiMsg::MemoryPressure);
// Ensure we don't get stuck in a loop.
self.consecutive_oom_frames += 1;
assert!(self.consecutive_oom_frames < 5, "Renderer out of memory");
} else {
self.consecutive_oom_frames = 0;
}
// This is the end of the rendering pipeline. If some notifications are is still there,
// just clear them and they will autimatically fire the Checkpoint::TransactionDropped
// event. Otherwise they would just pile up in this vector forever.
self.notifications.clear();
tracy_frame_marker!();
result
}
/// Update the state of any debug / profiler overlays. This is currently only needed
/// when running with the native compositor enabled.
fn update_debug_overlay(
&mut self,
framebuffer_size: DeviceIntSize,
has_debug_items: bool,
) {
// If any of the following debug flags are set, something will be drawn on the debug overlay.
self.debug_overlay_state.is_enabled = has_debug_items || self.debug_flags.intersects(
DebugFlags::PROFILER_DBG |
DebugFlags::RENDER_TARGET_DBG |
DebugFlags::TEXTURE_CACHE_DBG |
DebugFlags::EPOCHS |
DebugFlags::GPU_CACHE_DBG |
DebugFlags::PICTURE_CACHING_DBG |
DebugFlags::PRIMITIVE_DBG |
DebugFlags::ZOOM_DBG |
DebugFlags::WINDOW_VISIBILITY_DBG
);
// Update the debug overlay surface, if we are running in native compositor mode.
if let CompositorKind::Native { .. } = self.current_compositor_kind {
let compositor = self.compositor_config.compositor().unwrap();
// If there is a current surface, destroy it if we don't need it for this frame, or if
// the size has changed.
if let Some(current_size) = self.debug_overlay_state.current_size {
if !self.debug_overlay_state.is_enabled || current_size != framebuffer_size {
compositor.destroy_surface(&mut self.device, NativeSurfaceId::DEBUG_OVERLAY);
self.debug_overlay_state.current_size = None;
}
}
// Allocate a new surface, if we need it and there isn't one.
if self.debug_overlay_state.is_enabled && self.debug_overlay_state.current_size.is_none() {
compositor.create_surface(
&mut self.device,
NativeSurfaceId::DEBUG_OVERLAY,
DeviceIntPoint::zero(),
framebuffer_size,
false,
);
compositor.create_tile(
&mut self.device,
NativeTileId::DEBUG_OVERLAY,
);
self.debug_overlay_state.current_size = Some(framebuffer_size);
}
}
}
/// Bind a draw target for the debug / profiler overlays, if required.
fn bind_debug_overlay(&mut self, device_size: DeviceIntSize) -> Option<DrawTarget> {
// Debug overlay setup are only required in native compositing mode
if self.debug_overlay_state.is_enabled {
if let CompositorKind::Native { .. } = self.current_compositor_kind {
let compositor = self.compositor_config.compositor().unwrap();
let surface_size = self.debug_overlay_state.current_size.unwrap();
// Ensure old surface is invalidated before binding
compositor.invalidate_tile(
&mut self.device,
NativeTileId::DEBUG_OVERLAY,
DeviceIntRect::from_size(surface_size),
);
// Bind the native surface
let surface_info = compositor.bind(
&mut self.device,
NativeTileId::DEBUG_OVERLAY,
DeviceIntRect::from_size(surface_size),
DeviceIntRect::from_size(surface_size),
);
// Bind the native surface to current FBO target
let draw_target = DrawTarget::NativeSurface {
offset: surface_info.origin,
external_fbo_id: surface_info.fbo_id,
dimensions: surface_size,
};
self.device.bind_draw_target(draw_target);
// When native compositing, clear the debug overlay each frame.
self.device.clear_target(
Some([0.0, 0.0, 0.0, 0.0]),
None, // debug renderer does not use depth
None,
);
Some(draw_target)
} else {
// If we're not using the native compositor, then the default
// frame buffer is already bound. Create a DrawTarget for it and
// return it.
Some(DrawTarget::new_default(device_size, self.device.surface_origin_is_top_left()))
}
} else {
None
}
}
/// Unbind the draw target for debug / profiler overlays, if required.
fn unbind_debug_overlay(&mut self) {
// Debug overlay setup are only required in native compositing mode
if self.debug_overlay_state.is_enabled {
if let CompositorKind::Native { .. } = self.current_compositor_kind {
let compositor = self.compositor_config.compositor().unwrap();
// Unbind the draw target and add it to the visual tree to be composited
compositor.unbind(&mut self.device);
compositor.add_surface(
&mut self.device,
NativeSurfaceId::DEBUG_OVERLAY,
CompositorSurfaceTransform::identity(),
DeviceIntRect::from_size(
self.debug_overlay_state.current_size.unwrap(),
),
ImageRendering::Auto,
);
}
}
}
// If device_size is None, don't render to the main frame buffer. This is useful to
// update texture cache render tasks but avoid doing a full frame render. If the
// render is not going to be presented, then this must be set to None, as performing a
// composite without a present will confuse partial present.
fn render_impl(
&mut self,
doc_id: DocumentId,
active_doc: &mut RenderedDocument,
device_size: Option<DeviceIntSize>,
buffer_age: usize,
) -> Result<RenderResults, Vec<RendererError>> {
profile_scope!("render");
let mut results = RenderResults::default();
self.profile.start_time(profiler::RENDERER_TIME);
self.staging_texture_pool.begin_frame();
let compositor_kind = active_doc.frame.composite_state.compositor_kind;
// CompositorKind is updated
if self.current_compositor_kind != compositor_kind {
let enable = match (self.current_compositor_kind, compositor_kind) {
(CompositorKind::Native { .. }, CompositorKind::Draw { .. }) => {
if self.debug_overlay_state.current_size.is_some() {
self.compositor_config
.compositor()
.unwrap()
.destroy_surface(&mut self.device, NativeSurfaceId::DEBUG_OVERLAY);
self.debug_overlay_state.current_size = None;
}
false
}
(CompositorKind::Draw { .. }, CompositorKind::Native { .. }) => {
true
}
(current_compositor_kind, active_doc_compositor_kind) => {
warn!("Compositor mismatch, assuming this is Wrench running. Current {:?}, active {:?}",
current_compositor_kind, active_doc_compositor_kind);
false
}
};
if let Some(config) = self.compositor_config.compositor() {
config.enable_native_compositor(&mut self.device, enable);
}
self.current_compositor_kind = compositor_kind;
}
// The texture resolver scope should be outside of any rendering, including
// debug rendering. This ensures that when we return render targets to the
// pool via glInvalidateFramebuffer, we don't do any debug rendering after
// that point. Otherwise, the bind / invalidate / bind logic trips up the
// render pass logic in tiled / mobile GPUs, resulting in an extra copy /
// resolve step when the debug overlay is enabled.
self.texture_resolver.begin_frame();
if let Some(device_size) = device_size {
self.update_gpu_profile(device_size);
}
let cpu_frame_id = {
let _gm = self.gpu_profiler.start_marker("begin frame");
let frame_id = self.device.begin_frame();
self.gpu_profiler.begin_frame(frame_id);
self.device.disable_scissor();
self.device.disable_depth();
self.set_blend(false, FramebufferKind::Main);
//self.update_shaders();
self.update_texture_cache();
self.update_native_surfaces();
frame_id
};
if let Some(device_size) = device_size {
// Inform the client that we are starting a composition transaction if native
// compositing is enabled. This needs to be done early in the frame, so that
// we can create debug overlays after drawing the main surfaces.
if let CompositorKind::Native { .. } = self.current_compositor_kind {
let compositor = self.compositor_config.compositor().unwrap();
compositor.begin_frame(&mut self.device);
}
// Update the state of the debug overlay surface, ensuring that
// the compositor mode has a suitable surface to draw to, if required.
self.update_debug_overlay(device_size, !active_doc.frame.debug_items.is_empty());
}
let frame = &mut active_doc.frame;
let profile = &mut active_doc.profile;
assert!(self.current_compositor_kind == frame.composite_state.compositor_kind);
if self.shared_texture_cache_cleared {
assert!(self.documents_seen.contains(&doc_id),
"Cleared texture cache without sending new document frame.");
}
match self.prepare_gpu_cache(&frame.deferred_resolves) {
Ok(..) => {
assert!(frame.gpu_cache_frame_id <= self.gpu_cache_frame_id,
"Received frame depends on a later GPU cache epoch ({:?}) than one we received last via `UpdateGpuCache` ({:?})",
frame.gpu_cache_frame_id, self.gpu_cache_frame_id);
{
profile_scope!("gl.flush");
self.device.gl().flush(); // early start on gpu cache updates
}
self.draw_frame(
frame,
device_size,
buffer_age,
&mut results,
);
// TODO(nical): do this automatically by selecting counters in the wr profiler
// Profile marker for the number of invalidated picture cache
if thread_is_being_profiled() {
let duration = Duration::new(0,0);
if let Some(n) = self.profile.get(profiler::RENDERED_PICTURE_TILES) {
let message = (n as usize).to_string();
add_text_marker("NumPictureCacheInvalidated", &message, duration);
}
}
if device_size.is_some() {
self.draw_frame_debug_items(&frame.debug_items);
}
self.profile.merge(profile);
}
Err(e) => {
self.renderer_errors.push(e);
}
}
self.unlock_external_images(&frame.deferred_resolves);
let _gm = self.gpu_profiler.start_marker("end frame");
self.gpu_profiler.end_frame();
let debug_overlay = device_size.and_then(|device_size| {
// Bind a surface to draw the debug / profiler information to.
self.bind_debug_overlay(device_size).map(|draw_target| {
self.draw_render_target_debug(&draw_target);
self.draw_texture_cache_debug(&draw_target);
self.draw_gpu_cache_debug(device_size);
self.draw_zoom_debug(device_size);
self.draw_epoch_debug();
self.draw_window_visibility_debug();
draw_target
})
});
let t = self.profile.end_time(profiler::RENDERER_TIME);
self.profile.end_time_if_started(profiler::TOTAL_FRAME_CPU_TIME);
Telemetry::record_renderer_time(Duration::from_micros((t * 1000.00) as u64));
if self.profile.get(profiler::SHADER_BUILD_TIME).is_none() {
Telemetry::record_renderer_time_no_sc(Duration::from_micros((t * 1000.00) as u64));
}
let current_time = precise_time_ns();
if device_size.is_some() {
let time = profiler::ns_to_ms(current_time - self.last_time);
self.profile.set(profiler::FRAME_TIME, time);
}
if self.max_recorded_profiles > 0 {
while self.cpu_profiles.len() >= self.max_recorded_profiles {
self.cpu_profiles.pop_front();
}
let cpu_profile = CpuProfile::new(
cpu_frame_id,
(self.profile.get_or(profiler::FRAME_BUILDING_TIME, 0.0) * 1000000.0) as u64,
(self.profile.get_or(profiler::RENDERER_TIME, 0.0) * 1000000.0) as u64,
self.profile.get_or(profiler::DRAW_CALLS, 0.0) as usize,
);
self.cpu_profiles.push_back(cpu_profile);
}
if thread_is_being_profiled() {
let duration = Duration::new(0,0);
let message = (self.profile.get_or(profiler::DRAW_CALLS, 0.0) as usize).to_string();
add_text_marker("NumDrawCalls", &message, duration);
}
let report = self.texture_resolver.report_memory();
self.profile.set(profiler::RENDER_TARGET_MEM, profiler::bytes_to_mb(report.render_target_textures));
self.profile.set(profiler::PICTURE_TILES_MEM, profiler::bytes_to_mb(report.picture_tile_textures));
self.profile.set(profiler::ATLAS_TEXTURES_MEM, profiler::bytes_to_mb(report.atlas_textures));
self.profile.set(profiler::STANDALONE_TEXTURES_MEM, profiler::bytes_to_mb(report.standalone_textures));
self.profile.set(profiler::DEPTH_TARGETS_MEM, profiler::bytes_to_mb(self.device.depth_targets_memory()));
self.profile.set(profiler::TEXTURES_CREATED, self.device.textures_created);
self.profile.set(profiler::TEXTURES_DELETED, self.device.textures_deleted);
results.stats.texture_upload_mb = self.profile.get_or(profiler::TEXTURE_UPLOADS_MEM, 0.0);
self.frame_counter += 1;
results.stats.resource_upload_time = self.resource_upload_time;
self.resource_upload_time = 0.0;
results.stats.gpu_cache_upload_time = self.gpu_cache_upload_time;
self.gpu_cache_upload_time = 0.0;
if let Some(stats) = active_doc.frame_stats.take() {
// Copy the full frame stats to RendererStats
results.stats.merge(&stats);
self.profiler.update_frame_stats(stats);
}
// Turn the render reasons bitflags into something we can see in the profiler.
// For now this is just a binary yes/no for each bit, which means that when looking
// at "Render reasons" in the profiler HUD the average view indicates the proportion
// of frames that had the bit set over a half second window whereas max shows whether
// the bit as been set at least once during that time window.
// We could implement better ways to visualize this information.
let add_markers = thread_is_being_profiled();
for i in 0..RenderReasons::NUM_BITS {
let counter = profiler::RENDER_REASON_FIRST + i as usize;
let mut val = 0.0;
let reason_bit = RenderReasons::from_bits_truncate(1 << i);
if active_doc.render_reasons.contains(reason_bit) {
val = 1.0;
if add_markers {
let event_str = format!("Render reason {:?}", reason_bit);
add_event_marker(&event_str);
}
}
self.profile.set(counter, val);
}
active_doc.render_reasons = RenderReasons::empty();
self.texture_resolver.update_profile(&mut self.profile);
// Note: this clears the values in self.profile.
self.profiler.set_counters(&mut self.profile);
// Note: profile counters must be set before this or they will count for next frame.
self.profiler.update();
if self.debug_flags.intersects(DebugFlags::PROFILER_DBG | DebugFlags::PROFILER_CAPTURE) {
if let Some(device_size) = device_size {
//TODO: take device/pixel ratio into equation?
if let Some(debug_renderer) = self.debug.get_mut(&mut self.device) {
self.profiler.draw_profile(
self.frame_counter,
debug_renderer,
device_size,
);
}
}
}
if self.debug_flags.contains(DebugFlags::ECHO_DRIVER_MESSAGES) {
self.device.echo_driver_messages();
}
if let Some(debug_renderer) = self.debug.try_get_mut() {
let small_screen = self.debug_flags.contains(DebugFlags::SMALL_SCREEN);
let scale = if small_screen { 1.6 } else { 1.0 };
// TODO(gw): Tidy this up so that compositor config integrates better
// with the (non-compositor) surface y-flip options.
let surface_origin_is_top_left = match self.current_compositor_kind {
CompositorKind::Native { .. } => true,
CompositorKind::Draw { .. } => self.device.surface_origin_is_top_left(),
};
// If there is a debug overlay, render it. Otherwise, just clear
// the debug renderer.
debug_renderer.render(
&mut self.device,
debug_overlay.and(device_size),
scale,
surface_origin_is_top_left,
);
}
self.staging_texture_pool.end_frame(&mut self.device);
self.texture_upload_pbo_pool.end_frame(&mut self.device);
self.device.end_frame();
if debug_overlay.is_some() {
self.last_time = current_time;
// Unbind the target for the debug overlay. No debug or profiler drawing
// can occur afer this point.
self.unbind_debug_overlay();
}
if device_size.is_some() {
// Inform the client that we are finished this composition transaction if native
// compositing is enabled. This must be called after any debug / profiling compositor
// surfaces have been drawn and added to the visual tree.
if let CompositorKind::Native { .. } = self.current_compositor_kind {
profile_scope!("compositor.end_frame");
let compositor = self.compositor_config.compositor().unwrap();
compositor.end_frame(&mut self.device);
}
}
self.documents_seen.clear();
self.shared_texture_cache_cleared = false;
self.check_gl_errors();
if self.renderer_errors.is_empty() {
Ok(results)
} else {
Err(mem::replace(&mut self.renderer_errors, Vec::new()))
}
}
fn update_gpu_profile(&mut self, device_size: DeviceIntSize) {
let _gm = self.gpu_profiler.start_marker("build samples");
// Block CPU waiting for last frame's GPU profiles to arrive.
// In general this shouldn't block unless heavily GPU limited.
let (gpu_frame_id, timers, samplers) = self.gpu_profiler.build_samples();
if self.max_recorded_profiles > 0 {
while self.gpu_profiles.len() >= self.max_recorded_profiles {
self.gpu_profiles.pop_front();
}
self.gpu_profiles.push_back(GpuProfile::new(gpu_frame_id, &timers));
}
self.profiler.set_gpu_time_queries(timers);
if !samplers.is_empty() {
let screen_fraction = 1.0 / device_size.to_f32().area();
fn accumulate_sampler_value(description: &str, samplers: &[GpuSampler]) -> f32 {
let mut accum = 0.0;
for sampler in samplers {
if sampler.tag.label != description {
continue;
}
accum += sampler.count as f32;
}
accum
}
let alpha_targets = accumulate_sampler_value(&"Alpha targets", &samplers) * screen_fraction;
let transparent_pass = accumulate_sampler_value(&"Transparent pass", &samplers) * screen_fraction;
let opaque_pass = accumulate_sampler_value(&"Opaque pass", &samplers) * screen_fraction;
self.profile.set(profiler::ALPHA_TARGETS_SAMPLERS, alpha_targets);
self.profile.set(profiler::TRANSPARENT_PASS_SAMPLERS, transparent_pass);
self.profile.set(profiler::OPAQUE_PASS_SAMPLERS, opaque_pass);
self.profile.set(profiler::TOTAL_SAMPLERS, alpha_targets + transparent_pass + opaque_pass);
}
}
fn update_texture_cache(&mut self) {
profile_scope!("update_texture_cache");
let _gm = self.gpu_profiler.start_marker("texture cache update");
let mut pending_texture_updates = mem::replace(&mut self.pending_texture_updates, vec![]);
self.pending_texture_cache_updates = false;
self.profile.start_time(profiler::TEXTURE_CACHE_UPDATE_TIME);
let mut create_cache_texture_time = 0;
let mut delete_cache_texture_time = 0;
for update_list in pending_texture_updates.drain(..) {
// Handle copies from one texture to another.
for ((src_tex, dst_tex), copies) in &update_list.copies {
let dest_texture = &self.texture_resolver.texture_cache_map[&dst_tex].texture;
let dst_texture_size = dest_texture.get_dimensions().to_f32();
let mut copy_instances = Vec::new();
for copy in copies {
copy_instances.push(CopyInstance {
src_rect: copy.src_rect.to_f32(),
dst_rect: copy.dst_rect.to_f32(),
dst_texture_size,
});
}
let draw_target = DrawTarget::from_texture(dest_texture, false);
self.device.bind_draw_target(draw_target);
self.shaders
.borrow_mut()
.ps_copy
.bind(
&mut self.device,
&Transform3D::identity(),
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&copy_instances,
VertexArrayKind::Copy,
&BatchTextures::composite_rgb(
TextureSource::TextureCache(*src_tex, Swizzle::default())
),
&mut RendererStats::default(),
);
}
// Find any textures that will need to be deleted in this group of allocations.
let mut pending_deletes = Vec::new();
for allocation in &update_list.allocations {
let old = self.texture_resolver.texture_cache_map.remove(&allocation.id);
match allocation.kind {
TextureCacheAllocationKind::Alloc(_) => {
assert!(old.is_none(), "Renderer and backend disagree!");
}
TextureCacheAllocationKind::Reset(_) |
TextureCacheAllocationKind::Free => {
assert!(old.is_some(), "Renderer and backend disagree!");
}
}
if let Some(old) = old {
// Regenerate the cache allocation info so we can search through deletes for reuse.
let size = old.texture.get_dimensions();
let info = TextureCacheAllocInfo {
width: size.width,
height: size.height,
format: old.texture.get_format(),
filter: old.texture.get_filter(),
target: old.texture.get_target(),
is_shared_cache: old.texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE),
has_depth: old.texture.supports_depth(),
category: old.category,
};
pending_deletes.push((old.texture, info));
}
}
// Look for any alloc or reset that has matching alloc info and save it from being deleted.
let mut reused_textures = VecDeque::with_capacity(pending_deletes.len());
for allocation in &update_list.allocations {
match allocation.kind {
TextureCacheAllocationKind::Alloc(ref info) |
TextureCacheAllocationKind::Reset(ref info) => {
reused_textures.push_back(
pending_deletes.iter()
.position(|(_, old_info)| *old_info == *info)
.map(|index| pending_deletes.swap_remove(index).0)
);
}
TextureCacheAllocationKind::Free => {}
}
}
// Now that we've saved as many deletions for reuse as we can, actually delete whatever is left.
if !pending_deletes.is_empty() {
let delete_texture_start = precise_time_ns();
for (texture, _) in pending_deletes {
add_event_marker("TextureCacheFree");
self.device.delete_texture(texture);
}
delete_cache_texture_time += precise_time_ns() - delete_texture_start;
}
for allocation in update_list.allocations {
match allocation.kind {
TextureCacheAllocationKind::Alloc(_) => add_event_marker("TextureCacheAlloc"),
TextureCacheAllocationKind::Reset(_) => add_event_marker("TextureCacheReset"),
TextureCacheAllocationKind::Free => {}
};
match allocation.kind {
TextureCacheAllocationKind::Alloc(ref info) |
TextureCacheAllocationKind::Reset(ref info) => {
let create_cache_texture_start = precise_time_ns();
// Create a new native texture, as requested by the texture cache.
// If we managed to reuse a deleted texture, then prefer that instead.
//
// Ensure no PBO is bound when creating the texture storage,
// or GL will attempt to read data from there.
let mut texture = reused_textures.pop_front().unwrap_or(None).unwrap_or_else(|| {
self.device.create_texture(
info.target,
info.format,
info.width,
info.height,
info.filter,
// This needs to be a render target because some render
// tasks get rendered into the texture cache.
Some(RenderTargetInfo { has_depth: info.has_depth }),
)
});
if info.is_shared_cache {
texture.flags_mut()
.insert(TextureFlags::IS_SHARED_TEXTURE_CACHE);
// On Mali-Gxx devices we use batched texture uploads as it performs much better.
// However, due to another driver bug we must ensure the textures are fully cleared,
// otherwise we get visual artefacts when blitting to the texture cache.
if self.device.use_batched_texture_uploads() &&
!self.device.get_capabilities().supports_render_target_partial_update
{
self.clear_texture(&texture, [0.0; 4]);
}
// Textures in the cache generally don't need to be cleared,
// but we do so if the debug display is active to make it
// easier to identify unallocated regions.
if self.debug_flags.contains(DebugFlags::TEXTURE_CACHE_DBG) {
self.clear_texture(&texture, TEXTURE_CACHE_DBG_CLEAR_COLOR);
}
}
create_cache_texture_time += precise_time_ns() - create_cache_texture_start;
self.texture_resolver.texture_cache_map.insert(allocation.id, CacheTexture {
texture,
category: info.category,
});
}
TextureCacheAllocationKind::Free => {}
};
}
upload_to_texture_cache(self, update_list.updates);
self.check_gl_errors();
}
if create_cache_texture_time > 0 {
self.profile.set(
profiler::CREATE_CACHE_TEXTURE_TIME,
profiler::ns_to_ms(create_cache_texture_time)
);
}
if delete_cache_texture_time > 0 {
self.profile.set(
profiler::DELETE_CACHE_TEXTURE_TIME,
profiler::ns_to_ms(delete_cache_texture_time)
)
}
let t = self.profile.end_time(profiler::TEXTURE_CACHE_UPDATE_TIME);
self.resource_upload_time += t;
Telemetry::record_texture_cache_update_time(Duration::from_micros((t * 1000.00) as u64));
drain_filter(
&mut self.notifications,
|n| { n.when() == Checkpoint::FrameTexturesUpdated },
|n| { n.notify(); },
);
}
fn check_gl_errors(&mut self) {
let err = self.device.gl().get_error();
if err == gl::OUT_OF_MEMORY {
self.renderer_errors.push(RendererError::OutOfMemory);
}
// Probably should check for other errors?
}
fn bind_textures(&mut self, textures: &BatchTextures) {
for i in 0 .. 3 {
self.texture_resolver.bind(
&textures.input.colors[i],
TextureSampler::color(i),
&mut self.device,
);
}
self.texture_resolver.bind(
&textures.clip_mask,
TextureSampler::ClipMask,
&mut self.device,
);
// TODO: this probably isn't the best place for this.
if let Some(ref texture) = self.dither_matrix_texture {
self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default());
}
}
fn draw_instanced_batch<T: Clone>(
&mut self,
data: &[T],
vertex_array_kind: VertexArrayKind,
textures: &BatchTextures,
stats: &mut RendererStats,
) {
self.bind_textures(textures);
// If we end up with an empty draw call here, that means we have
// probably introduced unnecessary batch breaks during frame
// building - so we should be catching this earlier and removing
// the batch.
debug_assert!(!data.is_empty());
let vao = &self.vaos[vertex_array_kind];
self.device.bind_vao(vao);
let chunk_size = if self.debug_flags.contains(DebugFlags::DISABLE_BATCHING) {
1
} else if vertex_array_kind == VertexArrayKind::Primitive {
self.max_primitive_instance_count
} else {
data.len()
};
for chunk in data.chunks(chunk_size) {
if self.enable_instancing {
self.device
.update_vao_instances(vao, chunk, ONE_TIME_USAGE_HINT, None);
self.device
.draw_indexed_triangles_instanced_u16(6, chunk.len() as i32);
} else {
self.device
.update_vao_instances(vao, chunk, ONE_TIME_USAGE_HINT, NonZeroUsize::new(4));
self.device
.draw_indexed_triangles(6 * chunk.len() as i32);
}
self.profile.inc(profiler::DRAW_CALLS);
stats.total_draw_calls += 1;
}
self.profile.add(profiler::VERTICES, 6 * data.len());
}
fn handle_readback_composite(
&mut self,
draw_target: DrawTarget,
uses_scissor: bool,
backdrop: &RenderTask,
readback: &RenderTask,
) {
// Extract the rectangle in the backdrop surface's device space of where
// we need to read from.
let readback_origin = match readback.kind {
RenderTaskKind::Readback(ReadbackTask { readback_origin: Some(o), .. }) => o,
RenderTaskKind::Readback(ReadbackTask { readback_origin: None, .. }) => {
// If this is a dummy readback, just early out. We know that the
// clear of the target will ensure the task rect is already zero alpha,
// so it won't affect the rendering output.
return;
}
_ => unreachable!(),
};
if uses_scissor {
self.device.disable_scissor();
}
let texture_source = TextureSource::TextureCache(
readback.get_target_texture(),
Swizzle::default(),
);
let (cache_texture, _) = self.texture_resolver
.resolve(&texture_source).expect("bug: no source texture");
// Before submitting the composite batch, do the
// framebuffer readbacks that are needed for each
// composite operation in this batch.
let readback_rect = readback.get_target_rect();
let backdrop_rect = backdrop.get_target_rect();
let (backdrop_screen_origin, _) = match backdrop.kind {
RenderTaskKind::Picture(ref task_info) => (task_info.content_origin, task_info.device_pixel_scale),
_ => panic!("bug: composite on non-picture?"),
};
// Bind the FBO to blit the backdrop to.
// Called per-instance in case the FBO changes. The device will skip
// the GL call if the requested target is already bound.
let cache_draw_target = DrawTarget::from_texture(
cache_texture,
false,
);
// Get the rect that we ideally want, in space of the parent surface
let wanted_rect = DeviceRect::from_origin_and_size(
readback_origin,
readback_rect.size().to_f32(),
);
// Get the rect that is available on the parent surface. It may be smaller
// than desired because this is a picture cache tile covering only part of
// the wanted rect and/or because the parent surface was clipped.
let avail_rect = DeviceRect::from_origin_and_size(
backdrop_screen_origin,
backdrop_rect.size().to_f32(),
);
if let Some(int_rect) = wanted_rect.intersection(&avail_rect) {
// If there is a valid intersection, work out the correct origins and
// sizes of the copy rects, and do the blit.
let copy_size = int_rect.size().to_i32();
let src_origin = backdrop_rect.min.to_f32() +
int_rect.min.to_vector() -
backdrop_screen_origin.to_vector();
let src = DeviceIntRect::from_origin_and_size(
src_origin.to_i32(),
copy_size,
);
let dest_origin = readback_rect.min.to_f32() +
int_rect.min.to_vector() -
readback_origin.to_vector();
let dest = DeviceIntRect::from_origin_and_size(
dest_origin.to_i32(),
copy_size,
);
// Should always be drawing to picture cache tiles or off-screen surface!
debug_assert!(!draw_target.is_default());
let device_to_framebuffer = Scale::new(1i32);
self.device.blit_render_target(
draw_target.into(),
src * device_to_framebuffer,
cache_draw_target,
dest * device_to_framebuffer,
TextureFilter::Linear,
);
}
// Restore draw target to current pass render target, and reset
// the read target.
self.device.bind_draw_target(draw_target);
self.device.reset_read_target();
if uses_scissor {
self.device.enable_scissor();
}
}
fn handle_resolves(
&mut self,
resolve_ops: &[ResolveOp],
render_tasks: &RenderTaskGraph,
draw_target: DrawTarget,
) {
if resolve_ops.is_empty() {
return;
}
let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLIT);
for resolve_op in resolve_ops {
self.handle_resolve(
resolve_op,
render_tasks,
draw_target,
);
}
self.device.reset_read_target();
}
fn handle_prims(
&mut self,
draw_target: &DrawTarget,
prim_instances: &[Vec<PrimitiveInstanceData>],
prim_instances_with_scissor: &FastHashMap<(DeviceIntRect, PatternKind), Vec<PrimitiveInstanceData>>,
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
self.device.disable_depth_write();
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_INDIRECT_PRIM);
if prim_instances.iter().any(|instances| !instances.is_empty()) {
self.set_blend(false, FramebufferKind::Other);
}
for (pattern_idx, prim_instances) in prim_instances.iter().enumerate() {
if prim_instances.is_empty() {
continue;
}
let pattern = PatternKind::from_u32(pattern_idx as u32);
self.shaders.borrow_mut().get_quad_shader(pattern).bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
// TODO: Some patterns will need to be able to sample textures.
let texture_bindings = BatchTextures::empty();
self.draw_instanced_batch(
prim_instances,
VertexArrayKind::Primitive,
&texture_bindings,
stats,
);
}
if !prim_instances_with_scissor.is_empty() {
self.set_blend(true, FramebufferKind::Other);
self.device.set_blend_mode_premultiplied_alpha();
self.device.enable_scissor();
let mut prev_pattern = None;
for ((scissor_rect, pattern), prim_instances) in prim_instances_with_scissor {
if prev_pattern != Some(*pattern) {
prev_pattern = Some(*pattern);
self.shaders.borrow_mut().get_quad_shader(*pattern).bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
}
self.device.set_scissor_rect(draw_target.to_framebuffer_rect(*scissor_rect));
// TODO: hook up the right pattern.
self.draw_instanced_batch(
prim_instances,
VertexArrayKind::Primitive,
&BatchTextures::empty(),
stats,
);
}
self.device.disable_scissor();
}
}
}
fn handle_clips(
&mut self,
draw_target: &DrawTarget,
masks: &ClipMaskInstanceList,
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
self.device.disable_depth_write();
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_INDIRECT_MASK);
self.set_blend(true, FramebufferKind::Other);
self.set_blend_mode_multiply(FramebufferKind::Other);
if !masks.mask_instances_fast.is_empty() {
self.shaders.borrow_mut().ps_mask_fast.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&masks.mask_instances_fast,
VertexArrayKind::Mask,
&BatchTextures::empty(),
stats,
);
}
if !masks.mask_instances_fast_with_scissor.is_empty() {
self.shaders.borrow_mut().ps_mask_fast.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.device.enable_scissor();
for (scissor_rect, instances) in &masks.mask_instances_fast_with_scissor {
self.device.set_scissor_rect(draw_target.to_framebuffer_rect(*scissor_rect));
self.draw_instanced_batch(
instances,
VertexArrayKind::Mask,
&BatchTextures::empty(),
stats,
);
}
self.device.disable_scissor();
}
if !masks.image_mask_instances.is_empty() {
self.shaders.borrow_mut().ps_quad_textured.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
for (texture, prim_instances) in &masks.image_mask_instances {
self.draw_instanced_batch(
prim_instances,
VertexArrayKind::Primitive,
&BatchTextures::composite_rgb(*texture),
stats,
);
}
}
if !masks.image_mask_instances_with_scissor.is_empty() {
self.device.enable_scissor();
self.shaders.borrow_mut().ps_quad_textured.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
for ((scissor_rect, texture), prim_instances) in &masks.image_mask_instances_with_scissor {
self.device.set_scissor_rect(draw_target.to_framebuffer_rect(*scissor_rect));
self.draw_instanced_batch(
prim_instances,
VertexArrayKind::Primitive,
&BatchTextures::composite_rgb(*texture),
stats,
);
}
self.device.disable_scissor();
}
if !masks.mask_instances_slow.is_empty() {
self.shaders.borrow_mut().ps_mask.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&masks.mask_instances_slow,
VertexArrayKind::Mask,
&BatchTextures::empty(),
stats,
);
}
if !masks.mask_instances_slow_with_scissor.is_empty() {
self.shaders.borrow_mut().ps_mask.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.device.enable_scissor();
for (scissor_rect, instances) in &masks.mask_instances_slow_with_scissor {
self.device.set_scissor_rect(draw_target.to_framebuffer_rect(*scissor_rect));
self.draw_instanced_batch(
instances,
VertexArrayKind::Mask,
&BatchTextures::empty(),
stats,
);
}
self.device.disable_scissor();
}
}
}
fn handle_blits(
&mut self,
blits: &[BlitJob],
render_tasks: &RenderTaskGraph,
draw_target: DrawTarget,
) {
if blits.is_empty() {
return;
}
let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLIT);
// TODO(gw): For now, we don't bother batching these by source texture.
// If if ever shows up as an issue, we can easily batch them.
for blit in blits {
let (source, source_rect) = {
// A blit from the child render task into this target.
// TODO(gw): Support R8 format here once we start
// creating mips for alpha masks.
let task = &render_tasks[blit.source];
let source_rect = task.get_target_rect();
let source_texture = task.get_texture_source();
(source_texture, source_rect)
};
debug_assert_eq!(source_rect.size(), blit.target_rect.size());
let (texture, swizzle) = self.texture_resolver
.resolve(&source)
.expect("BUG: invalid source texture");
if swizzle != Swizzle::default() {
error!("Swizzle {:?} can't be handled by a blit", swizzle);
}
let read_target = DrawTarget::from_texture(
texture,
false,
);
self.device.blit_render_target(
read_target.into(),
read_target.to_framebuffer_rect(source_rect),
draw_target,
draw_target.to_framebuffer_rect(blit.target_rect),
TextureFilter::Linear,
);
}
}
fn handle_scaling(
&mut self,
scalings: &FastHashMap<TextureSource, Vec<ScalingInstance>>,
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
if scalings.is_empty() {
return
}
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SCALE);
for (source, instances) in scalings {
let buffer_kind = source.image_buffer_kind();
// When the source texture is an external texture, the UV rect is not known
// when the external surface descriptor is created, because external textures
// are not resolved until the lock() callback is invoked at the start of the
// frame render. We must therefore override the source rects now.
let uv_override_instances;
let instances = match source {
TextureSource::External(..) => {
uv_override_instances = instances.iter().map(|instance| {
let texel_rect: TexelRect = self.texture_resolver.get_uv_rect(
&source,
instance.source_rect.cast().into()
).into();
ScalingInstance {
target_rect: instance.target_rect,
source_rect: DeviceRect::new(texel_rect.uv0, texel_rect.uv1),
}
}).collect::<Vec<_>>();
&uv_override_instances
}
_ => &instances
};
self.shaders
.borrow_mut()
.get_scale_shader(buffer_kind)
.bind(
&mut self.device,
&projection,
Some(self.texture_resolver.get_texture_size(source).to_f32()),
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
instances,
VertexArrayKind::Scale,
&BatchTextures::composite_rgb(*source),
stats,
);
}
}
fn handle_svg_filters(
&mut self,
textures: &BatchTextures,
svg_filters: &[SvgFilterInstance],
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
if svg_filters.is_empty() {
return;
}
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SVG_FILTER);
self.shaders.borrow_mut().cs_svg_filter.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&svg_filters,
VertexArrayKind::SvgFilter,
textures,
stats,
);
}
fn handle_svg_nodes(
&mut self,
textures: &BatchTextures,
svg_filters: &[SVGFEFilterInstance],
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
if svg_filters.is_empty() {
return;
}
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SVG_FILTER_NODES);
self.shaders.borrow_mut().cs_svg_filter_node.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&svg_filters,
VertexArrayKind::SvgFilterNode,
textures,
stats,
);
}
fn handle_resolve(
&mut self,
resolve_op: &ResolveOp,
render_tasks: &RenderTaskGraph,
draw_target: DrawTarget,
) {
for src_task_id in &resolve_op.src_task_ids {
let src_task = &render_tasks[*src_task_id];
let src_info = match src_task.kind {
RenderTaskKind::Picture(ref info) => info,
_ => panic!("bug: not a picture"),
};
let src_task_rect = src_task.get_target_rect().to_f32();
let dest_task = &render_tasks[resolve_op.dest_task_id];
let dest_info = match dest_task.kind {
RenderTaskKind::Picture(ref info) => info,
_ => panic!("bug: not a picture"),
};
let dest_task_rect = dest_task.get_target_rect().to_f32();
// Get the rect that we ideally want, in space of the parent surface
let wanted_rect = DeviceRect::from_origin_and_size(
dest_info.content_origin,
dest_task_rect.size().to_f32(),
).cast_unit() * dest_info.device_pixel_scale.inverse();
// Get the rect that is available on the parent surface. It may be smaller
// than desired because this is a picture cache tile covering only part of
// the wanted rect and/or because the parent surface was clipped.
let avail_rect = DeviceRect::from_origin_and_size(
src_info.content_origin,
src_task_rect.size().to_f32(),
).cast_unit() * src_info.device_pixel_scale.inverse();
if let Some(device_int_rect) = wanted_rect.intersection(&avail_rect) {
let src_int_rect = (device_int_rect * src_info.device_pixel_scale).cast_unit();
let dest_int_rect = (device_int_rect * dest_info.device_pixel_scale).cast_unit();
// If there is a valid intersection, work out the correct origins and
// sizes of the copy rects, and do the blit.
let src_origin = src_task_rect.min.to_f32() +
src_int_rect.min.to_vector() -
src_info.content_origin.to_vector();
let src = DeviceIntRect::from_origin_and_size(
src_origin.to_i32(),
src_int_rect.size().round().to_i32(),
);
let dest_origin = dest_task_rect.min.to_f32() +
dest_int_rect.min.to_vector() -
dest_info.content_origin.to_vector();
let dest = DeviceIntRect::from_origin_and_size(
dest_origin.to_i32(),
dest_int_rect.size().round().to_i32(),
);
let texture_source = TextureSource::TextureCache(
src_task.get_target_texture(),
Swizzle::default(),
);
let (cache_texture, _) = self.texture_resolver
.resolve(&texture_source).expect("bug: no source texture");
let read_target = ReadTarget::from_texture(cache_texture);
// Should always be drawing to picture cache tiles or off-screen surface!
debug_assert!(!draw_target.is_default());
let device_to_framebuffer = Scale::new(1i32);
self.device.blit_render_target(
read_target,
src * device_to_framebuffer,
draw_target,
dest * device_to_framebuffer,
TextureFilter::Linear,
);
}
}
}
fn draw_picture_cache_target(
&mut self,
target: &PictureCacheTarget,
draw_target: DrawTarget,
projection: &default::Transform3D<f32>,
render_tasks: &RenderTaskGraph,
stats: &mut RendererStats,
) {
profile_scope!("draw_picture_cache_target");
self.profile.inc(profiler::RENDERED_PICTURE_TILES);
let _gm = self.gpu_profiler.start_marker("picture cache target");
let framebuffer_kind = FramebufferKind::Other;
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET);
self.device.bind_draw_target(draw_target);
if self.device.get_capabilities().supports_qcom_tiled_rendering {
self.device.gl().start_tiling_qcom(
target.dirty_rect.min.x.max(0) as _,
target.dirty_rect.min.y.max(0) as _,
target.dirty_rect.width() as _,
target.dirty_rect.height() as _,
0,
);
}
self.device.enable_depth_write();
self.set_blend(false, framebuffer_kind);
let clear_color = target.clear_color.map(|c| c.to_array());
let scissor_rect = if self.device.get_capabilities().supports_render_target_partial_update
&& (target.dirty_rect != target.valid_rect
|| self.device.get_capabilities().prefers_clear_scissor)
{
Some(target.dirty_rect)
} else {
None
};
match scissor_rect {
// If updating only a dirty rect within a picture cache target, the
// clear must also be scissored to that dirty region.
Some(r) if self.clear_caches_with_quads => {
self.device.enable_depth(DepthFunction::Always);
// Save the draw call count so that our reftests don't get confused...
let old_draw_call_count = stats.total_draw_calls;
if clear_color.is_none() {
self.device.disable_color_write();
}
let instance = ClearInstance {
rect: [
r.min.x as f32, r.min.y as f32,
r.max.x as f32, r.max.y as f32,
],
color: clear_color.unwrap_or([0.0; 4]),
};
self.shaders.borrow_mut().ps_clear.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&[instance],
VertexArrayKind::Clear,
&BatchTextures::empty(),
stats,
);
if clear_color.is_none() {
self.device.enable_color_write();
}
stats.total_draw_calls = old_draw_call_count;
self.device.disable_depth();
}
other => {
let scissor_rect = other.map(|rect| {
draw_target.build_scissor_rect(Some(rect))
});
self.device.clear_target(clear_color, Some(1.0), scissor_rect);
}
};
self.device.disable_depth_write();
}
match target.kind {
PictureCacheTargetKind::Draw { ref alpha_batch_container } => {
self.draw_alpha_batch_container(
alpha_batch_container,
draw_target,
framebuffer_kind,
projection,
render_tasks,
stats,
);
}
PictureCacheTargetKind::Blit { task_id, sub_rect_offset } => {
let src_task = &render_tasks[task_id];
let (texture, _swizzle) = self.texture_resolver
.resolve(&src_task.get_texture_source())
.expect("BUG: invalid source texture");
let src_task_rect = src_task.get_target_rect();
let p0 = src_task_rect.min + sub_rect_offset;
let p1 = p0 + target.dirty_rect.size();
let src_rect = DeviceIntRect::new(p0, p1);
// TODO(gw): In future, it'd be tidier to have the draw target offset
// for DC surfaces handled by `blit_render_target`. However,
// for now they are only ever written to here.
let target_rect = target
.dirty_rect
.translate(draw_target.offset().to_vector())
.cast_unit();
self.device.blit_render_target(
ReadTarget::from_texture(texture),
src_rect.cast_unit(),
draw_target,
target_rect,
TextureFilter::Nearest,
);
}
}
self.device.invalidate_depth_target();
if self.device.get_capabilities().supports_qcom_tiled_rendering {
self.device.gl().end_tiling_qcom(gl::COLOR_BUFFER_BIT0_QCOM);
}
}
/// Draw an alpha batch container into a given draw target. This is used
/// by both color and picture cache target kinds.
fn draw_alpha_batch_container(
&mut self,
alpha_batch_container: &AlphaBatchContainer,
draw_target: DrawTarget,
framebuffer_kind: FramebufferKind,
projection: &default::Transform3D<f32>,
render_tasks: &RenderTaskGraph,
stats: &mut RendererStats,
) {
let uses_scissor = alpha_batch_container.task_scissor_rect.is_some();
if uses_scissor {
self.device.enable_scissor();
let scissor_rect = draw_target.build_scissor_rect(
alpha_batch_container.task_scissor_rect,
);
self.device.set_scissor_rect(scissor_rect)
}
if !alpha_batch_container.opaque_batches.is_empty()
&& !self.debug_flags.contains(DebugFlags::DISABLE_OPAQUE_PASS) {
let _gl = self.gpu_profiler.start_marker("opaque batches");
let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE);
self.set_blend(false, framebuffer_kind);
//Note: depth equality is needed for split planes
self.device.enable_depth(DepthFunction::LessEqual);
self.device.enable_depth_write();
// Draw opaque batches front-to-back for maximum
// z-buffer efficiency!
for batch in alpha_batch_container
.opaque_batches
.iter()
.rev()
{
if should_skip_batch(&batch.key.kind, self.debug_flags) {
continue;
}
self.shaders.borrow_mut()
.get(&batch.key, batch.features, self.debug_flags, &self.device)
.bind(
&mut self.device, projection, None,
&mut self.renderer_errors,
&mut self.profile,
);
let _timer = self.gpu_profiler.start_timer(batch.key.kind.sampler_tag());
self.draw_instanced_batch(
&batch.instances,
VertexArrayKind::Primitive,
&batch.key.textures,
stats
);
}
self.device.disable_depth_write();
self.gpu_profiler.finish_sampler(opaque_sampler);
} else {
self.device.disable_depth();
}
if !alpha_batch_container.alpha_batches.is_empty()
&& !self.debug_flags.contains(DebugFlags::DISABLE_ALPHA_PASS) {
let _gl = self.gpu_profiler.start_marker("alpha batches");
let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT);
self.set_blend(true, framebuffer_kind);
let mut prev_blend_mode = BlendMode::None;
let shaders_rc = self.shaders.clone();
for batch in &alpha_batch_container.alpha_batches {
if should_skip_batch(&batch.key.kind, self.debug_flags) {
continue;
}
let mut shaders = shaders_rc.borrow_mut();
let shader = shaders.get(
&batch.key,
batch.features | BatchFeatures::ALPHA_PASS,
self.debug_flags,
&self.device,
);
if batch.key.blend_mode != prev_blend_mode {
match batch.key.blend_mode {
_ if self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) &&
framebuffer_kind == FramebufferKind::Main => {
self.device.set_blend_mode_show_overdraw();
}
BlendMode::None => {
unreachable!("bug: opaque blend in alpha pass");
}
BlendMode::Alpha => {
self.device.set_blend_mode_alpha();
}
BlendMode::PremultipliedAlpha => {
self.device.set_blend_mode_premultiplied_alpha();
}
BlendMode::PremultipliedDestOut => {
self.device.set_blend_mode_premultiplied_dest_out();
}
BlendMode::SubpixelDualSource => {
self.device.set_blend_mode_subpixel_dual_source();
}
BlendMode::Advanced(mode) => {
if self.enable_advanced_blend_barriers {
self.device.gl().blend_barrier_khr();
}
self.device.set_blend_mode_advanced(mode);
}
BlendMode::MultiplyDualSource => {
self.device.set_blend_mode_multiply_dual_source();
}
BlendMode::Screen => {
self.device.set_blend_mode_screen();
}
BlendMode::Exclusion => {
self.device.set_blend_mode_exclusion();
}
BlendMode::PlusLighter => {
self.device.set_blend_mode_plus_lighter();
}
}
prev_blend_mode = batch.key.blend_mode;
}
// Handle special case readback for composites.
if let BatchKind::Brush(BrushBatchKind::MixBlend { task_id, backdrop_id }) = batch.key.kind {
// composites can't be grouped together because
// they may overlap and affect each other.
debug_assert_eq!(batch.instances.len(), 1);
self.handle_readback_composite(
draw_target,
uses_scissor,
&render_tasks[task_id],
&render_tasks[backdrop_id],
);
}
let _timer = self.gpu_profiler.start_timer(batch.key.kind.sampler_tag());
shader.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&batch.instances,
VertexArrayKind::Primitive,
&batch.key.textures,
stats
);
}
self.set_blend(false, framebuffer_kind);
self.gpu_profiler.finish_sampler(transparent_sampler);
}
self.device.disable_depth();
if uses_scissor {
self.device.disable_scissor();
}
}
/// Rasterize any external compositor surfaces that require updating
fn update_external_native_surfaces(
&mut self,
external_surfaces: &[ResolvedExternalSurface],
results: &mut RenderResults,
) {
if external_surfaces.is_empty() {
return;
}
let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE);
self.device.disable_depth();
self.set_blend(false, FramebufferKind::Main);
for surface in external_surfaces {
// See if this surface needs to be updated
let (native_surface_id, surface_size) = match surface.update_params {
Some(params) => params,
None => continue,
};
// When updating an external surface, the entire surface rect is used
// for all of the draw, dirty, valid and clip rect parameters.
let surface_rect = surface_size.into();
// Bind the native compositor surface to update
let surface_info = self.compositor_config
.compositor()
.unwrap()
.bind(
&mut self.device,
NativeTileId {
surface_id: native_surface_id,
x: 0,
y: 0,
},
surface_rect,
surface_rect,
);
// Bind the native surface to current FBO target
let draw_target = DrawTarget::NativeSurface {
offset: surface_info.origin,
external_fbo_id: surface_info.fbo_id,
dimensions: surface_size,
};
self.device.bind_draw_target(draw_target);
let projection = Transform3D::ortho(
0.0,
surface_size.width as f32,
0.0,
surface_size.height as f32,
self.device.ortho_near_plane(),
self.device.ortho_far_plane(),
);
let ( textures, instance ) = match surface.color_data {
ResolvedExternalSurfaceColorData::Yuv{
ref planes, color_space, format, channel_bit_depth, .. } => {
// Bind an appropriate YUV shader for the texture format kind
self.shaders
.borrow_mut()
.get_composite_shader(
CompositeSurfaceFormat::Yuv,
surface.image_buffer_kind,
CompositeFeatures::empty(),
).bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
let textures = BatchTextures::composite_yuv(
planes[0].texture,
planes[1].texture,
planes[2].texture,
);
// When the texture is an external texture, the UV rect is not known when
// the external surface descriptor is created, because external textures
// are not resolved until the lock() callback is invoked at the start of
// the frame render. To handle this, query the texture resolver for the
// UV rect if it's an external texture, otherwise use the default UV rect.
let uv_rects = [
self.texture_resolver.get_uv_rect(&textures.input.colors[0], planes[0].uv_rect),
self.texture_resolver.get_uv_rect(&textures.input.colors[1], planes[1].uv_rect),
self.texture_resolver.get_uv_rect(&textures.input.colors[2], planes[2].uv_rect),
];
let instance = CompositeInstance::new_yuv(
surface_rect.cast_unit().to_f32(),
surface_rect.to_f32(),
// z-id is not relevant when updating a native compositor surface.
// TODO(gw): Support compositor surfaces without z-buffer, for memory / perf win here.
color_space,
format,
channel_bit_depth,
uv_rects,
CompositorTransform::identity(),
);
( textures, instance )
},
ResolvedExternalSurfaceColorData::Rgb{ ref plane, .. } => {
self.shaders
.borrow_mut()
.get_composite_shader(
CompositeSurfaceFormat::Rgba,
surface.image_buffer_kind,
CompositeFeatures::empty(),
).bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
let textures = BatchTextures::composite_rgb(plane.texture);
let uv_rect = self.texture_resolver.get_uv_rect(&textures.input.colors[0], plane.uv_rect);
let instance = CompositeInstance::new_rgb(
surface_rect.cast_unit().to_f32(),
surface_rect.to_f32(),
PremultipliedColorF::WHITE,
uv_rect,
CompositorTransform::identity(),
);
( textures, instance )
},
};
self.draw_instanced_batch(
&[instance],
VertexArrayKind::Composite,
&textures,
&mut results.stats,
);
self.compositor_config
.compositor()
.unwrap()
.unbind(&mut self.device);
}
self.gpu_profiler.finish_sampler(opaque_sampler);
}
/// Draw a list of tiles to the framebuffer
fn draw_tile_list<'a, I: Iterator<Item = &'a occlusion::Item>>(
&mut self,
tiles_iter: I,
composite_state: &CompositeState,
external_surfaces: &[ResolvedExternalSurface],
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
let mut current_shader_params = (
CompositeSurfaceFormat::Rgba,
ImageBufferKind::Texture2D,
CompositeFeatures::empty(),
None,
);
let mut current_textures = BatchTextures::empty();
let mut instances = Vec::new();
self.shaders
.borrow_mut()
.get_composite_shader(
current_shader_params.0,
current_shader_params.1,
current_shader_params.2,
).bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
for item in tiles_iter {
let tile = &composite_state.tiles[item.key];
let clip_rect = item.rectangle;
let tile_rect = tile.local_rect;
let transform = composite_state.get_device_transform(tile.transform_index).into();
// Work out the draw params based on the tile surface
let (instance, textures, shader_params) = match tile.surface {
CompositeTileSurface::Color { color } => {
let dummy = TextureSource::Dummy;
let image_buffer_kind = dummy.image_buffer_kind();
let instance = CompositeInstance::new(
tile_rect,
clip_rect,
color.premultiplied(),
transform,
);
let features = instance.get_rgb_features();
(
instance,
BatchTextures::composite_rgb(dummy),
(CompositeSurfaceFormat::Rgba, image_buffer_kind, features, None),
)
}
CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::TextureCache { texture } } => {
let instance = CompositeInstance::new(
tile_rect,
clip_rect,
PremultipliedColorF::WHITE,
transform,
);
let features = instance.get_rgb_features();
(
instance,
BatchTextures::composite_rgb(texture),
(
CompositeSurfaceFormat::Rgba,
ImageBufferKind::Texture2D,
features,
None,
),
)
}
CompositeTileSurface::ExternalSurface { external_surface_index } => {
let surface = &external_surfaces[external_surface_index.0];
match surface.color_data {
ResolvedExternalSurfaceColorData::Yuv{ ref planes, color_space, format, channel_bit_depth, .. } => {
let textures = BatchTextures::composite_yuv(
planes[0].texture,
planes[1].texture,
planes[2].texture,
);
// When the texture is an external texture, the UV rect is not known when
// the external surface descriptor is created, because external textures
// are not resolved until the lock() callback is invoked at the start of
// the frame render. To handle this, query the texture resolver for the
// UV rect if it's an external texture, otherwise use the default UV rect.
let uv_rects = [
self.texture_resolver.get_uv_rect(&textures.input.colors[0], planes[0].uv_rect),
self.texture_resolver.get_uv_rect(&textures.input.colors[1], planes[1].uv_rect),
self.texture_resolver.get_uv_rect(&textures.input.colors[2], planes[2].uv_rect),
];
(
CompositeInstance::new_yuv(
tile_rect,
clip_rect,
color_space,
format,
channel_bit_depth,
uv_rects,
transform,
),
textures,
(
CompositeSurfaceFormat::Yuv,
surface.image_buffer_kind,
CompositeFeatures::empty(),
None
),
)
},
ResolvedExternalSurfaceColorData::Rgb { ref plane, .. } => {
let uv_rect = self.texture_resolver.get_uv_rect(&plane.texture, plane.uv_rect);
let instance = CompositeInstance::new_rgb(
tile_rect,
clip_rect,
PremultipliedColorF::WHITE,
uv_rect,
transform,
);
let features = instance.get_rgb_features();
(
instance,
BatchTextures::composite_rgb(plane.texture),
(
CompositeSurfaceFormat::Rgba,
surface.image_buffer_kind,
features,
Some(self.texture_resolver.get_texture_size(&plane.texture).to_f32()),
),
)
},
}
}
CompositeTileSurface::Clear => {
let dummy = TextureSource::Dummy;
let image_buffer_kind = dummy.image_buffer_kind();
let instance = CompositeInstance::new(
tile_rect,
clip_rect,
PremultipliedColorF::BLACK,
transform,
);
let features = instance.get_rgb_features();
(
instance,
BatchTextures::composite_rgb(dummy),
(CompositeSurfaceFormat::Rgba, image_buffer_kind, features, None),
)
}
CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::Native { .. } } => {
unreachable!("bug: found native surface in simple composite path");
}
};
// Flush batch if shader params or textures changed
let flush_batch = !current_textures.is_compatible_with(&textures) ||
shader_params != current_shader_params;
if flush_batch {
if !instances.is_empty() {
self.draw_instanced_batch(
&instances,
VertexArrayKind::Composite,
&current_textures,
stats,
);
instances.clear();
}
}
if shader_params != current_shader_params {
self.shaders
.borrow_mut()
.get_composite_shader(shader_params.0, shader_params.1, shader_params.2)
.bind(
&mut self.device,
projection,
shader_params.3,
&mut self.renderer_errors,
&mut self.profile,
);
current_shader_params = shader_params;
}
current_textures = textures;
// Add instance to current batch
instances.push(instance);
}
// Flush the last batch
if !instances.is_empty() {
self.draw_instanced_batch(
&instances,
VertexArrayKind::Composite,
&current_textures,
stats,
);
}
}
/// Composite picture cache tiles into the framebuffer. This is currently
/// the only way that picture cache tiles get drawn. In future, the tiles
/// will often be handed to the OS compositor, and this method will be
/// rarely used.
fn composite_simple(
&mut self,
composite_state: &CompositeState,
draw_target: DrawTarget,
projection: &default::Transform3D<f32>,
results: &mut RenderResults,
partial_present_mode: Option<PartialPresentMode>,
) {
let _gm = self.gpu_profiler.start_marker("framebuffer");
let _timer = self.gpu_profiler.start_timer(GPU_TAG_COMPOSITE);
self.device.bind_draw_target(draw_target);
self.device.disable_depth_write();
self.device.disable_depth();
// If using KHR_partial_update, call eglSetDamageRegion.
// This must be called exactly once per frame, and prior to any rendering to the main
// framebuffer. Additionally, on Mali-G77 we encountered rendering issues when calling
// this earlier in the frame, during offscreen render passes. So call it now, immediately
// before rendering to the main framebuffer. See bug 1685276 for details.
if let Some(partial_present) = self.compositor_config.partial_present() {
if let Some(PartialPresentMode::Single { dirty_rect }) = partial_present_mode {
partial_present.set_buffer_damage_region(&[dirty_rect.to_i32()]);
}
}
let cap = composite_state.tiles.len();
let mut occlusion = occlusion::FrontToBackBuilder::with_capacity(cap, cap);
let mut clear_tiles = Vec::new();
for (idx, tile) in composite_state.tiles.iter().enumerate() {
// Clear tiles overwrite whatever is under them, so they are treated as opaque.
let is_opaque = tile.kind != TileKind::Alpha;
let device_tile_box = composite_state.get_device_rect(
&tile.local_rect,
tile.transform_index
);
// Determine a clip rect to apply to this tile, depending on what
// the partial present mode is.
let partial_clip_rect = match partial_present_mode {
Some(PartialPresentMode::Single { dirty_rect }) => dirty_rect,
None => device_tile_box,
};
// Simple compositor needs the valid rect in device space to match clip rect
let device_valid_rect = composite_state
.get_device_rect(&tile.local_valid_rect, tile.transform_index);
let rect = device_tile_box
.intersection_unchecked(&tile.device_clip_rect)
.intersection_unchecked(&partial_clip_rect)
.intersection_unchecked(&device_valid_rect);
if rect.is_empty() {
continue;
}
if tile.kind == TileKind::Clear {
// Clear tiles are specific to how we render the window buttons on
// Windows 8. They clobber what's under them so they can be treated as opaque,
// but require a different blend state so they will be rendered after the opaque
// tiles and before transparent ones.
clear_tiles.push(occlusion::Item { rectangle: rect, key: idx });
continue;
}
occlusion.add(&rect, is_opaque, idx);
}
// Clear the framebuffer
let clear_color = Some(self.clear_color.to_array());
match partial_present_mode {
Some(PartialPresentMode::Single { dirty_rect }) => {
// There is no need to clear if the dirty rect is occluded. Additionally,
// on Mali-G77 we have observed artefacts when calling glClear (even with
// the empty scissor rect set) after calling eglSetDamageRegion with an
// empty damage region. So avoid clearing in that case. See bug 1709548.
if !dirty_rect.is_empty() && occlusion.test(&dirty_rect) {
// We have a single dirty rect, so clear only that
self.device.clear_target(clear_color,
None,
Some(draw_target.to_framebuffer_rect(dirty_rect.to_i32())));
}
}
None => {
// Partial present is disabled, so clear the entire framebuffer
self.device.clear_target(clear_color,
None,
None);
}
}
// We are only interested in tiles backed with actual cached pixels so we don't
// count clear tiles here.
let num_tiles = composite_state.tiles
.iter()
.filter(|tile| tile.kind != TileKind::Clear).count();
self.profile.set(profiler::PICTURE_TILES, num_tiles);
if !occlusion.opaque_items().is_empty() {
let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE);
self.set_blend(false, FramebufferKind::Main);
self.draw_tile_list(
occlusion.opaque_items().iter(),
&composite_state,
&composite_state.external_surfaces,
projection,
&mut results.stats,
);
self.gpu_profiler.finish_sampler(opaque_sampler);
}
if !clear_tiles.is_empty() {
let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT);
self.set_blend(true, FramebufferKind::Main);
self.device.set_blend_mode_premultiplied_dest_out();
self.draw_tile_list(
clear_tiles.iter(),
&composite_state,
&composite_state.external_surfaces,
projection,
&mut results.stats,
);
self.gpu_profiler.finish_sampler(transparent_sampler);
}
// Draw alpha tiles
if !occlusion.alpha_items().is_empty() {
let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT);
self.set_blend(true, FramebufferKind::Main);
self.set_blend_mode_premultiplied_alpha(FramebufferKind::Main);
self.draw_tile_list(
occlusion.alpha_items().iter().rev(),
&composite_state,
&composite_state.external_surfaces,
projection,
&mut results.stats,
);
self.gpu_profiler.finish_sampler(transparent_sampler);
}
}
fn draw_color_target(
&mut self,
draw_target: DrawTarget,
target: &ColorRenderTarget,
clear_depth: Option<f32>,
render_tasks: &RenderTaskGraph,
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
profile_scope!("draw_color_target");
self.profile.inc(profiler::COLOR_PASSES);
let _gm = self.gpu_profiler.start_marker("color target");
// sanity check for the depth buffer
if let DrawTarget::Texture { with_depth, .. } = draw_target {
assert!(with_depth >= target.needs_depth());
}
let framebuffer_kind = if draw_target.is_default() {
FramebufferKind::Main
} else {
FramebufferKind::Other
};
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET);
self.device.bind_draw_target(draw_target);
if self.device.get_capabilities().supports_qcom_tiled_rendering {
let preserve_mask = match target.clear_color {
Some(_) => 0,
None => gl::COLOR_BUFFER_BIT0_QCOM,
};
self.device.gl().start_tiling_qcom(
target.used_rect.min.x.max(0) as _,
target.used_rect.min.y.max(0) as _,
target.used_rect.width() as _,
target.used_rect.height() as _,
preserve_mask,
);
}
self.device.disable_depth();
self.set_blend(false, framebuffer_kind);
if clear_depth.is_some() {
self.device.enable_depth_write();
}
let clear_color = target
.clear_color
.map(|color| color.to_array());
let clear_rect = match draw_target {
DrawTarget::NativeSurface { .. } => {
unreachable!("bug: native compositor surface in child target");
}
DrawTarget::Default { rect, total_size, .. } if rect.min == FramebufferIntPoint::zero() && rect.size() == total_size => {
// whole screen is covered, no need for scissor
None
}
DrawTarget::Default { rect, .. } => {
Some(rect)
}
DrawTarget::Texture { .. } if self.enable_clear_scissor => {
// TODO(gw): Applying a scissor rect and minimal clear here
// is a very large performance win on the Intel and nVidia
// GPUs that I have tested with. It's possible it may be a
// performance penalty on other GPU types - we should test this
// and consider different code paths.
//
// Note: The above measurements were taken when render
// target slices were minimum 2048x2048. Now that we size
// them adaptively, this may be less of a win (except perhaps
// on a mostly-unused last slice of a large texture array).
Some(draw_target.to_framebuffer_rect(target.used_rect))
}
DrawTarget::Texture { .. } | DrawTarget::External { .. } => {
None
}
};
self.device.clear_target(
clear_color,
clear_depth,
clear_rect,
);
if clear_depth.is_some() {
self.device.disable_depth_write();
}
}
// Handle any resolves from parent pictures to this target
self.handle_resolves(
&target.resolve_ops,
render_tasks,
draw_target,
);
// Handle any blits from the texture cache to this target.
self.handle_blits(
&target.blits,
render_tasks,
draw_target,
);
// Draw any blurs for this target.
// Blurs are rendered as a standard 2-pass
// separable implementation.
// TODO(gw): In the future, consider having
// fast path blur shaders for common
// blur radii with fixed weights.
if !target.vertical_blurs.is_empty() || !target.horizontal_blurs.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR);
self.set_blend(false, framebuffer_kind);
self.shaders.borrow_mut().cs_blur_rgba8
.bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile);
if !target.vertical_blurs.is_empty() {
self.draw_blurs(
&target.vertical_blurs,
stats,
);
}
if !target.horizontal_blurs.is_empty() {
self.draw_blurs(
&target.horizontal_blurs,
stats,
);
}
}
self.handle_scaling(
&target.scalings,
projection,
stats,
);
for (ref textures, ref filters) in &target.svg_filters {
self.handle_svg_filters(
textures,
filters,
projection,
stats,
);
}
for (ref textures, ref filters) in &target.svg_nodes {
self.handle_svg_nodes(textures, filters, projection, stats);
}
for alpha_batch_container in &target.alpha_batch_containers {
self.draw_alpha_batch_container(
alpha_batch_container,
draw_target,
framebuffer_kind,
projection,
render_tasks,
stats,
);
}
self.handle_prims(
&draw_target,
&target.prim_instances,
&target.prim_instances_with_scissor,
projection,
stats,
);
self.handle_clips(
&draw_target,
&target.clip_masks,
projection,
stats,
);
if clear_depth.is_some() {
self.device.invalidate_depth_target();
}
if self.device.get_capabilities().supports_qcom_tiled_rendering {
self.device.gl().end_tiling_qcom(gl::COLOR_BUFFER_BIT0_QCOM);
}
}
fn draw_blurs(
&mut self,
blurs: &FastHashMap<TextureSource, Vec<BlurInstance>>,
stats: &mut RendererStats,
) {
for (texture, blurs) in blurs {
let textures = BatchTextures::composite_rgb(
*texture,
);
self.draw_instanced_batch(
blurs,
VertexArrayKind::Blur,
&textures,
stats,
);
}
}
/// Draw all the instances in a clip batcher list to the current target.
fn draw_clip_batch_list(
&mut self,
list: &ClipBatchList,
projection: &default::Transform3D<f32>,
stats: &mut RendererStats,
) {
if self.debug_flags.contains(DebugFlags::DISABLE_CLIP_MASKS) {
return;
}
// draw rounded cornered rectangles
if !list.slow_rectangles.is_empty() {
let _gm2 = self.gpu_profiler.start_marker("slow clip rectangles");
self.shaders.borrow_mut().cs_clip_rectangle_slow.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&list.slow_rectangles,
VertexArrayKind::ClipRect,
&BatchTextures::empty(),
stats,
);
}
if !list.fast_rectangles.is_empty() {
let _gm2 = self.gpu_profiler.start_marker("fast clip rectangles");
self.shaders.borrow_mut().cs_clip_rectangle_fast.bind(
&mut self.device,
projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&list.fast_rectangles,
VertexArrayKind::ClipRect,
&BatchTextures::empty(),
stats,
);
}
// draw box-shadow clips
for (mask_texture_id, items) in list.box_shadows.iter() {
let _gm2 = self.gpu_profiler.start_marker("box-shadows");
let textures = BatchTextures::composite_rgb(*mask_texture_id);
self.shaders.borrow_mut().cs_clip_box_shadow
.bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile);
self.draw_instanced_batch(
items,
VertexArrayKind::ClipBoxShadow,
&textures,
stats,
);
}
}
fn draw_alpha_target(
&mut self,
draw_target: DrawTarget,
target: &AlphaRenderTarget,
projection: &default::Transform3D<f32>,
render_tasks: &RenderTaskGraph,
stats: &mut RendererStats,
) {
profile_scope!("draw_alpha_target");
self.profile.inc(profiler::ALPHA_PASSES);
let _gm = self.gpu_profiler.start_marker("alpha target");
let alpha_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_ALPHA);
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET);
self.device.bind_draw_target(draw_target);
self.device.disable_depth();
self.device.disable_depth_write();
self.set_blend(false, FramebufferKind::Other);
let zero_color = [0.0, 0.0, 0.0, 0.0];
let one_color = [1.0, 1.0, 1.0, 1.0];
// On some Adreno 4xx devices we have seen render tasks to alpha targets have no
// effect unless the target is fully cleared prior to rendering. See bug 1714227.
if self.device.get_capabilities().requires_alpha_target_full_clear {
self.device.clear_target(
Some(zero_color),
None,
None,
);
}
// On some Mali-T devices we have observed crashes in subsequent draw calls
// immediately after clearing the alpha render target regions with glClear().
// Using the shader to clear the regions avoids the crash. See bug 1638593.
if self.clear_alpha_targets_with_quads
&& !(target.zero_clears.is_empty() && target.one_clears.is_empty())
{
let zeroes = target.zero_clears
.iter()
.map(|task_id| {
let rect = render_tasks[*task_id].get_target_rect().to_f32();
ClearInstance {
rect: [
rect.min.x, rect.min.y,
rect.max.x, rect.max.y,
],
color: zero_color,
}
});
let ones = target.one_clears
.iter()
.map(|task_id| {
let rect = render_tasks[*task_id].get_target_rect().to_f32();
ClearInstance {
rect: [
rect.min.x, rect.min.y,
rect.max.x, rect.max.y,
],
color: one_color,
}
});
let instances = zeroes.chain(ones).collect::<Vec<_>>();
self.shaders.borrow_mut().ps_clear.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&instances,
VertexArrayKind::Clear,
&BatchTextures::empty(),
stats,
);
} else {
// TODO(gw): Applying a scissor rect and minimal clear here
// is a very large performance win on the Intel and nVidia
// GPUs that I have tested with. It's possible it may be a
// performance penalty on other GPU types - we should test this
// and consider different code paths.
for &task_id in &target.zero_clears {
let rect = render_tasks[task_id].get_target_rect();
self.device.clear_target(
Some(zero_color),
None,
Some(draw_target.to_framebuffer_rect(rect)),
);
}
for &task_id in &target.one_clears {
let rect = render_tasks[task_id].get_target_rect();
self.device.clear_target(
Some(one_color),
None,
Some(draw_target.to_framebuffer_rect(rect)),
);
}
}
}
// Draw any blurs for this target.
// Blurs are rendered as a standard 2-pass
// separable implementation.
// TODO(gw): In the future, consider having
// fast path blur shaders for common
// blur radii with fixed weights.
if !target.vertical_blurs.is_empty() || !target.horizontal_blurs.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR);
self.shaders.borrow_mut().cs_blur_a8
.bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile);
if !target.vertical_blurs.is_empty() {
self.draw_blurs(
&target.vertical_blurs,
stats,
);
}
if !target.horizontal_blurs.is_empty() {
self.draw_blurs(
&target.horizontal_blurs,
stats,
);
}
}
self.handle_scaling(
&target.scalings,
projection,
stats,
);
// Draw the clip items into the tiled alpha mask.
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_CLIP);
// TODO(gw): Consider grouping multiple clip masks per shader
// invocation here to reduce memory bandwith further?
// Draw the primary clip mask - since this is the first mask
// for the task, we can disable blending, knowing that it will
// overwrite every pixel in the mask area.
self.set_blend(false, FramebufferKind::Other);
self.draw_clip_batch_list(
&target.clip_batcher.primary_clips,
projection,
stats,
);
// switch to multiplicative blending for secondary masks, using
// multiplicative blending to accumulate clips into the mask.
self.set_blend(true, FramebufferKind::Other);
self.set_blend_mode_multiply(FramebufferKind::Other);
self.draw_clip_batch_list(
&target.clip_batcher.secondary_clips,
projection,
stats,
);
self.handle_clips(
&draw_target,
&target.clip_masks,
projection,
stats,
);
}
self.gpu_profiler.finish_sampler(alpha_sampler);
}
fn draw_texture_cache_target(
&mut self,
texture: &CacheTextureId,
target: &TextureCacheRenderTarget,
render_tasks: &RenderTaskGraph,
stats: &mut RendererStats,
) {
profile_scope!("draw_texture_cache_target");
self.device.disable_depth();
self.device.disable_depth_write();
self.set_blend(false, FramebufferKind::Other);
let texture = &self.texture_resolver.texture_cache_map[texture].texture;
let target_size = texture.get_dimensions();
let projection = Transform3D::ortho(
0.0,
target_size.width as f32,
0.0,
target_size.height as f32,
self.device.ortho_near_plane(),
self.device.ortho_far_plane(),
);
let draw_target = DrawTarget::from_texture(
texture,
false,
);
self.device.bind_draw_target(draw_target);
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CLEAR);
self.device.disable_depth();
self.device.disable_depth_write();
self.set_blend(false, FramebufferKind::Other);
let color = [0.0, 0.0, 0.0, 0.0];
if self.clear_caches_with_quads && !target.clears.is_empty() {
let instances = target.clears
.iter()
.map(|r| ClearInstance {
rect: [
r.min.x as f32, r.min.y as f32,
r.max.x as f32, r.max.y as f32,
],
color,
})
.collect::<Vec<_>>();
self.shaders.borrow_mut().ps_clear.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&instances,
VertexArrayKind::Clear,
&BatchTextures::empty(),
stats,
);
} else {
for rect in &target.clears {
self.device.clear_target(
Some(color),
None,
Some(draw_target.to_framebuffer_rect(*rect)),
);
}
}
// Handle any blits to this texture from child tasks.
self.handle_blits(
&target.blits,
render_tasks,
draw_target,
);
}
// Draw any borders for this target.
if !target.border_segments_solid.is_empty() ||
!target.border_segments_complex.is_empty()
{
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_BORDER);
self.set_blend(true, FramebufferKind::Other);
self.set_blend_mode_premultiplied_alpha(FramebufferKind::Other);
if !target.border_segments_solid.is_empty() {
self.shaders.borrow_mut().cs_border_solid.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&target.border_segments_solid,
VertexArrayKind::Border,
&BatchTextures::empty(),
stats,
);
}
if !target.border_segments_complex.is_empty() {
self.shaders.borrow_mut().cs_border_segment.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&target.border_segments_complex,
VertexArrayKind::Border,
&BatchTextures::empty(),
stats,
);
}
self.set_blend(false, FramebufferKind::Other);
}
// Draw any line decorations for this target.
if !target.line_decorations.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_LINE_DECORATION);
self.set_blend(true, FramebufferKind::Other);
self.set_blend_mode_premultiplied_alpha(FramebufferKind::Other);
self.shaders.borrow_mut().cs_line_decoration.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&target.line_decorations,
VertexArrayKind::LineDecoration,
&BatchTextures::empty(),
stats,
);
self.set_blend(false, FramebufferKind::Other);
}
// Draw any fast path linear gradients for this target.
if !target.fast_linear_gradients.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_FAST_LINEAR_GRADIENT);
self.set_blend(false, FramebufferKind::Other);
self.shaders.borrow_mut().cs_fast_linear_gradient.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
self.draw_instanced_batch(
&target.fast_linear_gradients,
VertexArrayKind::FastLinearGradient,
&BatchTextures::empty(),
stats,
);
}
// Draw any linear gradients for this target.
if !target.linear_gradients.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_LINEAR_GRADIENT);
self.set_blend(false, FramebufferKind::Other);
self.shaders.borrow_mut().cs_linear_gradient.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
if let Some(ref texture) = self.dither_matrix_texture {
self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default());
}
self.draw_instanced_batch(
&target.linear_gradients,
VertexArrayKind::LinearGradient,
&BatchTextures::empty(),
stats,
);
}
// Draw any radial gradients for this target.
if !target.radial_gradients.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_RADIAL_GRADIENT);
self.set_blend(false, FramebufferKind::Other);
self.shaders.borrow_mut().cs_radial_gradient.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
if let Some(ref texture) = self.dither_matrix_texture {
self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default());
}
self.draw_instanced_batch(
&target.radial_gradients,
VertexArrayKind::RadialGradient,
&BatchTextures::empty(),
stats,
);
}
// Draw any conic gradients for this target.
if !target.conic_gradients.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_CONIC_GRADIENT);
self.set_blend(false, FramebufferKind::Other);
self.shaders.borrow_mut().cs_conic_gradient.bind(
&mut self.device,
&projection,
None,
&mut self.renderer_errors,
&mut self.profile,
);
if let Some(ref texture) = self.dither_matrix_texture {
self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default());
}
self.draw_instanced_batch(
&target.conic_gradients,
VertexArrayKind::ConicGradient,
&BatchTextures::empty(),
stats,
);
}
// Draw any blurs for this target.
if !target.horizontal_blurs.is_empty() {
let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR);
{
let mut shaders = self.shaders.borrow_mut();
match target.target_kind {
RenderTargetKind::Alpha => &mut shaders.cs_blur_a8,
RenderTargetKind::Color => &mut shaders.cs_blur_rgba8,
}.bind(&mut self.device, &projection, None, &mut self.renderer_errors, &mut self.profile);
}
self.draw_blurs(
&target.horizontal_blurs,
stats,
);
}
}
fn update_deferred_resolves(&mut self, deferred_resolves: &[DeferredResolve]) -> Option<GpuCacheUpdateList> {
// The first thing we do is run through any pending deferred
// resolves, and use a callback to get the UV rect for this
// custom item. Then we patch the resource_rects structure
// here before it's uploaded to the GPU.
if deferred_resolves.is_empty() {
return None;
}
let handler = self.external_image_handler
.as_mut()
.expect("Found external image, but no handler set!");
let mut list = GpuCacheUpdateList {
frame_id: FrameId::INVALID,
clear: false,
height: self.gpu_cache_texture.get_height(),
blocks: Vec::new(),
updates: Vec::new(),
debug_commands: Vec::new(),
};
for (i, deferred_resolve) in deferred_resolves.iter().enumerate() {
self.gpu_profiler.place_marker("deferred resolve");
let props = &deferred_resolve.image_properties;
let ext_image = props
.external_image
.expect("BUG: Deferred resolves must be external images!");
// Provide rendering information for NativeTexture external images.
let image = handler.lock(ext_image.id, ext_image.channel_index);
let texture_target = match ext_image.image_type {
ExternalImageType::TextureHandle(target) => target,
ExternalImageType::Buffer => {
panic!("not a suitable image type in update_deferred_resolves()");
}
};
// In order to produce the handle, the external image handler may call into
// the GL context and change some states.
self.device.reset_state();
let texture = match image.source {
ExternalImageSource::NativeTexture(texture_id) => {
ExternalTexture::new(
texture_id,
texture_target,
image.uv,
deferred_resolve.rendering,
)
}
ExternalImageSource::Invalid => {
warn!("Invalid ext-image");
debug!(
"For ext_id:{:?}, channel:{}.",
ext_image.id,
ext_image.channel_index
);
// Just use 0 as the gl handle for this failed case.
ExternalTexture::new(
0,
texture_target,
image.uv,
deferred_resolve.rendering,
)
}
ExternalImageSource::RawData(_) => {
panic!("Raw external data is not expected for deferred resolves!");
}
};
self.texture_resolver
.external_images
.insert(DeferredResolveIndex(i as u32), texture);
list.updates.push(GpuCacheUpdate::Copy {
block_index: list.blocks.len(),
block_count: BLOCKS_PER_UV_RECT,
address: deferred_resolve.address,
});
list.blocks.push(image.uv.into());
list.blocks.push([0f32; 4].into());
}
Some(list)
}
fn unlock_external_images(
&mut self,
deferred_resolves: &[DeferredResolve],
) {
if !self.texture_resolver.external_images.is_empty() {
let handler = self.external_image_handler
.as_mut()
.expect("Found external image, but no handler set!");
for (index, _) in self.texture_resolver.external_images.drain() {
let props = &deferred_resolves[index.0 as usize].image_properties;
let ext_image = props
.external_image
.expect("BUG: Deferred resolves must be external images!");
handler.unlock(ext_image.id, ext_image.channel_index);
}
}
}
/// Update the dirty rects based on current compositing mode and config
// TODO(gw): This can be tidied up significantly once the Draw compositor
// is implemented in terms of the compositor trait.
fn calculate_dirty_rects(
&mut self,
buffer_age: usize,
composite_state: &CompositeState,
draw_target_dimensions: DeviceIntSize,
results: &mut RenderResults,
) -> Option<PartialPresentMode> {
let mut partial_present_mode = None;
let (max_partial_present_rects, draw_previous_partial_present_regions) = match self.current_compositor_kind {
CompositorKind::Native { .. } => {
// Assume that we can return a single dirty rect for native
// compositor for now, and that there is no buffer-age functionality.
// These params can be exposed by the compositor capabilities struct
// as the Draw compositor is ported to use it.
(1, false)
}
CompositorKind::Draw { draw_previous_partial_present_regions, max_partial_present_rects } => {
(max_partial_present_rects, draw_previous_partial_present_regions)
}
};
if max_partial_present_rects > 0 {
let prev_frames_damage_rect = if let Some(..) = self.compositor_config.partial_present() {
self.buffer_damage_tracker
.get_damage_rect(buffer_age)
.or_else(|| Some(DeviceRect::from_size(draw_target_dimensions.to_f32())))
} else {
None
};
let can_use_partial_present =
composite_state.dirty_rects_are_valid &&
!self.force_redraw &&
!(prev_frames_damage_rect.is_none() && draw_previous_partial_present_regions) &&
!self.debug_overlay_state.is_enabled;
if can_use_partial_present {
let mut combined_dirty_rect = DeviceRect::zero();
let fb_rect = DeviceRect::from_size(draw_target_dimensions.to_f32());
// Work out how many dirty rects WR produced, and if that's more than
// what the device supports.
for tile in &composite_state.tiles {
if tile.kind == TileKind::Clear {
continue;
}
let dirty_rect = composite_state.get_device_rect(
&tile.local_dirty_rect,
tile.transform_index,
);
// In pathological cases where a tile is extremely zoomed, it
// may end up with device coords outside the range of an i32,
// so clamp it to the frame buffer rect here, before it gets
// casted to an i32 rect below.
if let Some(dirty_rect) = dirty_rect.intersection(&fb_rect) {
combined_dirty_rect = combined_dirty_rect.union(&dirty_rect);
}
}
let combined_dirty_rect = combined_dirty_rect.round();
let combined_dirty_rect_i32 = combined_dirty_rect.to_i32();
// Return this frame's dirty region. If nothing has changed, don't return any dirty
// rects at all (the client can use this as a signal to skip present completely).
if !combined_dirty_rect.is_empty() {
results.dirty_rects.push(combined_dirty_rect_i32);
}
// Track this frame's dirty region, for calculating subsequent frames' damage.
if draw_previous_partial_present_regions {
self.buffer_damage_tracker.push_dirty_rect(&combined_dirty_rect);
}
// If the implementation requires manually keeping the buffer consistent,
// then we must combine this frame's dirty region with that of previous frames
// to determine the total_dirty_rect. The is used to determine what region we
// render to, and is what we send to the compositor as the buffer damage region
// (eg for KHR_partial_update).
let total_dirty_rect = if draw_previous_partial_present_regions {
combined_dirty_rect.union(&prev_frames_damage_rect.unwrap())
} else {
combined_dirty_rect
};
partial_present_mode = Some(PartialPresentMode::Single {
dirty_rect: total_dirty_rect,
});
} else {
// If we don't have a valid partial present scenario, return a single
// dirty rect to the client that covers the entire framebuffer.
let fb_rect = DeviceIntRect::from_size(
draw_target_dimensions,
);
results.dirty_rects.push(fb_rect);
if draw_previous_partial_present_regions {
self.buffer_damage_tracker.push_dirty_rect(&fb_rect.to_f32());
}
}
self.force_redraw = false;
}
partial_present_mode
}
fn bind_frame_data(&mut self, frame: &mut Frame) {
profile_scope!("bind_frame_data");
let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_DATA);
self.vertex_data_textures[self.current_vertex_data_textures].update(
&mut self.device,
&mut self.texture_upload_pbo_pool,
frame,
);
self.current_vertex_data_textures =
(self.current_vertex_data_textures + 1) % VERTEX_DATA_TEXTURE_COUNT;
}
fn update_native_surfaces(&mut self) {
profile_scope!("update_native_surfaces");
match self.compositor_config {
CompositorConfig::Native { ref mut compositor, .. } => {
for op in self.pending_native_surface_updates.drain(..) {
match op.details {
NativeSurfaceOperationDetails::CreateSurface { id, virtual_offset, tile_size, is_opaque } => {
let _inserted = self.allocated_native_surfaces.insert(id);
debug_assert!(_inserted, "bug: creating existing surface");
compositor.create_surface(
&mut self.device,
id,
virtual_offset,
tile_size,
is_opaque,
);
}
NativeSurfaceOperationDetails::CreateExternalSurface { id, is_opaque } => {
let _inserted = self.allocated_native_surfaces.insert(id);
debug_assert!(_inserted, "bug: creating existing surface");
compositor.create_external_surface(
&mut self.device,
id,
is_opaque,
);
}
NativeSurfaceOperationDetails::CreateBackdropSurface { id, color } => {
let _inserted = self.allocated_native_surfaces.insert(id);
debug_assert!(_inserted, "bug: creating existing surface");
compositor.create_backdrop_surface(
&mut self.device,
id,
color,
);
}
NativeSurfaceOperationDetails::DestroySurface { id } => {
let _existed = self.allocated_native_surfaces.remove(&id);
debug_assert!(_existed, "bug: removing unknown surface");
compositor.destroy_surface(&mut self.device, id);
}
NativeSurfaceOperationDetails::CreateTile { id } => {
compositor.create_tile(&mut self.device, id);
}
NativeSurfaceOperationDetails::DestroyTile { id } => {
compositor.destroy_tile(&mut self.device, id);
}
NativeSurfaceOperationDetails::AttachExternalImage { id, external_image } => {
compositor.attach_external_image(&mut self.device, id, external_image);
}
}
}
}
CompositorConfig::Draw { .. } => {
// Ensure nothing is added in simple composite mode, since otherwise
// memory will leak as this doesn't get drained
debug_assert!(self.pending_native_surface_updates.is_empty());
}
}
}
fn create_gpu_buffer_texture<T: Texel>(
&mut self,
buffer: &GpuBuffer<T>,
sampler: TextureSampler,
) -> Option<Texture> {
if buffer.is_empty() {
None
} else {
let gpu_buffer_texture = self.device.create_texture(
ImageBufferKind::Texture2D,
buffer.format,
buffer.size.width,
buffer.size.height,
TextureFilter::Nearest,
None,
);
self.device.bind_texture(
sampler,
&gpu_buffer_texture,
Swizzle::default(),
);
self.device.upload_texture_immediate(
&gpu_buffer_texture,
&buffer.data,
);
Some(gpu_buffer_texture)
}
}
fn draw_frame(
&mut self,
frame: &mut Frame,
device_size: Option<DeviceIntSize>,
buffer_age: usize,
results: &mut RenderResults,
) {
profile_scope!("draw_frame");
// These markers seem to crash a lot on Android, see bug 1559834
#[cfg(not(target_os = "android"))]
let _gm = self.gpu_profiler.start_marker("draw frame");
if frame.passes.is_empty() {
frame.has_been_rendered = true;
return;
}
self.device.disable_depth_write();
self.set_blend(false, FramebufferKind::Other);
self.device.disable_stencil();
self.bind_frame_data(frame);
// Upload experimental GPU buffer texture if there is any data present
// TODO: Recycle these textures, upload via PBO or best approach for platform
let gpu_buffer_texture_f = self.create_gpu_buffer_texture(
&frame.gpu_buffer_f,
TextureSampler::GpuBufferF,
);
let gpu_buffer_texture_i = self.create_gpu_buffer_texture(
&frame.gpu_buffer_i,
TextureSampler::GpuBufferI,
);
// Determine the present mode and dirty rects, if device_size
// is Some(..). If it's None, no composite will occur and only
// picture cache and texture cache targets will be updated.
// TODO(gw): Split Frame so that it's clearer when a composite
// is occurring.
let present_mode = device_size.and_then(|device_size| {
self.calculate_dirty_rects(
buffer_age,
&frame.composite_state,
device_size,
results,
)
});
// If we have a native OS compositor, then make use of that interface to
// specify how to composite each of the picture cache surfaces. First, we
// need to find each tile that may be bound and updated later in the frame
// and invalidate it so that the native render compositor knows that these
// tiles can't be composited early. Next, after all such tiles have been
// invalidated, then we queue surfaces for native composition by the render
// compositor before we actually update the tiles. This allows the render
// compositor to start early composition while the tiles are updating.
if let CompositorKind::Native { .. } = self.current_compositor_kind {
let compositor = self.compositor_config.compositor().unwrap();
// Invalidate any native surface tiles that might be updated by passes.
if !frame.has_been_rendered {
for tile in &frame.composite_state.tiles {
if tile.kind == TileKind::Clear {
continue;
}
if !tile.local_dirty_rect.is_empty() {
if let CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::Native { id, .. } } = tile.surface {
let valid_rect = frame.composite_state.get_surface_rect(
&tile.local_valid_rect,
&tile.local_rect,
tile.transform_index,
).to_i32();
compositor.invalidate_tile(&mut self.device, id, valid_rect);
}
}
}
}
// Ensure any external surfaces that might be used during early composition
// are invalidated first so that the native compositor can properly schedule
// composition to happen only when the external surface is updated.
// See update_external_native_surfaces for more details.
for surface in &frame.composite_state.external_surfaces {
if let Some((native_surface_id, size)) = surface.update_params {
let surface_rect = size.into();
compositor.invalidate_tile(&mut self.device, NativeTileId { surface_id: native_surface_id, x: 0, y: 0 }, surface_rect);
}
}
// Finally queue native surfaces for early composition, if applicable. By now,
// we have already invalidated any tiles that such surfaces may depend upon, so
// the native render compositor can keep track of when to actually schedule
// composition as surfaces are updated.
if device_size.is_some() {
frame.composite_state.composite_native(
self.clear_color,
&results.dirty_rects,
&mut self.device,
&mut **compositor,
);
}
}
for (_pass_index, pass) in frame.passes.iter_mut().enumerate() {
#[cfg(not(target_os = "android"))]
let _gm = self.gpu_profiler.start_marker(&format!("pass {}", _pass_index));
profile_scope!("offscreen target");
// If this frame has already been drawn, then any texture
// cache targets have already been updated and can be
// skipped this time.
if !frame.has_been_rendered {
for (&texture_id, target) in &pass.texture_cache {
self.draw_texture_cache_target(
&texture_id,
target,
&frame.render_tasks,
&mut results.stats,
);
}
if !pass.picture_cache.is_empty() {
self.profile.inc(profiler::COLOR_PASSES);
}
// Draw picture caching tiles for this pass.
for picture_target in &pass.picture_cache {
results.stats.color_target_count += 1;
let draw_target = match picture_target.surface {
ResolvedSurfaceTexture::TextureCache { ref texture } => {
let (texture, _) = self.texture_resolver
.resolve(texture)
.expect("bug");
DrawTarget::from_texture(
texture,
true,
)
}
ResolvedSurfaceTexture::Native { id, size } => {
let surface_info = match self.current_compositor_kind {
CompositorKind::Native { .. } => {
let compositor = self.compositor_config.compositor().unwrap();
compositor.bind(
&mut self.device,
id,
picture_target.dirty_rect,
picture_target.valid_rect,
)
}
CompositorKind::Draw { .. } => {
unreachable!();
}
};
DrawTarget::NativeSurface {
offset: surface_info.origin,
external_fbo_id: surface_info.fbo_id,
dimensions: size,
}
}
};
let projection = Transform3D::ortho(
0.0,
draw_target.dimensions().width as f32,
0.0,
draw_target.dimensions().height as f32,
self.device.ortho_near_plane(),
self.device.ortho_far_plane(),
);
self.draw_picture_cache_target(
picture_target,
draw_target,
&projection,
&frame.render_tasks,
&mut results.stats,
);
// Native OS surfaces must be unbound at the end of drawing to them
if let ResolvedSurfaceTexture::Native { .. } = picture_target.surface {
match self.current_compositor_kind {
CompositorKind::Native { .. } => {
let compositor = self.compositor_config.compositor().unwrap();
compositor.unbind(&mut self.device);
}
CompositorKind::Draw { .. } => {
unreachable!();
}
}
}
}
}
for target in &pass.alpha.targets {
results.stats.alpha_target_count += 1;
let texture_id = target.texture_id();
let alpha_tex = self.texture_resolver.get_cache_texture_mut(&texture_id);
let draw_target = DrawTarget::from_texture(
alpha_tex,
false,
);
let projection = Transform3D::ortho(
0.0,
draw_target.dimensions().width as f32,
0.0,
draw_target.dimensions().height as f32,
self.device.ortho_near_plane(),
self.device.ortho_far_plane(),
);
self.draw_alpha_target(
draw_target,
target,
&projection,
&frame.render_tasks,
&mut results.stats,
);
}
let color_rt_info = RenderTargetInfo { has_depth: pass.color.needs_depth() };
for target in &pass.color.targets {
results.stats.color_target_count += 1;
let texture_id = target.texture_id();
let color_tex = self.texture_resolver.get_cache_texture_mut(&texture_id);
self.device.reuse_render_target::<u8>(
color_tex,
color_rt_info,
);
let draw_target = DrawTarget::from_texture(
color_tex,
target.needs_depth(),
);
let projection = Transform3D::ortho(
0.0,
draw_target.dimensions().width as f32,
0.0,
draw_target.dimensions().height as f32,
self.device.ortho_near_plane(),
self.device.ortho_far_plane(),
);
let clear_depth = if target.needs_depth() {
Some(1.0)
} else {
None
};
self.draw_color_target(
draw_target,
target,
clear_depth,
&frame.render_tasks,
&projection,
&mut results.stats,
);
}
// Only end the pass here and invalidate previous textures for
// off-screen targets. Deferring return of the inputs to the
// frame buffer until the implicit end_pass in end_frame allows
// debug draw overlays to be added without triggering a copy
// resolve stage in mobile / tiled GPUs.
self.texture_resolver.end_pass(
&mut self.device,
&pass.textures_to_invalidate,
);
{
profile_scope!("gl.flush");
self.device.gl().flush();
}
}
self.composite_frame(
frame,
device_size,
results,
present_mode,
);
if let Some(gpu_buffer_texture_f) = gpu_buffer_texture_f {
self.device.delete_texture(gpu_buffer_texture_f);
}
if let Some(gpu_buffer_texture_i) = gpu_buffer_texture_i {
self.device.delete_texture(gpu_buffer_texture_i);
}
frame.has_been_rendered = true;
}
fn composite_frame(
&mut self,
frame: &mut Frame,
device_size: Option<DeviceIntSize>,
results: &mut RenderResults,
present_mode: Option<PartialPresentMode>,
) {
profile_scope!("main target");
if let Some(device_size) = device_size {
results.stats.color_target_count += 1;
results.picture_cache_debug = mem::replace(
&mut frame.composite_state.picture_cache_debug,
PictureCacheDebugInfo::new(),
);
let size = frame.device_rect.size().to_f32();
let surface_origin_is_top_left = self.device.surface_origin_is_top_left();
let (bottom, top) = if surface_origin_is_top_left {
(0.0, size.height)
} else {
(size.height, 0.0)
};
let projection = Transform3D::ortho(
0.0,
size.width,
bottom,
top,
self.device.ortho_near_plane(),
self.device.ortho_far_plane(),
);
let fb_scale = Scale::<_, _, FramebufferPixel>::new(1i32);
let mut fb_rect = frame.device_rect * fb_scale;
if !surface_origin_is_top_left {
let h = fb_rect.height();
fb_rect.min.y = device_size.height - fb_rect.max.y;
fb_rect.max.y = fb_rect.min.y + h;
}
let draw_target = DrawTarget::Default {
rect: fb_rect,
total_size: device_size * fb_scale,
surface_origin_is_top_left,
};
// If we have a native OS compositor, then make use of that interface
// to specify how to composite each of the picture cache surfaces.
match self.current_compositor_kind {
CompositorKind::Native { .. } => {
// We have already queued surfaces for early native composition by this point.
// All that is left is to finally update any external native surfaces that were
// invalidated so that composition can complete.
self.update_external_native_surfaces(
&frame.composite_state.external_surfaces,
results,
);
}
CompositorKind::Draw { .. } => {
self.composite_simple(
&frame.composite_state,
draw_target,
&projection,
results,
present_mode,
);
}
}
} else {
// Rendering a frame without presenting it will confuse the partial
// present logic, so force a full present for the next frame.
self.force_redraw();
}
}
pub fn debug_renderer(&mut self) -> Option<&mut DebugRenderer> {
self.debug.get_mut(&mut self.device)
}
pub fn get_debug_flags(&self) -> DebugFlags {
self.debug_flags
}
pub fn set_debug_flags(&mut self, flags: DebugFlags) {
if let Some(enabled) = flag_changed(self.debug_flags, flags, DebugFlags::GPU_TIME_QUERIES) {
if enabled {
self.gpu_profiler.enable_timers();
} else {
self.gpu_profiler.disable_timers();
}
}
if let Some(enabled) = flag_changed(self.debug_flags, flags, DebugFlags::GPU_SAMPLE_QUERIES) {
if enabled {
self.gpu_profiler.enable_samplers();
} else {
self.gpu_profiler.disable_samplers();
}
}
self.debug_flags = flags;
}
pub fn set_profiler_ui(&mut self, ui_str: &str) {
self.profiler.set_ui(ui_str);
}
fn draw_frame_debug_items(&mut self, items: &[DebugItem]) {
if items.is_empty() {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
for item in items {
match item {
DebugItem::Rect { rect, outer_color, inner_color } => {
debug_renderer.add_quad(
rect.min.x,
rect.min.y,
rect.max.x,
rect.max.y,
(*inner_color).into(),
(*inner_color).into(),
);
debug_renderer.add_rect(
&rect.to_i32(),
(*outer_color).into(),
);
}
DebugItem::Text { ref msg, position, color } => {
debug_renderer.add_text(
position.x,
position.y,
msg,
(*color).into(),
None,
);
}
}
}
}
fn draw_render_target_debug(&mut self, draw_target: &DrawTarget) {
if !self.debug_flags.contains(DebugFlags::RENDER_TARGET_DBG) {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
let textures = self.texture_resolver
.texture_cache_map
.values()
.filter(|item| item.category == TextureCacheCategory::RenderTarget)
.map(|item| &item.texture)
.collect::<Vec<&Texture>>();
Self::do_debug_blit(
&mut self.device,
debug_renderer,
textures,
draw_target,
0,
&|_| [0.0, 1.0, 0.0, 1.0], // Use green for all RTs.
);
}
fn draw_zoom_debug(
&mut self,
device_size: DeviceIntSize,
) {
if !self.debug_flags.contains(DebugFlags::ZOOM_DBG) {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
let source_size = DeviceIntSize::new(64, 64);
let target_size = DeviceIntSize::new(1024, 1024);
let source_origin = DeviceIntPoint::new(
(self.cursor_position.x - source_size.width / 2)
.min(device_size.width - source_size.width)
.max(0),
(self.cursor_position.y - source_size.height / 2)
.min(device_size.height - source_size.height)
.max(0),
);
let source_rect = DeviceIntRect::from_origin_and_size(
source_origin,
source_size,
);
let target_rect = DeviceIntRect::from_origin_and_size(
DeviceIntPoint::new(
device_size.width - target_size.width - 64,
device_size.height - target_size.height - 64,
),
target_size,
);
let texture_rect = FramebufferIntRect::from_size(
source_rect.size().cast_unit(),
);
debug_renderer.add_rect(
&target_rect.inflate(1, 1),
debug_colors::RED.into(),
);
if self.zoom_debug_texture.is_none() {
let texture = self.device.create_texture(
ImageBufferKind::Texture2D,
ImageFormat::BGRA8,
source_rect.width(),
source_rect.height(),
TextureFilter::Nearest,
Some(RenderTargetInfo { has_depth: false }),
);
self.zoom_debug_texture = Some(texture);
}
// Copy frame buffer into the zoom texture
let read_target = DrawTarget::new_default(device_size, self.device.surface_origin_is_top_left());
self.device.blit_render_target(
read_target.into(),
read_target.to_framebuffer_rect(source_rect),
DrawTarget::from_texture(
self.zoom_debug_texture.as_ref().unwrap(),
false,
),
texture_rect,
TextureFilter::Nearest,
);
// Draw the zoom texture back to the framebuffer
self.device.blit_render_target(
ReadTarget::from_texture(
self.zoom_debug_texture.as_ref().unwrap(),
),
texture_rect,
read_target,
read_target.to_framebuffer_rect(target_rect),
TextureFilter::Nearest,
);
}
fn draw_texture_cache_debug(&mut self, draw_target: &DrawTarget) {
if !self.debug_flags.contains(DebugFlags::TEXTURE_CACHE_DBG) {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
let textures = self.texture_resolver
.texture_cache_map
.values()
.filter(|item| item.category == TextureCacheCategory::Atlas)
.map(|item| &item.texture)
.collect::<Vec<&Texture>>();
fn select_color(texture: &Texture) -> [f32; 4] {
if texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE) {
[1.0, 0.5, 0.0, 1.0] // Orange for shared.
} else {
[1.0, 0.0, 1.0, 1.0] // Fuchsia for standalone.
}
}
Self::do_debug_blit(
&mut self.device,
debug_renderer,
textures,
draw_target,
if self.debug_flags.contains(DebugFlags::RENDER_TARGET_DBG) { 544 } else { 0 },
&select_color,
);
}
fn do_debug_blit(
device: &mut Device,
debug_renderer: &mut DebugRenderer,
mut textures: Vec<&Texture>,
draw_target: &DrawTarget,
bottom: i32,
select_color: &dyn Fn(&Texture) -> [f32; 4],
) {
let mut spacing = 16;
let mut size = 512;
let device_size = draw_target.dimensions();
let fb_width = device_size.width;
let fb_height = device_size.height;
let surface_origin_is_top_left = draw_target.surface_origin_is_top_left();
let num_textures = textures.len() as i32;
if num_textures * (size + spacing) > fb_width {
let factor = fb_width as f32 / (num_textures * (size + spacing)) as f32;
size = (size as f32 * factor) as i32;
spacing = (spacing as f32 * factor) as i32;
}
let text_height = 14; // Visually approximated.
let text_margin = 1;
let tag_height = text_height + text_margin * 2;
let tag_y = fb_height - (bottom + spacing + tag_height);
let image_y = tag_y - size;
// Sort the display by size (in bytes), so that left-to-right is
// largest-to-smallest.
//
// Note that the vec here is in increasing order, because the elements
// get drawn right-to-left.
textures.sort_by_key(|t| t.size_in_bytes());
let mut i = 0;
for texture in textures.iter() {
let dimensions = texture.get_dimensions();
let src_rect = FramebufferIntRect::from_size(
FramebufferIntSize::new(dimensions.width as i32, dimensions.height as i32),
);
let x = fb_width - (spacing + size) * (i as i32 + 1);
// If we have more targets than fit on one row in screen, just early exit.
if x > fb_width {
return;
}
// Draw the info tag.
let tag_rect = rect(x, tag_y, size, tag_height).to_box2d();
let tag_color = select_color(texture);
device.clear_target(
Some(tag_color),
None,
Some(draw_target.to_framebuffer_rect(tag_rect)),
);
// Draw the dimensions onto the tag.
let dim = texture.get_dimensions();
let text_rect = tag_rect.inflate(-text_margin, -text_margin);
debug_renderer.add_text(
text_rect.min.x as f32,
text_rect.max.y as f32, // Top-relative.
&format!("{}x{}", dim.width, dim.height),
ColorU::new(0, 0, 0, 255),
Some(tag_rect.to_f32())
);
// Blit the contents of the texture.
let dest_rect = draw_target.to_framebuffer_rect(rect(x, image_y, size, size).to_box2d());
let read_target = ReadTarget::from_texture(texture);
if surface_origin_is_top_left {
device.blit_render_target(
read_target,
src_rect,
*draw_target,
dest_rect,
TextureFilter::Linear,
);
} else {
// Invert y.
device.blit_render_target_invert_y(
read_target,
src_rect,
*draw_target,
dest_rect,
);
}
i += 1;
}
}
fn draw_epoch_debug(&mut self) {
if !self.debug_flags.contains(DebugFlags::EPOCHS) {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
let dy = debug_renderer.line_height();
let x0: f32 = 30.0;
let y0: f32 = 30.0;
let mut y = y0;
let mut text_width = 0.0;
for ((pipeline, document_id), epoch) in &self.pipeline_info.epochs {
y += dy;
let w = debug_renderer.add_text(
x0, y,
&format!("({:?}, {:?}): {:?}", pipeline, document_id, epoch),
ColorU::new(255, 255, 0, 255),
None,
).size.width;
text_width = f32::max(text_width, w);
}
let margin = 10.0;
debug_renderer.add_quad(
x0 - margin,
y0 - margin,
x0 + text_width + margin,
y + margin,
ColorU::new(25, 25, 25, 200),
ColorU::new(51, 51, 51, 200),
);
}
fn draw_window_visibility_debug(&mut self) {
if !self.debug_flags.contains(DebugFlags::WINDOW_VISIBILITY_DBG) {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
let x: f32 = 30.0;
let y: f32 = 40.0;
if let CompositorConfig::Native { ref mut compositor, .. } = self.compositor_config {
let visibility = compositor.get_window_visibility(&mut self.device);
let color = if visibility.is_fully_occluded {
ColorU::new(255, 0, 0, 255)
} else {
ColorU::new(0, 0, 255, 255)
};
debug_renderer.add_text(
x, y,
&format!("{:?}", visibility),
color,
None,
);
}
}
fn draw_gpu_cache_debug(&mut self, device_size: DeviceIntSize) {
if !self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) {
return;
}
let debug_renderer = match self.debug.get_mut(&mut self.device) {
Some(render) => render,
None => return,
};
let (x_off, y_off) = (30f32, 30f32);
let height = self.gpu_cache_texture.get_height()
.min(device_size.height - (y_off as i32) * 2) as usize;
debug_renderer.add_quad(
x_off,
y_off,
x_off + MAX_VERTEX_TEXTURE_WIDTH as f32,
y_off + height as f32,
ColorU::new(80, 80, 80, 80),
ColorU::new(80, 80, 80, 80),
);
let upper = self.gpu_cache_debug_chunks.len().min(height);
for chunk in self.gpu_cache_debug_chunks[0..upper].iter().flatten() {
let color = ColorU::new(250, 0, 0, 200);
debug_renderer.add_quad(
x_off + chunk.address.u as f32,
y_off + chunk.address.v as f32,
x_off + chunk.address.u as f32 + chunk.size as f32,
y_off + chunk.address.v as f32 + 1.0,
color,
color,
);
}
}
/// Pass-through to `Device::read_pixels_into`, used by Gecko's WR bindings.
pub fn read_pixels_into(&mut self, rect: FramebufferIntRect, format: ImageFormat, output: &mut [u8]) {
self.device.read_pixels_into(rect, format, output);
}
pub fn read_pixels_rgba8(&mut self, rect: FramebufferIntRect) -> Vec<u8> {
let mut pixels = vec![0; (rect.area() * 4) as usize];
self.device.read_pixels_into(rect, ImageFormat::RGBA8, &mut pixels);
pixels
}
// De-initialize the Renderer safely, assuming the GL is still alive and active.
pub fn deinit(mut self) {
//Note: this is a fake frame, only needed because texture deletion is require to happen inside a frame
self.device.begin_frame();
// If we are using a native compositor, ensure that any remaining native
// surfaces are freed.
if let CompositorConfig::Native { mut compositor, .. } = self.compositor_config {
for id in self.allocated_native_surfaces.drain() {
compositor.destroy_surface(&mut self.device, id);
}
// Destroy the debug overlay surface, if currently allocated.
if self.debug_overlay_state.current_size.is_some() {
compositor.destroy_surface(&mut self.device, NativeSurfaceId::DEBUG_OVERLAY);
}
compositor.deinit(&mut self.device);
}
self.gpu_cache_texture.deinit(&mut self.device);
if let Some(dither_matrix_texture) = self.dither_matrix_texture {
self.device.delete_texture(dither_matrix_texture);
}
if let Some(zoom_debug_texture) = self.zoom_debug_texture {
self.device.delete_texture(zoom_debug_texture);
}
for textures in self.vertex_data_textures.drain(..) {
textures.deinit(&mut self.device);
}
self.texture_upload_pbo_pool.deinit(&mut self.device);
self.staging_texture_pool.delete_textures(&mut self.device);
self.texture_resolver.deinit(&mut self.device);
self.vaos.deinit(&mut self.device);
self.debug.deinit(&mut self.device);
if let Ok(shaders) = Rc::try_unwrap(self.shaders) {
shaders.into_inner().deinit(&mut self.device);
}
if let Some(async_screenshots) = self.async_screenshots.take() {
async_screenshots.deinit(&mut self.device);
}
if let Some(async_frame_recorder) = self.async_frame_recorder.take() {
async_frame_recorder.deinit(&mut self.device);
}
#[cfg(feature = "capture")]
self.device.delete_fbo(self.read_fbo);
#[cfg(feature = "replay")]
for (_, ext) in self.owned_external_images {
self.device.delete_external_texture(ext);
}
self.device.end_frame();
}
fn size_of<T>(&self, ptr: *const T) -> usize {
let ops = self.size_of_ops.as_ref().unwrap();
unsafe { ops.malloc_size_of(ptr) }
}
/// Collects a memory report.
pub fn report_memory(&self, swgl: *mut c_void) -> MemoryReport {
let mut report = MemoryReport::default();
// GPU cache CPU memory.
self.gpu_cache_texture.report_memory_to(&mut report, self.size_of_ops.as_ref().unwrap());
self.staging_texture_pool.report_memory_to(&mut report, self.size_of_ops.as_ref().unwrap());
// Render task CPU memory.
for (_id, doc) in &self.active_documents {
report.render_tasks += self.size_of(doc.frame.render_tasks.tasks.as_ptr());
report.render_tasks += self.size_of(doc.frame.render_tasks.task_data.as_ptr());
}
// Vertex data GPU memory.
for textures in &self.vertex_data_textures {
report.vertex_data_textures += textures.size_in_bytes();
}
// Texture cache and render target GPU memory.
report += self.texture_resolver.report_memory();
// Texture upload PBO memory.
report += self.texture_upload_pbo_pool.report_memory();
// Textures held internally within the device layer.
report += self.device.report_memory(self.size_of_ops.as_ref().unwrap(), swgl);
report
}
// Sets the blend mode. Blend is unconditionally set if the "show overdraw" debugging mode is
// enabled.
fn set_blend(&mut self, mut blend: bool, framebuffer_kind: FramebufferKind) {
if framebuffer_kind == FramebufferKind::Main &&
self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) {
blend = true
}
self.device.set_blend(blend)
}
fn set_blend_mode_multiply(&mut self, framebuffer_kind: FramebufferKind) {
if framebuffer_kind == FramebufferKind::Main &&
self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) {
self.device.set_blend_mode_show_overdraw();
} else {
self.device.set_blend_mode_multiply();
}
}
fn set_blend_mode_premultiplied_alpha(&mut self, framebuffer_kind: FramebufferKind) {
if framebuffer_kind == FramebufferKind::Main &&
self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) {
self.device.set_blend_mode_show_overdraw();
} else {
self.device.set_blend_mode_premultiplied_alpha();
}
}
/// Clears the texture with a given color.
fn clear_texture(&mut self, texture: &Texture, color: [f32; 4]) {
self.device.bind_draw_target(DrawTarget::from_texture(
&texture,
false,
));
self.device.clear_target(Some(color), None, None);
}
}
bitflags! {
/// Flags that control how shaders are pre-cached, if at all.
#[derive(Default, Debug, Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
pub struct ShaderPrecacheFlags: u32 {
/// Needed for const initialization
const EMPTY = 0;
/// Only start async compile
const ASYNC_COMPILE = 1 << 2;
/// Do a full compile/link during startup
const FULL_COMPILE = 1 << 3;
}
}
/// The cumulative times spent in each painting phase to generate this frame.
#[derive(Debug, Default)]
pub struct FullFrameStats {
pub full_display_list: bool,
pub gecko_display_list_time: f64,
pub wr_display_list_time: f64,
pub scene_build_time: f64,
pub frame_build_time: f64,
}
impl FullFrameStats {
pub fn merge(&self, other: &FullFrameStats) -> Self {
Self {
full_display_list: self.full_display_list || other.full_display_list,
gecko_display_list_time: self.gecko_display_list_time + other.gecko_display_list_time,
wr_display_list_time: self.wr_display_list_time + other.wr_display_list_time,
scene_build_time: self.scene_build_time + other.scene_build_time,
frame_build_time: self.frame_build_time + other.frame_build_time
}
}
pub fn total(&self) -> f64 {
self.gecko_display_list_time + self.wr_display_list_time + self.scene_build_time + self.frame_build_time
}
}
/// Some basic statistics about the rendered scene, used in Gecko, as
/// well as in wrench reftests to ensure that tests are batching and/or
/// allocating on render targets as we expect them to.
#[repr(C)]
#[derive(Debug, Default)]
pub struct RendererStats {
pub total_draw_calls: usize,
pub alpha_target_count: usize,
pub color_target_count: usize,
pub texture_upload_mb: f64,
pub resource_upload_time: f64,
pub gpu_cache_upload_time: f64,
pub gecko_display_list_time: f64,
pub wr_display_list_time: f64,
pub scene_build_time: f64,
pub frame_build_time: f64,
pub full_display_list: bool,
pub full_paint: bool,
}
impl RendererStats {
pub fn merge(&mut self, stats: &FullFrameStats) {
self.gecko_display_list_time = stats.gecko_display_list_time;
self.wr_display_list_time = stats.wr_display_list_time;
self.scene_build_time = stats.scene_build_time;
self.frame_build_time = stats.frame_build_time;
self.full_display_list = stats.full_display_list;
self.full_paint = true;
}
}
/// Return type from render(), which contains some repr(C) statistics as well as
/// some non-repr(C) data.
#[derive(Debug, Default)]
pub struct RenderResults {
/// Statistics about the frame that was rendered.
pub stats: RendererStats,
/// A list of the device dirty rects that were updated
/// this frame.
/// TODO(gw): This is an initial interface, likely to change in future.
/// TODO(gw): The dirty rects here are currently only useful when scrolling
/// is not occurring. They are still correct in the case of
/// scrolling, but will be very large (until we expose proper
/// OS compositor support where the dirty rects apply to a
/// specific picture cache slice / OS compositor surface).
pub dirty_rects: Vec<DeviceIntRect>,
/// Information about the state of picture cache tiles. This is only
/// allocated and stored if config.testing is true (such as wrench)
pub picture_cache_debug: PictureCacheDebugInfo,
}
#[cfg(any(feature = "capture", feature = "replay"))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct PlainTexture {
data: String,
size: DeviceIntSize,
format: ImageFormat,
filter: TextureFilter,
has_depth: bool,
category: Option<TextureCacheCategory>,
}
#[cfg(any(feature = "capture", feature = "replay"))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct PlainRenderer {
device_size: Option<DeviceIntSize>,
gpu_cache: PlainTexture,
gpu_cache_frame_id: FrameId,
textures: FastHashMap<CacheTextureId, PlainTexture>,
}
#[cfg(any(feature = "capture", feature = "replay"))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct PlainExternalResources {
images: Vec<ExternalCaptureImage>
}
#[cfg(feature = "replay")]
enum CapturedExternalImageData {
NativeTexture(gl::GLuint),
Buffer(Arc<Vec<u8>>),
}
#[cfg(feature = "replay")]
struct DummyExternalImageHandler {
data: FastHashMap<(ExternalImageId, u8), (CapturedExternalImageData, TexelRect)>,
}
#[cfg(feature = "replay")]
impl ExternalImageHandler for DummyExternalImageHandler {
fn lock(&mut self, key: ExternalImageId, channel_index: u8) -> ExternalImage {
let (ref captured_data, ref uv) = self.data[&(key, channel_index)];
ExternalImage {
uv: *uv,
source: match *captured_data {
CapturedExternalImageData::NativeTexture(tid) => ExternalImageSource::NativeTexture(tid),
CapturedExternalImageData::Buffer(ref arc) => ExternalImageSource::RawData(&*arc),
}
}
}
fn unlock(&mut self, _key: ExternalImageId, _channel_index: u8) {}
}
#[derive(Default)]
pub struct PipelineInfo {
pub epochs: FastHashMap<(PipelineId, DocumentId), Epoch>,
pub removed_pipelines: Vec<(PipelineId, DocumentId)>,
}
impl Renderer {
#[cfg(feature = "capture")]
fn save_texture(
texture: &Texture, category: Option<TextureCacheCategory>, name: &str, root: &PathBuf, device: &mut Device
) -> PlainTexture {
use std::fs;
use std::io::Write;
let short_path = format!("textures/{}.raw", name);
let bytes_per_pixel = texture.get_format().bytes_per_pixel();
let read_format = texture.get_format();
let rect_size = texture.get_dimensions();
let mut file = fs::File::create(root.join(&short_path))
.expect(&format!("Unable to create {}", short_path));
let bytes_per_texture = (rect_size.width * rect_size.height * bytes_per_pixel) as usize;
let mut data = vec![0; bytes_per_texture];
//TODO: instead of reading from an FBO with `read_pixels*`, we could
// read from textures directly with `get_tex_image*`.
let rect = device_size_as_framebuffer_size(rect_size).into();
device.attach_read_texture(texture);
#[cfg(feature = "png")]
{
let mut png_data;
let (data_ref, format) = match texture.get_format() {
ImageFormat::RGBAF32 => {
png_data = vec![0; (rect_size.width * rect_size.height * 4) as usize];
device.read_pixels_into(rect, ImageFormat::RGBA8, &mut png_data);
(&png_data, ImageFormat::RGBA8)
}
fm => (&data, fm),
};
CaptureConfig::save_png(
root.join(format!("textures/{}-{}.png", name, 0)),
rect_size, format,
None,
data_ref,
);
}
device.read_pixels_into(rect, read_format, &mut data);
file.write_all(&data)
.unwrap();
PlainTexture {
data: short_path,
size: rect_size,
format: texture.get_format(),
filter: texture.get_filter(),
has_depth: texture.supports_depth(),
category,
}
}
#[cfg(feature = "replay")]
fn load_texture(
target: ImageBufferKind,
plain: &PlainTexture,
rt_info: Option<RenderTargetInfo>,
root: &PathBuf,
device: &mut Device
) -> (Texture, Vec<u8>)
{
use std::fs::File;
use std::io::Read;
let mut texels = Vec::new();
File::open(root.join(&plain.data))
.expect(&format!("Unable to open texture at {}", plain.data))
.read_to_end(&mut texels)
.unwrap();
let texture = device.create_texture(
target,
plain.format,
plain.size.width,
plain.size.height,
plain.filter,
rt_info,
);
device.upload_texture_immediate(&texture, &texels);
(texture, texels)
}
#[cfg(feature = "capture")]
fn save_capture(
&mut self,
config: CaptureConfig,
deferred_images: Vec<ExternalCaptureImage>,
) {
use std::fs;
use std::io::Write;
use api::ExternalImageData;
use crate::render_api::CaptureBits;
let root = config.resource_root();
self.device.begin_frame();
let _gm = self.gpu_profiler.start_marker("read GPU data");
self.device.bind_read_target_impl(self.read_fbo, DeviceIntPoint::zero());
if config.bits.contains(CaptureBits::EXTERNAL_RESOURCES) && !deferred_images.is_empty() {
info!("saving external images");
let mut arc_map = FastHashMap::<*const u8, String>::default();
let mut tex_map = FastHashMap::<u32, String>::default();
let handler = self.external_image_handler
.as_mut()
.expect("Unable to lock the external image handler!");
for def in &deferred_images {
info!("\t{}", def.short_path);
let ExternalImageData { id, channel_index, image_type } = def.external;
// The image rendering parameter is irrelevant because no filtering happens during capturing.
let ext_image = handler.lock(id, channel_index);
let (data, short_path) = match ext_image.source {
ExternalImageSource::RawData(data) => {
let arc_id = arc_map.len() + 1;
match arc_map.entry(data.as_ptr()) {
Entry::Occupied(e) => {
(None, e.get().clone())
}
Entry::Vacant(e) => {
let short_path = format!("externals/d{}.raw", arc_id);
(Some(data.to_vec()), e.insert(short_path).clone())
}
}
}
ExternalImageSource::NativeTexture(gl_id) => {
let tex_id = tex_map.len() + 1;
match tex_map.entry(gl_id) {
Entry::Occupied(e) => {
(None, e.get().clone())
}
Entry::Vacant(e) => {
let target = match image_type {
ExternalImageType::TextureHandle(target) => target,
ExternalImageType::Buffer => unreachable!(),
};
info!("\t\tnative texture of target {:?}", target);
self.device.attach_read_texture_external(gl_id, target);
let data = self.device.read_pixels(&def.descriptor);
let short_path = format!("externals/t{}.raw", tex_id);
(Some(data), e.insert(short_path).clone())
}
}
}
ExternalImageSource::Invalid => {
info!("\t\tinvalid source!");
(None, String::new())
}
};
if let Some(bytes) = data {
fs::File::create(root.join(&short_path))
.expect(&format!("Unable to create {}", short_path))
.write_all(&bytes)
.unwrap();
#[cfg(feature = "png")]
CaptureConfig::save_png(
root.join(&short_path).with_extension("png"),
def.descriptor.size,
def.descriptor.format,
def.descriptor.stride,
&bytes,
);
}
let plain = PlainExternalImage {
data: short_path,
external: def.external,
uv: ext_image.uv,
};
config.serialize_for_resource(&plain, &def.short_path);
}
for def in &deferred_images {
handler.unlock(def.external.id, def.external.channel_index);
}
let plain_external = PlainExternalResources {
images: deferred_images,
};
config.serialize_for_resource(&plain_external, "external_resources");
}
if config.bits.contains(CaptureBits::FRAME) {
let path_textures = root.join("textures");
if !path_textures.is_dir() {
fs::create_dir(&path_textures).unwrap();
}
info!("saving GPU cache");
self.update_gpu_cache(); // flush pending updates
let mut plain_self = PlainRenderer {
device_size: self.device_size,
gpu_cache: Self::save_texture(
self.gpu_cache_texture.get_texture(),
None, "gpu", &root, &mut self.device,
),
gpu_cache_frame_id: self.gpu_cache_frame_id,
textures: FastHashMap::default(),
};
info!("saving cached textures");
for (id, item) in &self.texture_resolver.texture_cache_map {
let file_name = format!("cache-{}", plain_self.textures.len() + 1);
info!("\t{}", file_name);
let plain = Self::save_texture(&item.texture, Some(item.category), &file_name, &root, &mut self.device);
plain_self.textures.insert(*id, plain);
}
config.serialize_for_resource(&plain_self, "renderer");
}
self.device.reset_read_target();
self.device.end_frame();
let mut stats_file = fs::File::create(config.root.join("profiler-stats.txt"))
.expect(&format!("Unable to create profiler-stats.txt"));
if self.debug_flags.intersects(DebugFlags::PROFILER_DBG | DebugFlags::PROFILER_CAPTURE) {
self.profiler.dump_stats(&mut stats_file).unwrap();
} else {
writeln!(stats_file, "Turn on PROFILER_DBG or PROFILER_CAPTURE to get stats here!").unwrap();
}
info!("done.");
}
#[cfg(feature = "replay")]
fn load_capture(
&mut self,
config: CaptureConfig,
plain_externals: Vec<PlainExternalImage>,
) {
use std::{fs::File, io::Read};
info!("loading external buffer-backed images");
assert!(self.texture_resolver.external_images.is_empty());
let mut raw_map = FastHashMap::<String, Arc<Vec<u8>>>::default();
let mut image_handler = DummyExternalImageHandler {
data: FastHashMap::default(),
};
let root = config.resource_root();
// Note: this is a `SCENE` level population of the external image handlers
// It would put both external buffers and texture into the map.
// But latter are going to be overwritten later in this function
// if we are in the `FRAME` level.
for plain_ext in plain_externals {
let data = match raw_map.entry(plain_ext.data) {
Entry::Occupied(e) => e.get().clone(),
Entry::Vacant(e) => {
let mut buffer = Vec::new();
File::open(root.join(e.key()))
.expect(&format!("Unable to open {}", e.key()))
.read_to_end(&mut buffer)
.unwrap();
e.insert(Arc::new(buffer)).clone()
}
};
let ext = plain_ext.external;
let value = (CapturedExternalImageData::Buffer(data), plain_ext.uv);
image_handler.data.insert((ext.id, ext.channel_index), value);
}
if let Some(external_resources) = config.deserialize_for_resource::<PlainExternalResources, _>("external_resources") {
info!("loading external texture-backed images");
let mut native_map = FastHashMap::<String, gl::GLuint>::default();
for ExternalCaptureImage { short_path, external, descriptor } in external_resources.images {
let target = match external.image_type {
ExternalImageType::TextureHandle(target) => target,
ExternalImageType::Buffer => continue,
};
let plain_ext = config.deserialize_for_resource::<PlainExternalImage, _>(&short_path)
.expect(&format!("Unable to read {}.ron", short_path));
let key = (external.id, external.channel_index);
let tid = match native_map.entry(plain_ext.data) {
Entry::Occupied(e) => e.get().clone(),
Entry::Vacant(e) => {
let plain_tex = PlainTexture {
data: e.key().clone(),
size: descriptor.size,
format: descriptor.format,
filter: TextureFilter::Linear,
has_depth: false,
category: None,
};
let t = Self::load_texture(
target,
&plain_tex,
None,
&root,
&mut self.device
);
let extex = t.0.into_external();
self.owned_external_images.insert(key, extex.clone());
e.insert(extex.internal_id()).clone()
}
};
let value = (CapturedExternalImageData::NativeTexture(tid), plain_ext.uv);
image_handler.data.insert(key, value);
}
}
self.device.begin_frame();
self.gpu_cache_texture.remove_texture(&mut self.device);
if let Some(renderer) = config.deserialize_for_resource::<PlainRenderer, _>("renderer") {
info!("loading cached textures");
self.device_size = renderer.device_size;
for (_id, item) in self.texture_resolver.texture_cache_map.drain() {
self.device.delete_texture(item.texture);
}
for (id, texture) in renderer.textures {
info!("\t{}", texture.data);
let target = ImageBufferKind::Texture2D;
let t = Self::load_texture(
target,
&texture,
Some(RenderTargetInfo { has_depth: texture.has_depth }),
&root,
&mut self.device
);
self.texture_resolver.texture_cache_map.insert(id, CacheTexture {
texture: t.0,
category: texture.category.unwrap_or(TextureCacheCategory::Standalone),
});
}
info!("loading gpu cache");
let (t, gpu_cache_data) = Self::load_texture(
ImageBufferKind::Texture2D,
&renderer.gpu_cache,
Some(RenderTargetInfo { has_depth: false }),
&root,
&mut self.device,
);
self.gpu_cache_texture.load_from_data(t, gpu_cache_data);
self.gpu_cache_frame_id = renderer.gpu_cache_frame_id;
} else {
info!("loading cached textures");
self.device.begin_frame();
for (_id, item) in self.texture_resolver.texture_cache_map.drain() {
self.device.delete_texture(item.texture);
}
}
self.device.end_frame();
self.external_image_handler = Some(Box::new(image_handler) as Box<_>);
info!("done.");
}
}
#[derive(Clone, Copy, PartialEq)]
enum FramebufferKind {
Main,
Other,
}
fn should_skip_batch(kind: &BatchKind, flags: DebugFlags) -> bool {
match kind {
BatchKind::TextRun(_) => {
flags.contains(DebugFlags::DISABLE_TEXT_PRIMS)
}
BatchKind::Brush(BrushBatchKind::LinearGradient) => {
flags.contains(DebugFlags::DISABLE_GRADIENT_PRIMS)
}
_ => false,
}
}
impl CompositeState {
/// Use the client provided native compositor interface to add all picture
/// cache tiles to the OS compositor
fn composite_native(
&self,
clear_color: ColorF,
dirty_rects: &[DeviceIntRect],
device: &mut Device,
compositor: &mut dyn Compositor,
) {
// Add each surface to the visual tree. z-order is implicit based on
// order added. Offset and clip rect apply to all tiles within this
// surface.
for surface in &self.descriptor.surfaces {
compositor.add_surface(
device,
surface.surface_id.expect("bug: no native surface allocated"),
surface.transform,
surface.clip_rect.to_i32(),
surface.image_rendering,
);
}
compositor.start_compositing(device, clear_color, dirty_rects, &[]);
}
}
mod tests {
#[test]
fn test_buffer_damage_tracker() {
use super::BufferDamageTracker;
use api::units::{DevicePoint, DeviceRect, DeviceSize};
let mut tracker = BufferDamageTracker::default();
assert_eq!(tracker.get_damage_rect(0), None);
assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero()));
assert_eq!(tracker.get_damage_rect(2), Some(DeviceRect::zero()));
assert_eq!(tracker.get_damage_rect(3), Some(DeviceRect::zero()));
assert_eq!(tracker.get_damage_rect(4), None);
let damage1 = DeviceRect::from_origin_and_size(DevicePoint::new(10.0, 10.0), DeviceSize::new(10.0, 10.0));
let damage2 = DeviceRect::from_origin_and_size(DevicePoint::new(20.0, 20.0), DeviceSize::new(10.0, 10.0));
let combined = damage1.union(&damage2);
tracker.push_dirty_rect(&damage1);
assert_eq!(tracker.get_damage_rect(0), None);
assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero()));
assert_eq!(tracker.get_damage_rect(2), Some(damage1));
assert_eq!(tracker.get_damage_rect(3), Some(damage1));
assert_eq!(tracker.get_damage_rect(4), None);
tracker.push_dirty_rect(&damage2);
assert_eq!(tracker.get_damage_rect(0), None);
assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero()));
assert_eq!(tracker.get_damage_rect(2), Some(damage2));
assert_eq!(tracker.get_damage_rect(3), Some(combined));
assert_eq!(tracker.get_damage_rect(4), None);
}
}