Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
* Copyright © 2005 Red Hat, Inc.
* Copyright © 2011 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
#include "cairoint.h"
#include "cairo-private.h"
#include "cairo-backend-private.h"
#include "cairo-error-private.h"
#include "cairo-path-private.h"
#include "cairo-pattern-private.h"
#include "cairo-surface-private.h"
#include "cairo-surface-backend-private.h"
#include <assert.h>
/**
* SECTION:cairo
* @Title: cairo_t
* @Short_Description: The cairo drawing context
* @See_Also: #cairo_surface_t
*
* #cairo_t is the main object used when drawing with cairo. To
* draw with cairo, you create a #cairo_t, set the target surface,
* and drawing options for the #cairo_t, create shapes with
* functions like cairo_move_to() and cairo_line_to(), and then
* draw shapes with cairo_stroke() or cairo_fill().
*
* #cairo_t<!-- -->'s can be pushed to a stack via cairo_save().
* They may then safely be changed, without losing the current state.
* Use cairo_restore() to restore to the saved state.
**/
/**
* SECTION:cairo-text
* @Title: text
* @Short_Description: Rendering text and glyphs
* @See_Also: #cairo_font_face_t, #cairo_scaled_font_t, cairo_text_path(),
* cairo_glyph_path()
*
* The functions with <emphasis>text</emphasis> in their name form cairo's
* <firstterm>toy</firstterm> text API. The toy API takes UTF-8 encoded
* text and is limited in its functionality to rendering simple
* left-to-right text with no advanced features. That means for example
* that most complex scripts like Hebrew, Arabic, and Indic scripts are
* out of question. No kerning or correct positioning of diacritical marks
* either. The font selection is pretty limited too and doesn't handle the
* case that the selected font does not cover the characters in the text.
* This set of functions are really that, a toy text API, for testing and
* demonstration purposes. Any serious application should avoid them.
*
* The functions with <emphasis>glyphs</emphasis> in their name form cairo's
* <firstterm>low-level</firstterm> text API. The low-level API relies on
* the user to convert text to a set of glyph indexes and positions. This
* is a very hard problem and is best handled by external libraries, like
* the pangocairo that is part of the Pango text layout and rendering library.
* Pango is available from <ulink
**/
/**
* SECTION:cairo-transforms
* @Title: Transformations
* @Short_Description: Manipulating the current transformation matrix
* @See_Also: #cairo_matrix_t
*
* The current transformation matrix, <firstterm>ctm</firstterm>, is a
* two-dimensional affine transformation that maps all coordinates and other
* drawing instruments from the <firstterm>user space</firstterm> into the
* surface's canonical coordinate system, also known as the <firstterm>device
* space</firstterm>.
**/
/**
* SECTION:cairo-tag
* @Title: Tags and Links
* @Short_Description: Hyperlinks and document structure
* @See_Also: #cairo_pdf_surface_t
*
* The tag functions provide the ability to specify hyperlinks and
* document logical structure on supported backends. The following tags are supported:
* * [Link][link] - Create a hyperlink
* * [Destinations][dest] - Create a hyperlink destination
* * [Document Structure Tags][doc-struct] - Create PDF Document Structure
*
* # Link Tags # {#link}
* A hyperlink is specified by enclosing the hyperlink text with the %CAIRO_TAG_LINK tag.
*
* For example:
* <informalexample><programlisting>
* cairo_tag_begin (cr, CAIRO_TAG_LINK, "uri='https://cairographics.org'");
* cairo_move_to (cr, 50, 50);
* cairo_show_text (cr, "This is a link to the cairo website.");
* cairo_tag_end (cr, CAIRO_TAG_LINK);
* </programlisting></informalexample>
*
* The PDF backend uses one or more rectangles to define the clickable
* area of the link. By default cairo will use the extents of the
* drawing operations enclosed by the begin/end link tags to define the
* clickable area. In some cases, such as a link split across two
* lines, the default rectangle is undesirable.
*
* @rect: [optional] The "rect" attribute allows the application to
* specify one or more rectangles that form the clickable region. The
* value of this attribute is an array of floats. Each rectangle is
* specified by four elements in the array: x, y, width, height. The
* array size must be a multiple of four.
*
* An example of creating a link with user specified clickable region:
* <informalexample><programlisting>
* struct text {
* const char *s;
* double x, y;
* };
* const struct text text1 = { "This link is split", 450, 70 };
* const struct text text2 = { "across two lines", 50, 70 };
* cairo_text_extents_t text1_extents;
* cairo_text_extents_t text2_extents;
* char attribs[100];
*
* cairo_text_extents (cr, text1.s, &text1_extents);
* cairo_text_extents (cr, text2.s, &text2_extents);
* sprintf (attribs,
* "rect=[%f %f %f %f %f %f %f %f] uri='https://cairographics.org'",
* text1_extents.x_bearing + text1.x,
* text1_extents.y_bearing + text1.y,
* text1_extents.width,
* text1_extents.height,
* text2_extents.x_bearing + text2.x,
* text2_extents.y_bearing + text2.y,
* text2_extents.width,
* text2_extents.height);
*
* cairo_tag_begin (cr, CAIRO_TAG_LINK, attribs);
* cairo_move_to (cr, text1.x, text1.y);
* cairo_show_text (cr, text1.s);
* cairo_move_to (cr, text2.x, text2.y);
* cairo_show_text (cr, text2.s);
* cairo_tag_end (cr, CAIRO_TAG_LINK);
* </programlisting></informalexample>
*
* There are three types of links. Each type has its own attributes as detailed below.
* * [Internal Links][internal-link] - A link to a location in the same document
* * [URI Links][uri-link] - A link to a Uniform resource identifier
* * [File Links][file-link] - A link to a location in another document
*
* ## Internal Links ## {#internal-link}
* An internal link is a link to a location in the same document. The destination
* is specified with either:
*
* @dest: a UTF-8 string specifying the destination in the PDF file to link
* to. Destinations are created with the %CAIRO_TAG_DEST tag.
*
* or the two attributes:
*
* @page: An integer specifying the page number in the PDF file to link to.
*
* @pos: [optional] An array of two floats specifying the x,y position
* on the page.
*
* An example of the link attributes to link to a page and x,y position:
* <programlisting>
* "page=3 pos=[3.1 6.2]"
* </programlisting>
*
* ## URI Links ## {#uri-link}
* A URI link is a link to a Uniform Resource Identifier ([RFC 2396](http://tools.ietf.org/html/rfc2396)).
*
* A URI is specified with the following attribute:
*
* @uri: An ASCII string specifying the URI.
*
* An example of the link attributes to the cairo website:
* <programlisting>
* </programlisting>
*
* ## File Links ## {#file-link}
* A file link is a link a location in another PDF file.
*
* The file attribute (required) specifies the name of the PDF file:
*
* @file: File name of PDF file to link to.
*
* The position is specified by either:
*
* @dest: a UTF-8 string specifying the named destination in the PDF file.
*
* or
*
* @page: An integer specifying the page number in the PDF file.
*
* @pos: [optional] An array of two floats specifying the x,y
* position on the page. Position coordinates in external files are in PDF
* coordinates (0,0 at bottom left).
*
* An example of the link attributes to PDF file:
* <programlisting>
* "file='document.pdf' page=16 pos=[25 40]"
* </programlisting>
*
* # Destination Tags # {#dest}
*
* A destination is specified by enclosing the destination drawing
* operations with the %CAIRO_TAG_DEST tag.
*
* @name: [required] A UTF-8 string specifying the name of this destination.
*
* @x: [optional] A float specifying the x coordinate of destination
* position on this page. If not specified the default
* x coordinate is the left side of the extents of the
* operations enclosed by the %CAIRO_TAG_DEST begin/end tags. If
* no operations are enclosed, the x coordidate is 0.
*
* @y: [optional] A float specifying the y coordinate of destination
* position on this page. If not specified the default
* y coordinate is the top of the extents of the
* operations enclosed by the %CAIRO_TAG_DEST begin/end tags. If
* no operations are enclosed, the y coordidate is 0.
*
* @internal: A boolean that if true, the destination name may be
* omitted from PDF where possible. In this case, links
* refer directly to the page and position instead of via
* the named destination table. Note that if this
* destination is referenced by another PDF (see [File Links][file-link]),
* this attribute must be false. Default is false.
*
* <informalexample><programlisting>
* /&ast; Create a hyperlink &ast;/
* cairo_tag_begin (cr, CAIRO_TAG_LINK, "dest='mydest' internal");
* cairo_move_to (cr, 50, 50);
* cairo_show_text (cr, "This is a hyperlink.");
* cairo_tag_end (cr, CAIRO_TAG_LINK);
*
* /&ast; Create a destination &ast;/
* cairo_tag_begin (cr, CAIRO_TAG_DEST, "name='mydest'");
* cairo_move_to (cr, 50, 250);
* cairo_show_text (cr, "This paragraph is the destination of the above link.");
* cairo_tag_end (cr, CAIRO_TAG_DEST);
* </programlisting></informalexample>
*
* # Document Structure (PDF) # {#doc-struct}
*
* The document structure tags provide a means of specifying structural information
* such as headers, paragraphs, tables, and figures. The inclusion of structural information facilitates:
* * Extraction of text and graphics for copy and paste
* * Reflow of text and graphics in the viewer
* * Processing text eg searching and indexing
* * Conversion to other formats
* * Accessability support
*
* The list of structure types is specified in section 14.8.4 of the
*
* Note the PDF "Link" structure tag is the same as the cairo %CAIRO_TAG_LINK tag.
*
* The following example creates a document structure for a document containing two section, each with
* a header and a paragraph.
*
* <informalexample><programlisting>
* cairo_tag_begin (cr, "Document", NULL);
*
* cairo_tag_begin (cr, "Sect", NULL);
* cairo_tag_begin (cr, "H1", NULL);
* cairo_show_text (cr, "Heading 1");
* cairo_tag_end (cr, "H1");
*
* cairo_tag_begin (cr, "P", NULL);
* cairo_show_text (cr, "Paragraph 1");
* cairo_tag_end (cr, "P");
* cairo_tag_end (cr, "Sect");
*
* cairo_tag_begin (cr, "Sect", NULL);
* cairo_tag_begin (cr, "H1", NULL);
* cairo_show_text (cr, "Heading 2");
* cairo_tag_end (cr, "H1");
*
* cairo_tag_begin (cr, "P", NULL);
* cairo_show_text (cr, "Paragraph 2");
* cairo_tag_end (cr, "P");
* cairo_tag_end (cr, "Sect");
*
* cairo_tag_end (cr, "Document");
* </programlisting></informalexample>
*
**/
#define DEFINE_NIL_CONTEXT(status) \
{ \
CAIRO_REFERENCE_COUNT_INVALID, /* ref_count */ \
status, /* status */ \
{ 0, 0, 0, NULL }, /* user_data */ \
NULL \
}
static const cairo_t _cairo_nil[] = {
DEFINE_NIL_CONTEXT (CAIRO_STATUS_NO_MEMORY),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_RESTORE),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_POP_GROUP),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_NO_CURRENT_POINT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_MATRIX),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_STATUS),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_NULL_POINTER),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_STRING),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_PATH_DATA),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_READ_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_WRITE_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_SURFACE_FINISHED),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_SURFACE_TYPE_MISMATCH),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_PATTERN_TYPE_MISMATCH),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_CONTENT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_FORMAT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_VISUAL),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_FILE_NOT_FOUND),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_DASH),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_DSC_COMMENT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_INDEX),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_CLIP_NOT_REPRESENTABLE),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_TEMP_FILE_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_STRIDE),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_FONT_TYPE_MISMATCH),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_USER_FONT_IMMUTABLE),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_USER_FONT_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_NEGATIVE_COUNT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_CLUSTERS),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_SLANT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_WEIGHT),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_SIZE),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_DEVICE_TYPE_MISMATCH),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_DEVICE_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_INVALID_MESH_CONSTRUCTION),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_DEVICE_FINISHED),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_JBIG2_GLOBAL_MISSING),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_PNG_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_FREETYPE_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_WIN32_GDI_ERROR),
DEFINE_NIL_CONTEXT (CAIRO_STATUS_TAG_ERROR)
};
COMPILE_TIME_ASSERT (ARRAY_LENGTH (_cairo_nil) == CAIRO_STATUS_LAST_STATUS - 1);
/**
* _cairo_set_error:
* @cr: a cairo context
* @status: a status value indicating an error
*
* Atomically sets cr->status to @status and calls _cairo_error;
* Does nothing if status is %CAIRO_STATUS_SUCCESS.
*
* All assignments of an error status to cr->status should happen
* through _cairo_set_error(). Note that due to the nature of the atomic
* operation, it is not safe to call this function on the nil objects.
*
* The purpose of this function is to allow the user to set a
* breakpoint in _cairo_error() to generate a stack trace for when the
* user causes cairo to detect an error.
**/
static void
_cairo_set_error (cairo_t *cr, cairo_status_t status)
{
/* Don't overwrite an existing error. This preserves the first
* error, which is the most significant. */
_cairo_status_set_error (&cr->status, _cairo_error (status));
}
cairo_t *
_cairo_create_in_error (cairo_status_t status)
{
cairo_t *cr;
assert (status != CAIRO_STATUS_SUCCESS);
cr = (cairo_t *) &_cairo_nil[status - CAIRO_STATUS_NO_MEMORY];
assert (status == cr->status);
return cr;
}
/**
* cairo_create:
* @target: target surface for the context
*
* Creates a new #cairo_t with all graphics state parameters set to
* default values and with @target as a target surface. The target
* surface should be constructed with a backend-specific function such
* as cairo_image_surface_create() (or any other
* <function>cairo_<emphasis>backend</emphasis>_surface_create(<!-- -->)</function>
* variant).
*
* This function references @target, so you can immediately
* call cairo_surface_destroy() on it if you don't need to
* maintain a separate reference to it.
*
* Return value: a newly allocated #cairo_t with a reference
* count of 1. The initial reference count should be released
* with cairo_destroy() when you are done using the #cairo_t.
* This function never returns %NULL. If memory cannot be
* allocated, a special #cairo_t object will be returned on
* which cairo_status() returns %CAIRO_STATUS_NO_MEMORY. If
* you attempt to target a surface which does not support
* writing (such as #cairo_mime_surface_t) then a
* %CAIRO_STATUS_WRITE_ERROR will be raised. You can use this
* object normally, but no drawing will be done.
*
* Since: 1.0
**/
cairo_t *
cairo_create (cairo_surface_t *target)
{
if (unlikely (target == NULL))
return _cairo_create_in_error (_cairo_error (CAIRO_STATUS_NULL_POINTER));
if (unlikely (target->status))
return _cairo_create_in_error (target->status);
if (unlikely (target->finished))
return _cairo_create_in_error (_cairo_error (CAIRO_STATUS_SURFACE_FINISHED));
if (target->backend->create_context == NULL)
return _cairo_create_in_error (_cairo_error (CAIRO_STATUS_WRITE_ERROR));
return target->backend->create_context (target);
}
slim_hidden_def (cairo_create);
void
_cairo_init (cairo_t *cr,
const cairo_backend_t *backend)
{
CAIRO_REFERENCE_COUNT_INIT (&cr->ref_count, 1);
cr->status = CAIRO_STATUS_SUCCESS;
_cairo_user_data_array_init (&cr->user_data);
cr->backend = backend;
}
/**
* cairo_reference:
* @cr: a #cairo_t
*
* Increases the reference count on @cr by one. This prevents
* @cr from being destroyed until a matching call to cairo_destroy()
* is made.
*
* Use cairo_get_reference_count() to get the number of references to
* a #cairo_t.
*
* Return value: the referenced #cairo_t.
*
* Since: 1.0
**/
cairo_t *
cairo_reference (cairo_t *cr)
{
if (cr == NULL || CAIRO_REFERENCE_COUNT_IS_INVALID (&cr->ref_count))
return cr;
assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&cr->ref_count));
_cairo_reference_count_inc (&cr->ref_count);
return cr;
}
void
_cairo_fini (cairo_t *cr)
{
_cairo_user_data_array_fini (&cr->user_data);
}
/**
* cairo_destroy:
* @cr: a #cairo_t
*
* Decreases the reference count on @cr by one. If the result
* is zero, then @cr and all associated resources are freed.
* See cairo_reference().
*
* Since: 1.0
**/
void
cairo_destroy (cairo_t *cr)
{
if (cr == NULL || CAIRO_REFERENCE_COUNT_IS_INVALID (&cr->ref_count))
return;
assert (CAIRO_REFERENCE_COUNT_HAS_REFERENCE (&cr->ref_count));
if (! _cairo_reference_count_dec_and_test (&cr->ref_count))
return;
cr->backend->destroy (cr);
}
slim_hidden_def (cairo_destroy);
/**
* cairo_get_user_data:
* @cr: a #cairo_t
* @key: the address of the #cairo_user_data_key_t the user data was
* attached to
*
* Return user data previously attached to @cr using the specified
* key. If no user data has been attached with the given key this
* function returns %NULL.
*
* Return value: the user data previously attached or %NULL.
*
* Since: 1.4
**/
void *
cairo_get_user_data (cairo_t *cr,
const cairo_user_data_key_t *key)
{
return _cairo_user_data_array_get_data (&cr->user_data, key);
}
/**
* cairo_set_user_data:
* @cr: a #cairo_t
* @key: the address of a #cairo_user_data_key_t to attach the user data to
* @user_data: the user data to attach to the #cairo_t
* @destroy: a #cairo_destroy_func_t which will be called when the
* #cairo_t is destroyed or when new user data is attached using the
* same key.
*
* Attach user data to @cr. To remove user data from a surface,
* call this function with the key that was used to set it and %NULL
* for @data.
*
* Return value: %CAIRO_STATUS_SUCCESS or %CAIRO_STATUS_NO_MEMORY if a
* slot could not be allocated for the user data.
*
* Since: 1.4
**/
cairo_status_t
cairo_set_user_data (cairo_t *cr,
const cairo_user_data_key_t *key,
void *user_data,
cairo_destroy_func_t destroy)
{
if (CAIRO_REFERENCE_COUNT_IS_INVALID (&cr->ref_count))
return cr->status;
return _cairo_user_data_array_set_data (&cr->user_data,
key, user_data, destroy);
}
/**
* cairo_get_reference_count:
* @cr: a #cairo_t
*
* Returns the current reference count of @cr.
*
* Return value: the current reference count of @cr. If the
* object is a nil object, 0 will be returned.
*
* Since: 1.4
**/
unsigned int
cairo_get_reference_count (cairo_t *cr)
{
if (cr == NULL || CAIRO_REFERENCE_COUNT_IS_INVALID (&cr->ref_count))
return 0;
return CAIRO_REFERENCE_COUNT_GET_VALUE (&cr->ref_count);
}
/**
* cairo_save:
* @cr: a #cairo_t
*
* Makes a copy of the current state of @cr and saves it
* on an internal stack of saved states for @cr. When
* cairo_restore() is called, @cr will be restored to
* the saved state. Multiple calls to cairo_save() and
* cairo_restore() can be nested; each call to cairo_restore()
* restores the state from the matching paired cairo_save().
*
* It isn't necessary to clear all saved states before
* a #cairo_t is freed. If the reference count of a #cairo_t
* drops to zero in response to a call to cairo_destroy(),
* any saved states will be freed along with the #cairo_t.
*
* Since: 1.0
**/
void
cairo_save (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->save (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_save);
/**
* cairo_restore:
* @cr: a #cairo_t
*
* Restores @cr to the state saved by a preceding call to
* cairo_save() and removes that state from the stack of
* saved states.
*
* Since: 1.0
**/
void
cairo_restore (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->restore (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_restore);
/**
* cairo_push_group:
* @cr: a cairo context
*
* Temporarily redirects drawing to an intermediate surface known as a
* group. The redirection lasts until the group is completed by a call
* to cairo_pop_group() or cairo_pop_group_to_source(). These calls
* provide the result of any drawing to the group as a pattern,
* (either as an explicit object, or set as the source pattern).
*
* This group functionality can be convenient for performing
* intermediate compositing. One common use of a group is to render
* objects as opaque within the group, (so that they occlude each
* other), and then blend the result with translucence onto the
* destination.
*
* Groups can be nested arbitrarily deep by making balanced calls to
* cairo_push_group()/cairo_pop_group(). Each call pushes/pops the new
* target group onto/from a stack.
*
* The cairo_push_group() function calls cairo_save() so that any
* changes to the graphics state will not be visible outside the
* group, (the pop_group functions call cairo_restore()).
*
* By default the intermediate group will have a content type of
* %CAIRO_CONTENT_COLOR_ALPHA. Other content types can be chosen for
* the group by using cairo_push_group_with_content() instead.
*
* As an example, here is how one might fill and stroke a path with
* translucence, but without any portion of the fill being visible
* under the stroke:
*
* <informalexample><programlisting>
* cairo_push_group (cr);
* cairo_set_source (cr, fill_pattern);
* cairo_fill_preserve (cr);
* cairo_set_source (cr, stroke_pattern);
* cairo_stroke (cr);
* cairo_pop_group_to_source (cr);
* cairo_paint_with_alpha (cr, alpha);
* </programlisting></informalexample>
*
* Since: 1.2
**/
void
cairo_push_group (cairo_t *cr)
{
cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA);
}
/**
* cairo_push_group_with_content:
* @cr: a cairo context
* @content: a #cairo_content_t indicating the type of group that
* will be created
*
* Temporarily redirects drawing to an intermediate surface known as a
* group. The redirection lasts until the group is completed by a call
* to cairo_pop_group() or cairo_pop_group_to_source(). These calls
* provide the result of any drawing to the group as a pattern,
* (either as an explicit object, or set as the source pattern).
*
* The group will have a content type of @content. The ability to
* control this content type is the only distinction between this
* function and cairo_push_group() which you should see for a more
* detailed description of group rendering.
*
* Since: 1.2
**/
void
cairo_push_group_with_content (cairo_t *cr, cairo_content_t content)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->push_group (cr, content);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_push_group_with_content);
/**
* cairo_pop_group:
* @cr: a cairo context
*
* Terminates the redirection begun by a call to cairo_push_group() or
* cairo_push_group_with_content() and returns a new pattern
* containing the results of all drawing operations performed to the
* group.
*
* The cairo_pop_group() function calls cairo_restore(), (balancing a
* call to cairo_save() by the push_group function), so that any
* changes to the graphics state will not be visible outside the
* group.
*
* Return value: a newly created (surface) pattern containing the
* results of all drawing operations performed to the group. The
* caller owns the returned object and should call
* cairo_pattern_destroy() when finished with it.
*
* Since: 1.2
**/
cairo_pattern_t *
cairo_pop_group (cairo_t *cr)
{
cairo_pattern_t *group_pattern;
if (unlikely (cr->status))
return _cairo_pattern_create_in_error (cr->status);
group_pattern = cr->backend->pop_group (cr);
if (unlikely (group_pattern->status))
_cairo_set_error (cr, group_pattern->status);
return group_pattern;
}
slim_hidden_def(cairo_pop_group);
/**
* cairo_pop_group_to_source:
* @cr: a cairo context
*
* Terminates the redirection begun by a call to cairo_push_group() or
* cairo_push_group_with_content() and installs the resulting pattern
* as the source pattern in the given cairo context.
*
* The behavior of this function is equivalent to the sequence of
* operations:
*
* <informalexample><programlisting>
* cairo_pattern_t *group = cairo_pop_group (cr);
* cairo_set_source (cr, group);
* cairo_pattern_destroy (group);
* </programlisting></informalexample>
*
* but is more convenient as their is no need for a variable to store
* the short-lived pointer to the pattern.
*
* The cairo_pop_group() function calls cairo_restore(), (balancing a
* call to cairo_save() by the push_group function), so that any
* changes to the graphics state will not be visible outside the
* group.
*
* Since: 1.2
**/
void
cairo_pop_group_to_source (cairo_t *cr)
{
cairo_pattern_t *group_pattern;
group_pattern = cairo_pop_group (cr);
cairo_set_source (cr, group_pattern);
cairo_pattern_destroy (group_pattern);
}
/**
* cairo_set_operator:
* @cr: a #cairo_t
* @op: a compositing operator, specified as a #cairo_operator_t
*
* Sets the compositing operator to be used for all drawing
* operations. See #cairo_operator_t for details on the semantics of
* each available compositing operator.
*
* The default operator is %CAIRO_OPERATOR_OVER.
*
* Since: 1.0
**/
void
cairo_set_operator (cairo_t *cr, cairo_operator_t op)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_operator (cr, op);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_operator);
#if 0
/*
* cairo_set_opacity:
* @cr: a #cairo_t
* @opacity: the level of opacity to use when compositing
*
* Sets the compositing opacity to be used for all drawing
* operations. The effect is to fade out the operations
* using the alpha value.
*
* The default opacity is 1.
*/
void
cairo_set_opacity (cairo_t *cr, double opacity)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_opacity (cr, opacity);
if (unlikely (status))
_cairo_set_error (cr, status);
}
#endif
/**
* cairo_set_source_rgb:
* @cr: a cairo context
* @red: red component of color
* @green: green component of color
* @blue: blue component of color
*
* Sets the source pattern within @cr to an opaque color. This opaque
* color will then be used for any subsequent drawing operation until
* a new source pattern is set.
*
* The color components are floating point numbers in the range 0 to
* 1. If the values passed in are outside that range, they will be
* clamped.
*
* The default source pattern is opaque black, (that is, it is
* equivalent to cairo_set_source_rgb(cr, 0.0, 0.0, 0.0)).
*
* Since: 1.0
**/
void
cairo_set_source_rgb (cairo_t *cr, double red, double green, double blue)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_source_rgba (cr, red, green, blue, 1.);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_source_rgb);
/**
* cairo_set_source_rgba:
* @cr: a cairo context
* @red: red component of color
* @green: green component of color
* @blue: blue component of color
* @alpha: alpha component of color
*
* Sets the source pattern within @cr to a translucent color. This
* color will then be used for any subsequent drawing operation until
* a new source pattern is set.
*
* The color and alpha components are floating point numbers in the
* range 0 to 1. If the values passed in are outside that range, they
* will be clamped.
*
* The default source pattern is opaque black, (that is, it is
* equivalent to cairo_set_source_rgba(cr, 0.0, 0.0, 0.0, 1.0)).
*
* Since: 1.0
**/
void
cairo_set_source_rgba (cairo_t *cr,
double red, double green, double blue,
double alpha)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_source_rgba (cr, red, green, blue, alpha);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_set_source_surface:
* @cr: a cairo context
* @surface: a surface to be used to set the source pattern
* @x: User-space X coordinate for surface origin
* @y: User-space Y coordinate for surface origin
*
* This is a convenience function for creating a pattern from @surface
* and setting it as the source in @cr with cairo_set_source().
*
* The @x and @y parameters give the user-space coordinate at which
* the surface origin should appear. (The surface origin is its
* upper-left corner before any transformation has been applied.) The
* @x and @y parameters are negated and then set as translation values
* in the pattern matrix.
*
* Other than the initial translation pattern matrix, as described
* above, all other pattern attributes, (such as its extend mode), are
* set to the default values as in cairo_pattern_create_for_surface().
* The resulting pattern can be queried with cairo_get_source() so
* that these attributes can be modified if desired, (eg. to create a
* repeating pattern with cairo_pattern_set_extend()).
*
* Since: 1.0
**/
void
cairo_set_source_surface (cairo_t *cr,
cairo_surface_t *surface,
double x,
double y)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (unlikely (surface == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
status = cr->backend->set_source_surface (cr, surface, x, y);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_source_surface);
/**
* cairo_set_source:
* @cr: a cairo context
* @source: a #cairo_pattern_t to be used as the source for
* subsequent drawing operations.
*
* Sets the source pattern within @cr to @source. This pattern
* will then be used for any subsequent drawing operation until a new
* source pattern is set.
*
* Note: The pattern's transformation matrix will be locked to the
* user space in effect at the time of cairo_set_source(). This means
* that further modifications of the current transformation matrix
* will not affect the source pattern. See cairo_pattern_set_matrix().
*
* The default source pattern is a solid pattern that is opaque black,
* (that is, it is equivalent to cairo_set_source_rgb(cr, 0.0, 0.0,
* 0.0)).
*
* Since: 1.0
**/
void
cairo_set_source (cairo_t *cr, cairo_pattern_t *source)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (unlikely (source == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
if (unlikely (source->status)) {
_cairo_set_error (cr, source->status);
return;
}
status = cr->backend->set_source (cr, source);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_source);
/**
* cairo_get_source:
* @cr: a cairo context
*
* Gets the current source pattern for @cr.
*
* Return value: the current source pattern. This object is owned by
* cairo. To keep a reference to it, you must call
* cairo_pattern_reference().
*
* Since: 1.0
**/
cairo_pattern_t *
cairo_get_source (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_pattern_create_in_error (cr->status);
return cr->backend->get_source (cr);
}
/**
* cairo_set_tolerance:
* @cr: a #cairo_t
* @tolerance: the tolerance, in device units (typically pixels)
*
* Sets the tolerance used when converting paths into trapezoids.
* Curved segments of the path will be subdivided until the maximum
* deviation between the original path and the polygonal approximation
* is less than @tolerance. The default value is 0.1. A larger
* value will give better performance, a smaller value, better
* appearance. (Reducing the value from the default value of 0.1
* is unlikely to improve appearance significantly.) The accuracy of paths
* within Cairo is limited by the precision of its internal arithmetic, and
* the prescribed @tolerance is restricted to the smallest
* representable internal value.
*
* Since: 1.0
**/
void
cairo_set_tolerance (cairo_t *cr, double tolerance)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_tolerance (cr, tolerance);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_tolerance);
/**
* cairo_set_antialias:
* @cr: a #cairo_t
* @antialias: the new antialiasing mode
*
* Set the antialiasing mode of the rasterizer used for drawing shapes.
* This value is a hint, and a particular backend may or may not support
* a particular value. At the current time, no backend supports
* %CAIRO_ANTIALIAS_SUBPIXEL when drawing shapes.
*
* Note that this option does not affect text rendering, instead see
* cairo_font_options_set_antialias().
*
* Since: 1.0
**/
void
cairo_set_antialias (cairo_t *cr, cairo_antialias_t antialias)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_antialias (cr, antialias);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_set_fill_rule:
* @cr: a #cairo_t
* @fill_rule: a fill rule, specified as a #cairo_fill_rule_t
*
* Set the current fill rule within the cairo context. The fill rule
* is used to determine which regions are inside or outside a complex
* (potentially self-intersecting) path. The current fill rule affects
* both cairo_fill() and cairo_clip(). See #cairo_fill_rule_t for details
* on the semantics of each available fill rule.
*
* The default fill rule is %CAIRO_FILL_RULE_WINDING.
*
* Since: 1.0
**/
void
cairo_set_fill_rule (cairo_t *cr, cairo_fill_rule_t fill_rule)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_fill_rule (cr, fill_rule);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_set_line_width:
* @cr: a #cairo_t
* @width: a line width
*
* Sets the current line width within the cairo context. The line
* width value specifies the diameter of a pen that is circular in
* user space, (though device-space pen may be an ellipse in general
* due to scaling/shear/rotation of the CTM).
*
* Note: When the description above refers to user space and CTM it
* refers to the user space and CTM in effect at the time of the
* stroking operation, not the user space and CTM in effect at the
* time of the call to cairo_set_line_width(). The simplest usage
* makes both of these spaces identical. That is, if there is no
* change to the CTM between a call to cairo_set_line_width() and the
* stroking operation, then one can just pass user-space values to
* cairo_set_line_width() and ignore this note.
*
* As with the other stroke parameters, the current line width is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
*
* The default line width value is 2.0.
*
* Since: 1.0
**/
void
cairo_set_line_width (cairo_t *cr, double width)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (width < 0.)
width = 0.;
status = cr->backend->set_line_width (cr, width);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_line_width);
/**
* cairo_set_line_cap:
* @cr: a cairo context
* @line_cap: a line cap style
*
* Sets the current line cap style within the cairo context. See
* #cairo_line_cap_t for details about how the available line cap
* styles are drawn.
*
* As with the other stroke parameters, the current line cap style is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
*
* The default line cap style is %CAIRO_LINE_CAP_BUTT.
*
* Since: 1.0
**/
void
cairo_set_line_cap (cairo_t *cr, cairo_line_cap_t line_cap)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_line_cap (cr, line_cap);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_line_cap);
/**
* cairo_set_line_join:
* @cr: a cairo context
* @line_join: a line join style
*
* Sets the current line join style within the cairo context. See
* #cairo_line_join_t for details about how the available line join
* styles are drawn.
*
* As with the other stroke parameters, the current line join style is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
*
* The default line join style is %CAIRO_LINE_JOIN_MITER.
*
* Since: 1.0
**/
void
cairo_set_line_join (cairo_t *cr, cairo_line_join_t line_join)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_line_join (cr, line_join);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_line_join);
/**
* cairo_set_dash:
* @cr: a cairo context
* @dashes: an array specifying alternate lengths of on and off stroke portions
* @num_dashes: the length of the dashes array
* @offset: an offset into the dash pattern at which the stroke should start
*
* Sets the dash pattern to be used by cairo_stroke(). A dash pattern
* is specified by @dashes, an array of positive values. Each value
* provides the length of alternate "on" and "off" portions of the
* stroke. The @offset specifies an offset into the pattern at which
* the stroke begins.
*
* Each "on" segment will have caps applied as if the segment were a
* separate sub-path. In particular, it is valid to use an "on" length
* of 0.0 with %CAIRO_LINE_CAP_ROUND or %CAIRO_LINE_CAP_SQUARE in order
* to distributed dots or squares along a path.
*
* Note: The length values are in user-space units as evaluated at the
* time of stroking. This is not necessarily the same as the user
* space at the time of cairo_set_dash().
*
* If @num_dashes is 0 dashing is disabled.
*
* If @num_dashes is 1 a symmetric pattern is assumed with alternating
* on and off portions of the size specified by the single value in
* @dashes.
*
* If any value in @dashes is negative, or if all values are 0, then
* @cr will be put into an error state with a status of
* %CAIRO_STATUS_INVALID_DASH.
*
* Since: 1.0
**/
void
cairo_set_dash (cairo_t *cr,
const double *dashes,
int num_dashes,
double offset)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_dash (cr, dashes, num_dashes, offset);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_get_dash_count:
* @cr: a #cairo_t
*
* This function returns the length of the dash array in @cr (0 if dashing
* is not currently in effect).
*
* See also cairo_set_dash() and cairo_get_dash().
*
* Return value: the length of the dash array, or 0 if no dash array set.
*
* Since: 1.4
**/
int
cairo_get_dash_count (cairo_t *cr)
{
int num_dashes;
if (unlikely (cr->status))
return 0;
cr->backend->get_dash (cr, NULL, &num_dashes, NULL);
return num_dashes;
}
/**
* cairo_get_dash:
* @cr: a #cairo_t
* @dashes: return value for the dash array, or %NULL
* @offset: return value for the current dash offset, or %NULL
*
* Gets the current dash array. If not %NULL, @dashes should be big
* enough to hold at least the number of values returned by
* cairo_get_dash_count().
*
* Since: 1.4
**/
void
cairo_get_dash (cairo_t *cr,
double *dashes,
double *offset)
{
if (unlikely (cr->status))
return;
cr->backend->get_dash (cr, dashes, NULL, offset);
}
/**
* cairo_set_miter_limit:
* @cr: a cairo context
* @limit: miter limit to set
*
* Sets the current miter limit within the cairo context.
*
* If the current line join style is set to %CAIRO_LINE_JOIN_MITER
* (see cairo_set_line_join()), the miter limit is used to determine
* whether the lines should be joined with a bevel instead of a miter.
* Cairo divides the length of the miter by the line width.
* If the result is greater than the miter limit, the style is
* converted to a bevel.
*
* As with the other stroke parameters, the current line miter limit is
* examined by cairo_stroke(), cairo_stroke_extents(), and
* cairo_stroke_to_path(), but does not have any effect during path
* construction.
*
* The default miter limit value is 10.0, which will convert joins
* with interior angles less than 11 degrees to bevels instead of
* miters. For reference, a miter limit of 2.0 makes the miter cutoff
* at 60 degrees, and a miter limit of 1.414 makes the cutoff at 90
* degrees.
*
* A miter limit for a desired angle can be computed as: miter limit =
* 1/sin(angle/2)
*
* Since: 1.0
**/
void
cairo_set_miter_limit (cairo_t *cr, double limit)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_miter_limit (cr, limit);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_translate:
* @cr: a cairo context
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Modifies the current transformation matrix (CTM) by translating the
* user-space origin by (@tx, @ty). This offset is interpreted as a
* user-space coordinate according to the CTM in place before the new
* call to cairo_translate(). In other words, the translation of the
* user-space origin takes place after any existing transformation.
*
* Since: 1.0
**/
void
cairo_translate (cairo_t *cr, double tx, double ty)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->translate (cr, tx, ty);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_translate);
/**
* cairo_scale:
* @cr: a cairo context
* @sx: scale factor for the X dimension
* @sy: scale factor for the Y dimension
*
* Modifies the current transformation matrix (CTM) by scaling the X
* and Y user-space axes by @sx and @sy respectively. The scaling of
* the axes takes place after any existing transformation of user
* space.
*
* Since: 1.0
**/
void
cairo_scale (cairo_t *cr, double sx, double sy)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->scale (cr, sx, sy);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_scale);
/**
* cairo_rotate:
* @cr: a cairo context
* @angle: angle (in radians) by which the user-space axes will be
* rotated
*
* Modifies the current transformation matrix (CTM) by rotating the
* user-space axes by @angle radians. The rotation of the axes takes
* places after any existing transformation of user space. The
* rotation direction for positive angles is from the positive X axis
* toward the positive Y axis.
*
* Since: 1.0
**/
void
cairo_rotate (cairo_t *cr, double angle)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->rotate (cr, angle);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_transform:
* @cr: a cairo context
* @matrix: a transformation to be applied to the user-space axes
*
* Modifies the current transformation matrix (CTM) by applying
* @matrix as an additional transformation. The new transformation of
* user space takes place after any existing transformation.
*
* Since: 1.0
**/
void
cairo_transform (cairo_t *cr,
const cairo_matrix_t *matrix)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->transform (cr, matrix);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_transform);
/**
* cairo_set_matrix:
* @cr: a cairo context
* @matrix: a transformation matrix from user space to device space
*
* Modifies the current transformation matrix (CTM) by setting it
* equal to @matrix.
*
* Since: 1.0
**/
void
cairo_set_matrix (cairo_t *cr,
const cairo_matrix_t *matrix)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_matrix (cr, matrix);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_matrix);
/**
* cairo_identity_matrix:
* @cr: a cairo context
*
* Resets the current transformation matrix (CTM) by setting it equal
* to the identity matrix. That is, the user-space and device-space
* axes will be aligned and one user-space unit will transform to one
* device-space unit.
*
* Since: 1.0
**/
void
cairo_identity_matrix (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_identity_matrix (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_user_to_device:
* @cr: a cairo context
* @x: X value of coordinate (in/out parameter)
* @y: Y value of coordinate (in/out parameter)
*
* Transform a coordinate from user space to device space by
* multiplying the given point by the current transformation matrix
* (CTM).
*
* Since: 1.0
**/
void
cairo_user_to_device (cairo_t *cr, double *x, double *y)
{
if (unlikely (cr->status))
return;
cr->backend->user_to_device (cr, x, y);
}
slim_hidden_def (cairo_user_to_device);
/**
* cairo_user_to_device_distance:
* @cr: a cairo context
* @dx: X component of a distance vector (in/out parameter)
* @dy: Y component of a distance vector (in/out parameter)
*
* Transform a distance vector from user space to device space. This
* function is similar to cairo_user_to_device() except that the
* translation components of the CTM will be ignored when transforming
* (@dx,@dy).
*
* Since: 1.0
**/
void
cairo_user_to_device_distance (cairo_t *cr, double *dx, double *dy)
{
if (unlikely (cr->status))
return;
cr->backend->user_to_device_distance (cr, dx, dy);
}
slim_hidden_def (cairo_user_to_device_distance);
/**
* cairo_device_to_user:
* @cr: a cairo
* @x: X value of coordinate (in/out parameter)
* @y: Y value of coordinate (in/out parameter)
*
* Transform a coordinate from device space to user space by
* multiplying the given point by the inverse of the current
* transformation matrix (CTM).
*
* Since: 1.0
**/
void
cairo_device_to_user (cairo_t *cr, double *x, double *y)
{
if (unlikely (cr->status))
return;
cr->backend->device_to_user (cr, x, y);
}
slim_hidden_def (cairo_device_to_user);
/**
* cairo_device_to_user_distance:
* @cr: a cairo context
* @dx: X component of a distance vector (in/out parameter)
* @dy: Y component of a distance vector (in/out parameter)
*
* Transform a distance vector from device space to user space. This
* function is similar to cairo_device_to_user() except that the
* translation components of the inverse CTM will be ignored when
* transforming (@dx,@dy).
*
* Since: 1.0
**/
void
cairo_device_to_user_distance (cairo_t *cr, double *dx, double *dy)
{
if (unlikely (cr->status))
return;
cr->backend->device_to_user_distance (cr, dx, dy);
}
/**
* cairo_new_path:
* @cr: a cairo context
*
* Clears the current path. After this call there will be no path and
* no current point.
*
* Since: 1.0
**/
void
cairo_new_path (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->new_path (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_new_path);
/**
* cairo_new_sub_path:
* @cr: a cairo context
*
* Begin a new sub-path. Note that the existing path is not
* affected. After this call there will be no current point.
*
* In many cases, this call is not needed since new sub-paths are
* frequently started with cairo_move_to().
*
* A call to cairo_new_sub_path() is particularly useful when
* beginning a new sub-path with one of the cairo_arc() calls. This
* makes things easier as it is no longer necessary to manually
* compute the arc's initial coordinates for a call to
* cairo_move_to().
*
* Since: 1.2
**/
void
cairo_new_sub_path (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->new_sub_path (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_move_to:
* @cr: a cairo context
* @x: the X coordinate of the new position
* @y: the Y coordinate of the new position
*
* Begin a new sub-path. After this call the current point will be (@x,
* @y).
*
* Since: 1.0
**/
void
cairo_move_to (cairo_t *cr, double x, double y)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->move_to (cr, x, y);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_move_to);
/**
* cairo_line_to:
* @cr: a cairo context
* @x: the X coordinate of the end of the new line
* @y: the Y coordinate of the end of the new line
*
* Adds a line to the path from the current point to position (@x, @y)
* in user-space coordinates. After this call the current point
* will be (@x, @y).
*
* If there is no current point before the call to cairo_line_to()
* this function will behave as cairo_move_to(@cr, @x, @y).
*
* Since: 1.0
**/
void
cairo_line_to (cairo_t *cr, double x, double y)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->line_to (cr, x, y);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_line_to);
/**
* cairo_curve_to:
* @cr: a cairo context
* @x1: the X coordinate of the first control point
* @y1: the Y coordinate of the first control point
* @x2: the X coordinate of the second control point
* @y2: the Y coordinate of the second control point
* @x3: the X coordinate of the end of the curve
* @y3: the Y coordinate of the end of the curve
*
* Adds a cubic Bézier spline to the path from the current point to
* position (@x3, @y3) in user-space coordinates, using (@x1, @y1) and
* (@x2, @y2) as the control points. After this call the current point
* will be (@x3, @y3).
*
* If there is no current point before the call to cairo_curve_to()
* this function will behave as if preceded by a call to
* cairo_move_to(@cr, @x1, @y1).
*
* Since: 1.0
**/
void
cairo_curve_to (cairo_t *cr,
double x1, double y1,
double x2, double y2,
double x3, double y3)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->curve_to (cr,
x1, y1,
x2, y2,
x3, y3);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_curve_to);
/**
* cairo_arc:
* @cr: a cairo context
* @xc: X position of the center of the arc
* @yc: Y position of the center of the arc
* @radius: the radius of the arc
* @angle1: the start angle, in radians
* @angle2: the end angle, in radians
*
* Adds a circular arc of the given @radius to the current path. The
* arc is centered at (@xc, @yc), begins at @angle1 and proceeds in
* the direction of increasing angles to end at @angle2. If @angle2 is
* less than @angle1 it will be progressively increased by
* <literal>2*M_PI</literal> until it is greater than @angle1.
*
* If there is a current point, an initial line segment will be added
* to the path to connect the current point to the beginning of the
* arc. If this initial line is undesired, it can be avoided by
* calling cairo_new_sub_path() before calling cairo_arc().
*
* Angles are measured in radians. An angle of 0.0 is in the direction
* of the positive X axis (in user space). An angle of
* <literal>M_PI/2.0</literal> radians (90 degrees) is in the
* direction of the positive Y axis (in user space). Angles increase
* in the direction from the positive X axis toward the positive Y
* axis. So with the default transformation matrix, angles increase in
* a clockwise direction.
*
* (To convert from degrees to radians, use <literal>degrees * (M_PI /
* 180.)</literal>.)
*
* This function gives the arc in the direction of increasing angles;
* see cairo_arc_negative() to get the arc in the direction of
* decreasing angles.
*
* The arc is circular in user space. To achieve an elliptical arc,
* you can scale the current transformation matrix by different
* amounts in the X and Y directions. For example, to draw an ellipse
* in the box given by @x, @y, @width, @height:
*
* <informalexample><programlisting>
* cairo_save (cr);
* cairo_translate (cr, x + width / 2., y + height / 2.);
* cairo_scale (cr, width / 2., height / 2.);
* cairo_arc (cr, 0., 0., 1., 0., 2 * M_PI);
* cairo_restore (cr);
* </programlisting></informalexample>
*
* Since: 1.0
**/
void
cairo_arc (cairo_t *cr,
double xc, double yc,
double radius,
double angle1, double angle2)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (angle2 < angle1) {
/* increase angle2 by multiples of full circle until it
* satisfies angle2 >= angle1 */
angle2 = fmod (angle2 - angle1, 2 * M_PI);
if (angle2 < 0)
angle2 += 2 * M_PI;
angle2 += angle1;
}
status = cr->backend->arc (cr, xc, yc, radius, angle1, angle2, TRUE);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_arc_negative:
* @cr: a cairo context
* @xc: X position of the center of the arc
* @yc: Y position of the center of the arc
* @radius: the radius of the arc
* @angle1: the start angle, in radians
* @angle2: the end angle, in radians
*
* Adds a circular arc of the given @radius to the current path. The
* arc is centered at (@xc, @yc), begins at @angle1 and proceeds in
* the direction of decreasing angles to end at @angle2. If @angle2 is
* greater than @angle1 it will be progressively decreased by
* <literal>2*M_PI</literal> until it is less than @angle1.
*
* See cairo_arc() for more details. This function differs only in the
* direction of the arc between the two angles.
*
* Since: 1.0
**/
void
cairo_arc_negative (cairo_t *cr,
double xc, double yc,
double radius,
double angle1, double angle2)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (angle2 > angle1) {
/* decrease angle2 by multiples of full circle until it
* satisfies angle2 <= angle1 */
angle2 = fmod (angle2 - angle1, 2 * M_PI);
if (angle2 > 0)
angle2 -= 2 * M_PI;
angle2 += angle1;
}
status = cr->backend->arc (cr, xc, yc, radius, angle1, angle2, FALSE);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/* XXX: NYI
void
cairo_arc_to (cairo_t *cr,
double x1, double y1,
double x2, double y2,
double radius)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->arc_to (cr, x1, y1, x2, y2, radius);
if (unlikely (status))
_cairo_set_error (cr, status);
}
void
cairo_rel_arc_to (cairo_t *cr,
double dx1, double dy1,
double dx2, double dy2,
double radius)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->rel_arc_to (cr, dx1, dy1, dx2, dy2, radius);
if (unlikely (status))
_cairo_set_error (cr, status);
}
*/
/**
* cairo_rel_move_to:
* @cr: a cairo context
* @dx: the X offset
* @dy: the Y offset
*
* Begin a new sub-path. After this call the current point will offset
* by (@x, @y).
*
* Given a current point of (x, y), cairo_rel_move_to(@cr, @dx, @dy)
* is logically equivalent to cairo_move_to(@cr, x + @dx, y + @dy).
*
* It is an error to call this function with no current point. Doing
* so will cause @cr to shutdown with a status of
* %CAIRO_STATUS_NO_CURRENT_POINT.
*
* Since: 1.0
**/
void
cairo_rel_move_to (cairo_t *cr, double dx, double dy)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->rel_move_to (cr, dx, dy);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_rel_line_to:
* @cr: a cairo context
* @dx: the X offset to the end of the new line
* @dy: the Y offset to the end of the new line
*
* Relative-coordinate version of cairo_line_to(). Adds a line to the
* path from the current point to a point that is offset from the
* current point by (@dx, @dy) in user space. After this call the
* current point will be offset by (@dx, @dy).
*
* Given a current point of (x, y), cairo_rel_line_to(@cr, @dx, @dy)
* is logically equivalent to cairo_line_to(@cr, x + @dx, y + @dy).
*
* It is an error to call this function with no current point. Doing
* so will cause @cr to shutdown with a status of
* %CAIRO_STATUS_NO_CURRENT_POINT.
*
* Since: 1.0
**/
void
cairo_rel_line_to (cairo_t *cr, double dx, double dy)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->rel_line_to (cr, dx, dy);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_rel_line_to);
/**
* cairo_rel_curve_to:
* @cr: a cairo context
* @dx1: the X offset to the first control point
* @dy1: the Y offset to the first control point
* @dx2: the X offset to the second control point
* @dy2: the Y offset to the second control point
* @dx3: the X offset to the end of the curve
* @dy3: the Y offset to the end of the curve
*
* Relative-coordinate version of cairo_curve_to(). All offsets are
* relative to the current point. Adds a cubic Bézier spline to the
* path from the current point to a point offset from the current
* point by (@dx3, @dy3), using points offset by (@dx1, @dy1) and
* (@dx2, @dy2) as the control points. After this call the current
* point will be offset by (@dx3, @dy3).
*
* Given a current point of (x, y), cairo_rel_curve_to(@cr, @dx1,
* @dy1, @dx2, @dy2, @dx3, @dy3) is logically equivalent to
* cairo_curve_to(@cr, x+@dx1, y+@dy1, x+@dx2, y+@dy2, x+@dx3, y+@dy3).
*
* It is an error to call this function with no current point. Doing
* so will cause @cr to shutdown with a status of
* %CAIRO_STATUS_NO_CURRENT_POINT.
*
* Since: 1.0
**/
void
cairo_rel_curve_to (cairo_t *cr,
double dx1, double dy1,
double dx2, double dy2,
double dx3, double dy3)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->rel_curve_to (cr,
dx1, dy1,
dx2, dy2,
dx3, dy3);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_rectangle:
* @cr: a cairo context
* @x: the X coordinate of the top left corner of the rectangle
* @y: the Y coordinate to the top left corner of the rectangle
* @width: the width of the rectangle
* @height: the height of the rectangle
*
* Adds a closed sub-path rectangle of the given size to the current
* path at position (@x, @y) in user-space coordinates.
*
* This function is logically equivalent to:
* <informalexample><programlisting>
* cairo_move_to (cr, x, y);
* cairo_rel_line_to (cr, width, 0);
* cairo_rel_line_to (cr, 0, height);
* cairo_rel_line_to (cr, -width, 0);
* cairo_close_path (cr);
* </programlisting></informalexample>
*
* Since: 1.0
**/
void
cairo_rectangle (cairo_t *cr,
double x, double y,
double width, double height)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->rectangle (cr, x, y, width, height);
if (unlikely (status))
_cairo_set_error (cr, status);
}
#if 0
/* XXX: NYI */
void
cairo_stroke_to_path (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
/* The code in _cairo_recording_surface_get_path has a poorman's stroke_to_path */
status = _cairo_gstate_stroke_path (cr->gstate);
if (unlikely (status))
_cairo_set_error (cr, status);
}
#endif
/**
* cairo_close_path:
* @cr: a cairo context
*
* Adds a line segment to the path from the current point to the
* beginning of the current sub-path, (the most recent point passed to
* cairo_move_to()), and closes this sub-path. After this call the
* current point will be at the joined endpoint of the sub-path.
*
* The behavior of cairo_close_path() is distinct from simply calling
* cairo_line_to() with the equivalent coordinate in the case of
* stroking. When a closed sub-path is stroked, there are no caps on
* the ends of the sub-path. Instead, there is a line join connecting
* the final and initial segments of the sub-path.
*
* If there is no current point before the call to cairo_close_path(),
* this function will have no effect.
*
* Note: As of cairo version 1.2.4 any call to cairo_close_path() will
* place an explicit MOVE_TO element into the path immediately after
* the CLOSE_PATH element, (which can be seen in cairo_copy_path() for
* example). This can simplify path processing in some cases as it may
* not be necessary to save the "last move_to point" during processing
* as the MOVE_TO immediately after the CLOSE_PATH will provide that
* point.
*
* Since: 1.0
**/
void
cairo_close_path (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->close_path (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_close_path);
/**
* cairo_path_extents:
* @cr: a cairo context
* @x1: left of the resulting extents
* @y1: top of the resulting extents
* @x2: right of the resulting extents
* @y2: bottom of the resulting extents
*
* Computes a bounding box in user-space coordinates covering the
* points on the current path. If the current path is empty, returns
* an empty rectangle ((0,0), (0,0)). Stroke parameters, fill rule,
* surface dimensions and clipping are not taken into account.
*
* Contrast with cairo_fill_extents() and cairo_stroke_extents() which
* return the extents of only the area that would be "inked" by
* the corresponding drawing operations.
*
* The result of cairo_path_extents() is defined as equivalent to the
* limit of cairo_stroke_extents() with %CAIRO_LINE_CAP_ROUND as the
* line width approaches 0.0, (but never reaching the empty-rectangle
* returned by cairo_stroke_extents() for a line width of 0.0).
*
* Specifically, this means that zero-area sub-paths such as
* cairo_move_to();cairo_line_to() segments, (even degenerate cases
* where the coordinates to both calls are identical), will be
* considered as contributing to the extents. However, a lone
* cairo_move_to() will not contribute to the results of
* cairo_path_extents().
*
* Since: 1.6
**/
void
cairo_path_extents (cairo_t *cr,
double *x1, double *y1, double *x2, double *y2)
{
if (unlikely (cr->status)) {
if (x1)
*x1 = 0.0;
if (y1)
*y1 = 0.0;
if (x2)
*x2 = 0.0;
if (y2)
*y2 = 0.0;
return;
}
cr->backend->path_extents (cr, x1, y1, x2, y2);
}
/**
* cairo_paint:
* @cr: a cairo context
*
* A drawing operator that paints the current source everywhere within
* the current clip region.
*
* Since: 1.0
**/
void
cairo_paint (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->paint (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_paint);
/**
* cairo_paint_with_alpha:
* @cr: a cairo context
* @alpha: alpha value, between 0 (transparent) and 1 (opaque)
*
* A drawing operator that paints the current source everywhere within
* the current clip region using a mask of constant alpha value
* @alpha. The effect is similar to cairo_paint(), but the drawing
* is faded out using the alpha value.
*
* Since: 1.0
**/
void
cairo_paint_with_alpha (cairo_t *cr,
double alpha)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->paint_with_alpha (cr, alpha);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_mask:
* @cr: a cairo context
* @pattern: a #cairo_pattern_t
*
* A drawing operator that paints the current source
* using the alpha channel of @pattern as a mask. (Opaque
* areas of @pattern are painted with the source, transparent
* areas are not painted.)
*
* Since: 1.0
**/
void
cairo_mask (cairo_t *cr,
cairo_pattern_t *pattern)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (unlikely (pattern == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
if (unlikely (pattern->status)) {
_cairo_set_error (cr, pattern->status);
return;
}
status = cr->backend->mask (cr, pattern);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_mask);
/**
* cairo_mask_surface:
* @cr: a cairo context
* @surface: a #cairo_surface_t
* @surface_x: X coordinate at which to place the origin of @surface
* @surface_y: Y coordinate at which to place the origin of @surface
*
* A drawing operator that paints the current source
* using the alpha channel of @surface as a mask. (Opaque
* areas of @surface are painted with the source, transparent
* areas are not painted.)
*
* Since: 1.0
**/
void
cairo_mask_surface (cairo_t *cr,
cairo_surface_t *surface,
double surface_x,
double surface_y)
{
cairo_pattern_t *pattern;
cairo_matrix_t matrix;
if (unlikely (cr->status))
return;
pattern = cairo_pattern_create_for_surface (surface);
cairo_matrix_init_translate (&matrix, - surface_x, - surface_y);
cairo_pattern_set_matrix (pattern, &matrix);
cairo_mask (cr, pattern);
cairo_pattern_destroy (pattern);
}
/**
* cairo_stroke:
* @cr: a cairo context
*
* A drawing operator that strokes the current path according to the
* current line width, line join, line cap, and dash settings. After
* cairo_stroke(), the current path will be cleared from the cairo
* context. See cairo_set_line_width(), cairo_set_line_join(),
* cairo_set_line_cap(), cairo_set_dash(), and
* cairo_stroke_preserve().
*
* Note: Degenerate segments and sub-paths are treated specially and
* provide a useful result. These can result in two different
* situations:
*
* 1. Zero-length "on" segments set in cairo_set_dash(). If the cap
* style is %CAIRO_LINE_CAP_ROUND or %CAIRO_LINE_CAP_SQUARE then these
* segments will be drawn as circular dots or squares respectively. In
* the case of %CAIRO_LINE_CAP_SQUARE, the orientation of the squares
* is determined by the direction of the underlying path.
*
* 2. A sub-path created by cairo_move_to() followed by either a
* cairo_close_path() or one or more calls to cairo_line_to() to the
* same coordinate as the cairo_move_to(). If the cap style is
* %CAIRO_LINE_CAP_ROUND then these sub-paths will be drawn as circular
* dots. Note that in the case of %CAIRO_LINE_CAP_SQUARE a degenerate
* sub-path will not be drawn at all, (since the correct orientation
* is indeterminate).
*
* In no case will a cap style of %CAIRO_LINE_CAP_BUTT cause anything
* to be drawn in the case of either degenerate segments or sub-paths.
*
* Since: 1.0
**/
void
cairo_stroke (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->stroke (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_stroke);
/**
* cairo_stroke_preserve:
* @cr: a cairo context
*
* A drawing operator that strokes the current path according to the
* current line width, line join, line cap, and dash settings. Unlike
* cairo_stroke(), cairo_stroke_preserve() preserves the path within the
* cairo context.
*
* See cairo_set_line_width(), cairo_set_line_join(),
* cairo_set_line_cap(), cairo_set_dash(), and
* cairo_stroke_preserve().
*
* Since: 1.0
**/
void
cairo_stroke_preserve (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->stroke_preserve (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_stroke_preserve);
/**
* cairo_fill:
* @cr: a cairo context
*
* A drawing operator that fills the current path according to the
* current fill rule, (each sub-path is implicitly closed before being
* filled). After cairo_fill(), the current path will be cleared from
* the cairo context. See cairo_set_fill_rule() and
* cairo_fill_preserve().
*
* Since: 1.0
**/
void
cairo_fill (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->fill (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_fill_preserve:
* @cr: a cairo context
*
* A drawing operator that fills the current path according to the
* current fill rule, (each sub-path is implicitly closed before being
* filled). Unlike cairo_fill(), cairo_fill_preserve() preserves the
* path within the cairo context.
*
* See cairo_set_fill_rule() and cairo_fill().
*
* Since: 1.0
**/
void
cairo_fill_preserve (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->fill_preserve (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_fill_preserve);
/**
* cairo_copy_page:
* @cr: a cairo context
*
* Emits the current page for backends that support multiple pages, but
* doesn't clear it, so, the contents of the current page will be retained
* for the next page too. Use cairo_show_page() if you want to get an
* empty page after the emission.
*
* This is a convenience function that simply calls
* cairo_surface_copy_page() on @cr's target.
*
* Since: 1.0
**/
void
cairo_copy_page (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->copy_page (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_show_page:
* @cr: a cairo context
*
* Emits and clears the current page for backends that support multiple
* pages. Use cairo_copy_page() if you don't want to clear the page.
*
* This is a convenience function that simply calls
* cairo_surface_show_page() on @cr's target.
*
* Since: 1.0
**/
void
cairo_show_page (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->show_page (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_in_stroke:
* @cr: a cairo context
* @x: X coordinate of the point to test
* @y: Y coordinate of the point to test
*
* Tests whether the given point is inside the area that would be
* affected by a cairo_stroke() operation given the current path and
* stroking parameters. Surface dimensions and clipping are not taken
* into account.
*
* See cairo_stroke(), cairo_set_line_width(), cairo_set_line_join(),
* cairo_set_line_cap(), cairo_set_dash(), and
* cairo_stroke_preserve().
*
* Return value: A non-zero value if the point is inside, or zero if
* outside.
*
* Since: 1.0
**/
cairo_bool_t
cairo_in_stroke (cairo_t *cr, double x, double y)
{
cairo_status_t status;
cairo_bool_t inside = FALSE;
if (unlikely (cr->status))
return FALSE;
status = cr->backend->in_stroke (cr, x, y, &inside);
if (unlikely (status))
_cairo_set_error (cr, status);
return inside;
}
/**
* cairo_in_fill:
* @cr: a cairo context
* @x: X coordinate of the point to test
* @y: Y coordinate of the point to test
*
* Tests whether the given point is inside the area that would be
* affected by a cairo_fill() operation given the current path and
* filling parameters. Surface dimensions and clipping are not taken
* into account.
*
* See cairo_fill(), cairo_set_fill_rule() and cairo_fill_preserve().
*
* Return value: A non-zero value if the point is inside, or zero if
* outside.
*
* Since: 1.0
**/
cairo_bool_t
cairo_in_fill (cairo_t *cr, double x, double y)
{
cairo_status_t status;
cairo_bool_t inside = FALSE;
if (unlikely (cr->status))
return FALSE;
status = cr->backend->in_fill (cr, x, y, &inside);
if (unlikely (status))
_cairo_set_error (cr, status);
return inside;
}
/**
* cairo_stroke_extents:
* @cr: a cairo context
* @x1: left of the resulting extents
* @y1: top of the resulting extents
* @x2: right of the resulting extents
* @y2: bottom of the resulting extents
*
* Computes a bounding box in user coordinates covering the area that
* would be affected, (the "inked" area), by a cairo_stroke()
* operation given the current path and stroke parameters.
* If the current path is empty, returns an empty rectangle ((0,0), (0,0)).
* Surface dimensions and clipping are not taken into account.
*
* Note that if the line width is set to exactly zero, then
* cairo_stroke_extents() will return an empty rectangle. Contrast with
* cairo_path_extents() which can be used to compute the non-empty
* bounds as the line width approaches zero.
*
* Note that cairo_stroke_extents() must necessarily do more work to
* compute the precise inked areas in light of the stroke parameters,
* so cairo_path_extents() may be more desirable for sake of
* performance if non-inked path extents are desired.
*
* See cairo_stroke(), cairo_set_line_width(), cairo_set_line_join(),
* cairo_set_line_cap(), cairo_set_dash(), and
* cairo_stroke_preserve().
*
* Since: 1.0
**/
void
cairo_stroke_extents (cairo_t *cr,
double *x1, double *y1, double *x2, double *y2)
{
cairo_status_t status;
if (unlikely (cr->status)) {
if (x1)
*x1 = 0.0;
if (y1)
*y1 = 0.0;
if (x2)
*x2 = 0.0;
if (y2)
*y2 = 0.0;
return;
}
status = cr->backend->stroke_extents (cr, x1, y1, x2, y2);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_fill_extents:
* @cr: a cairo context
* @x1: left of the resulting extents
* @y1: top of the resulting extents
* @x2: right of the resulting extents
* @y2: bottom of the resulting extents
*
* Computes a bounding box in user coordinates covering the area that
* would be affected, (the "inked" area), by a cairo_fill() operation
* given the current path and fill parameters. If the current path is
* empty, returns an empty rectangle ((0,0), (0,0)). Surface
* dimensions and clipping are not taken into account.
*
* Contrast with cairo_path_extents(), which is similar, but returns
* non-zero extents for some paths with no inked area, (such as a
* simple line segment).
*
* Note that cairo_fill_extents() must necessarily do more work to
* compute the precise inked areas in light of the fill rule, so
* cairo_path_extents() may be more desirable for sake of performance
* if the non-inked path extents are desired.
*
* See cairo_fill(), cairo_set_fill_rule() and cairo_fill_preserve().
*
* Since: 1.0
**/
void
cairo_fill_extents (cairo_t *cr,
double *x1, double *y1, double *x2, double *y2)
{
cairo_status_t status;
if (unlikely (cr->status)) {
if (x1)
*x1 = 0.0;
if (y1)
*y1 = 0.0;
if (x2)
*x2 = 0.0;
if (y2)
*y2 = 0.0;
return;
}
status = cr->backend->fill_extents (cr, x1, y1, x2, y2);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_clip:
* @cr: a cairo context
*
* Establishes a new clip region by intersecting the current clip
* region with the current path as it would be filled by cairo_fill()
* and according to the current fill rule (see cairo_set_fill_rule()).
*
* After cairo_clip(), the current path will be cleared from the cairo
* context.
*
* The current clip region affects all drawing operations by
* effectively masking out any changes to the surface that are outside
* the current clip region.
*
* Calling cairo_clip() can only make the clip region smaller, never
* larger. But the current clip is part of the graphics state, so a
* temporary restriction of the clip region can be achieved by
* calling cairo_clip() within a cairo_save()/cairo_restore()
* pair. The only other means of increasing the size of the clip
* region is cairo_reset_clip().
*
* Since: 1.0
**/
void
cairo_clip (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->clip (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_clip_preserve:
* @cr: a cairo context
*
* Establishes a new clip region by intersecting the current clip
* region with the current path as it would be filled by cairo_fill()
* and according to the current fill rule (see cairo_set_fill_rule()).
*
* Unlike cairo_clip(), cairo_clip_preserve() preserves the path within
* the cairo context.
*
* The current clip region affects all drawing operations by
* effectively masking out any changes to the surface that are outside
* the current clip region.
*
* Calling cairo_clip_preserve() can only make the clip region smaller, never
* larger. But the current clip is part of the graphics state, so a
* temporary restriction of the clip region can be achieved by
* calling cairo_clip_preserve() within a cairo_save()/cairo_restore()
* pair. The only other means of increasing the size of the clip
* region is cairo_reset_clip().
*
* Since: 1.0
**/
void
cairo_clip_preserve (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->clip_preserve (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def(cairo_clip_preserve);
/**
* cairo_reset_clip:
* @cr: a cairo context
*
* Reset the current clip region to its original, unrestricted
* state. That is, set the clip region to an infinitely large shape
* containing the target surface. Equivalently, if infinity is too
* hard to grasp, one can imagine the clip region being reset to the
* exact bounds of the target surface.
*
* Note that code meant to be reusable should not call
* cairo_reset_clip() as it will cause results unexpected by
* higher-level code which calls cairo_clip(). Consider using
* cairo_save() and cairo_restore() around cairo_clip() as a more
* robust means of temporarily restricting the clip region.
*
* Since: 1.0
**/
void
cairo_reset_clip (cairo_t *cr)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->reset_clip (cr);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_clip_extents:
* @cr: a cairo context
* @x1: left of the resulting extents
* @y1: top of the resulting extents
* @x2: right of the resulting extents
* @y2: bottom of the resulting extents
*
* Computes a bounding box in user coordinates covering the area inside the
* current clip.
*
* Since: 1.4
**/
void
cairo_clip_extents (cairo_t *cr,
double *x1, double *y1,
double *x2, double *y2)
{
cairo_status_t status;
if (x1)
*x1 = 0.0;
if (y1)
*y1 = 0.0;
if (x2)
*x2 = 0.0;
if (y2)
*y2 = 0.0;
if (unlikely (cr->status))
return;
status = cr->backend->clip_extents (cr, x1, y1, x2, y2);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_in_clip:
* @cr: a cairo context
* @x: X coordinate of the point to test
* @y: Y coordinate of the point to test
*
* Tests whether the given point is inside the area that would be
* visible through the current clip, i.e. the area that would be filled by
* a cairo_paint() operation.
*
* See cairo_clip(), and cairo_clip_preserve().
*
* Return value: A non-zero value if the point is inside, or zero if
* outside.
*
* Since: 1.10
**/
cairo_bool_t
cairo_in_clip (cairo_t *cr, double x, double y)
{
cairo_status_t status;
cairo_bool_t inside = FALSE;
if (unlikely (cr->status))
return FALSE;
status = cr->backend->in_clip (cr, x, y, &inside);
if (unlikely (status))
_cairo_set_error (cr, status);
return inside;
}
/**
* cairo_copy_clip_rectangle_list:
* @cr: a cairo context
*
* Gets the current clip region as a list of rectangles in user coordinates.
* Never returns %NULL.
*
* The status in the list may be %CAIRO_STATUS_CLIP_NOT_REPRESENTABLE to
* indicate that the clip region cannot be represented as a list of
* user-space rectangles. The status may have other values to indicate
* other errors.
*
* Returns: the current clip region as a list of rectangles in user coordinates,
* which should be destroyed using cairo_rectangle_list_destroy().
*
* Since: 1.4
**/
cairo_rectangle_list_t *
cairo_copy_clip_rectangle_list (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_rectangle_list_create_in_error (cr->status);
return cr->backend->clip_copy_rectangle_list (cr);
}
/**
* CAIRO_TAG_DEST:
*
* Create a destination for a hyperlink. Destination tag attributes
* are detailed at [Destinations][dests].
*
* Since: 1.16
**/
/**
* CAIRO_TAG_LINK:
*
* Create hyperlink. Link tag attributes are detailed at
* [Links][links].
*
* Since: 1.16
**/
/**
* cairo_tag_begin:
* @cr: a cairo context
* @tag_name: tag name
* @attributes: tag attributes
*
* Marks the beginning of the @tag_name structure. Call
* cairo_tag_end() with the same @tag_name to mark the end of the
* structure.
*
* The attributes string is of the form "key1=value2 key2=value2 ...".
* Values may be boolean (true/false or 1/0), integer, float, string,
* or an array.
*
* String values are enclosed in single quotes
* ('). Single quotes and backslashes inside the string should be
* escaped with a backslash.
*
* Boolean values may be set to true by only
* specifying the key. eg the attribute string "key" is the equivalent
* to "key=true".
*
* Arrays are enclosed in '[]'. eg "rect=[1.2 4.3 2.0 3.0]".
*
* If no attributes are required, @attributes can be an empty string or NULL.
*
* See [Tags and Links Description][cairo-Tags-and-Links.description]
* for the list of tags and attributes.
*
* Invalid nesting of tags or invalid attributes will cause @cr to
* shutdown with a status of %CAIRO_STATUS_TAG_ERROR.
*
* See cairo_tag_end().
*
* Since: 1.16
**/
void
cairo_tag_begin (cairo_t *cr, const char *tag_name, const char *attributes)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->tag_begin (cr, tag_name, attributes);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_tag_end:
* @cr: a cairo context
* @tag_name: tag name
*
* Marks the end of the @tag_name structure.
*
* Invalid nesting of tags will cause @cr to shutdown with a status of
* %CAIRO_STATUS_TAG_ERROR.
*
* See cairo_tag_begin().
*
* Since: 1.16
**/
cairo_public void
cairo_tag_end (cairo_t *cr, const char *tag_name)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->tag_end (cr, tag_name);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_select_font_face:
* @cr: a #cairo_t
* @family: a font family name, encoded in UTF-8
* @slant: the slant for the font
* @weight: the weight for the font
*
* Note: The cairo_select_font_face() function call is part of what
* the cairo designers call the "toy" text API. It is convenient for
* short demos and simple programs, but it is not expected to be
* adequate for serious text-using applications.
*
* Selects a family and style of font from a simplified description as
* a family name, slant and weight. Cairo provides no operation to
* list available family names on the system (this is a "toy",
* remember), but the standard CSS2 generic family names, ("serif",
* "sans-serif", "cursive", "fantasy", "monospace"), are likely to
* work as expected.
*
* If @family starts with the string "@cairo:", or if no native font
* backends are compiled in, cairo will use an internal font family.
* The internal font family recognizes many modifiers in the @family
* string, most notably, it recognizes the string "monospace". That is,
* the family name "@cairo:monospace" will use the monospace version of
* the internal font family.
*
* For "real" font selection, see the font-backend-specific
* font_face_create functions for the font backend you are using. (For
* example, if you are using the freetype-based cairo-ft font backend,
* see cairo_ft_font_face_create_for_ft_face() or
* cairo_ft_font_face_create_for_pattern().) The resulting font face
* could then be used with cairo_scaled_font_create() and
* cairo_set_scaled_font().
*
* Similarly, when using the "real" font support, you can call
* directly into the underlying font system, (such as fontconfig or
* freetype), for operations such as listing available fonts, etc.
*
* It is expected that most applications will need to use a more
* comprehensive font handling and text layout library, (for example,
* pango), in conjunction with cairo.
*
* If text is drawn without a call to cairo_select_font_face(), (nor
* cairo_set_font_face() nor cairo_set_scaled_font()), the default
* family is platform-specific, but is essentially "sans-serif".
* Default slant is %CAIRO_FONT_SLANT_NORMAL, and default weight is
* %CAIRO_FONT_WEIGHT_NORMAL.
*
* This function is equivalent to a call to cairo_toy_font_face_create()
* followed by cairo_set_font_face().
*
* Since: 1.0
**/
void
cairo_select_font_face (cairo_t *cr,
const char *family,
cairo_font_slant_t slant,
cairo_font_weight_t weight)
{
cairo_font_face_t *font_face;
cairo_status_t status;
if (unlikely (cr->status))
return;
font_face = cairo_toy_font_face_create (family, slant, weight);
if (unlikely (font_face->status)) {
_cairo_set_error (cr, font_face->status);
return;
}
status = cr->backend->set_font_face (cr, font_face);
cairo_font_face_destroy (font_face);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_font_extents:
* @cr: a #cairo_t
* @extents: a #cairo_font_extents_t object into which the results
* will be stored.
*
* Gets the font extents for the currently selected font.
*
* Since: 1.0
**/
void
cairo_font_extents (cairo_t *cr,
cairo_font_extents_t *extents)
{
cairo_status_t status;
extents->ascent = 0.0;
extents->descent = 0.0;
extents->height = 0.0;
extents->max_x_advance = 0.0;
extents->max_y_advance = 0.0;
if (unlikely (cr->status))
return;
status = cr->backend->font_extents (cr, extents);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_set_font_face:
* @cr: a #cairo_t
* @font_face: a #cairo_font_face_t, or %NULL to restore to the default font
*
* Replaces the current #cairo_font_face_t object in the #cairo_t with
* @font_face. The replaced font face in the #cairo_t will be
* destroyed if there are no other references to it.
*
* Since: 1.0
**/
void
cairo_set_font_face (cairo_t *cr,
cairo_font_face_t *font_face)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_font_face (cr, font_face);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_get_font_face:
* @cr: a #cairo_t
*
* Gets the current font face for a #cairo_t.
*
* Return value: the current font face. This object is owned by
* cairo. To keep a reference to it, you must call
* cairo_font_face_reference().
*
* This function never returns %NULL. If memory cannot be allocated, a
* special "nil" #cairo_font_face_t object will be returned on which
* cairo_font_face_status() returns %CAIRO_STATUS_NO_MEMORY. Using
* this nil object will cause its error state to propagate to other
* objects it is passed to, (for example, calling
* cairo_set_font_face() with a nil font will trigger an error that
* will shutdown the #cairo_t object).
*
* Since: 1.0
**/
cairo_font_face_t *
cairo_get_font_face (cairo_t *cr)
{
if (unlikely (cr->status))
return (cairo_font_face_t*) &_cairo_font_face_nil;
return cr->backend->get_font_face (cr);
}
/**
* cairo_set_font_size:
* @cr: a #cairo_t
* @size: the new font size, in user space units
*
* Sets the current font matrix to a scale by a factor of @size, replacing
* any font matrix previously set with cairo_set_font_size() or
* cairo_set_font_matrix(). This results in a font size of @size user space
* units. (More precisely, this matrix will result in the font's
* em-square being a @size by @size square in user space.)
*
* If text is drawn without a call to cairo_set_font_size(), (nor
* cairo_set_font_matrix() nor cairo_set_scaled_font()), the default
* font size is 10.0.
*
* Since: 1.0
**/
void
cairo_set_font_size (cairo_t *cr, double size)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_font_size (cr, size);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_font_size);
/**
* cairo_set_font_matrix:
* @cr: a #cairo_t
* @matrix: a #cairo_matrix_t describing a transform to be applied to
* the current font.
*
* Sets the current font matrix to @matrix. The font matrix gives a
* transformation from the design space of the font (in this space,
* the em-square is 1 unit by 1 unit) to user space. Normally, a
* simple scale is used (see cairo_set_font_size()), but a more
* complex font matrix can be used to shear the font
* or stretch it unequally along the two axes
*
* Since: 1.0
**/
void
cairo_set_font_matrix (cairo_t *cr,
const cairo_matrix_t *matrix)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cr->backend->set_font_matrix (cr, matrix);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_font_matrix);
/**
* cairo_get_font_matrix:
* @cr: a #cairo_t
* @matrix: return value for the matrix
*
* Stores the current font matrix into @matrix. See
* cairo_set_font_matrix().
*
* Since: 1.0
**/
void
cairo_get_font_matrix (cairo_t *cr, cairo_matrix_t *matrix)
{
if (unlikely (cr->status)) {
cairo_matrix_init_identity (matrix);
return;
}
cr->backend->get_font_matrix (cr, matrix);
}
/**
* cairo_set_font_options:
* @cr: a #cairo_t
* @options: font options to use
*
* Sets a set of custom font rendering options for the #cairo_t.
* Rendering options are derived by merging these options with the
* options derived from underlying surface; if the value in @options
* has a default value (like %CAIRO_ANTIALIAS_DEFAULT), then the value
* from the surface is used.
*
* Since: 1.0
**/
void
cairo_set_font_options (cairo_t *cr,
const cairo_font_options_t *options)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
status = cairo_font_options_status ((cairo_font_options_t *) options);
if (unlikely (status)) {
_cairo_set_error (cr, status);
return;
}
status = cr->backend->set_font_options (cr, options);
if (unlikely (status))
_cairo_set_error (cr, status);
}
slim_hidden_def (cairo_set_font_options);
/**
* cairo_get_font_options:
* @cr: a #cairo_t
* @options: a #cairo_font_options_t object into which to store
* the retrieved options. All existing values are overwritten
*
* Retrieves font rendering options set via #cairo_set_font_options.
* Note that the returned options do not include any options derived
* from the underlying surface; they are literally the options
* passed to cairo_set_font_options().
*
* Since: 1.0
**/
void
cairo_get_font_options (cairo_t *cr,
cairo_font_options_t *options)
{
/* check that we aren't trying to overwrite the nil object */
if (cairo_font_options_status (options))
return;
if (unlikely (cr->status)) {
_cairo_font_options_init_default (options);
return;
}
cr->backend->get_font_options (cr, options);
}
/**
* cairo_set_scaled_font:
* @cr: a #cairo_t
* @scaled_font: a #cairo_scaled_font_t
*
* Replaces the current font face, font matrix, and font options in
* the #cairo_t with those of the #cairo_scaled_font_t. Except for
* some translation, the current CTM of the #cairo_t should be the
* same as that of the #cairo_scaled_font_t, which can be accessed
* using cairo_scaled_font_get_ctm().
*
* Since: 1.2
**/
void
cairo_set_scaled_font (cairo_t *cr,
const cairo_scaled_font_t *scaled_font)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if ((scaled_font == NULL)) {
_cairo_set_error (cr, _cairo_error (CAIRO_STATUS_NULL_POINTER));
return;
}
status = scaled_font->status;
if (unlikely (status)) {
_cairo_set_error (cr, status);
return;
}
status = cr->backend->set_scaled_font (cr, (cairo_scaled_font_t *) scaled_font);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_get_scaled_font:
* @cr: a #cairo_t
*
* Gets the current scaled font for a #cairo_t.
*
* Return value: the current scaled font. This object is owned by
* cairo. To keep a reference to it, you must call
* cairo_scaled_font_reference().
*
* This function never returns %NULL. If memory cannot be allocated, a
* special "nil" #cairo_scaled_font_t object will be returned on which
* cairo_scaled_font_status() returns %CAIRO_STATUS_NO_MEMORY. Using
* this nil object will cause its error state to propagate to other
* objects it is passed to, (for example, calling
* cairo_set_scaled_font() with a nil font will trigger an error that
* will shutdown the #cairo_t object).
*
* Since: 1.4
**/
cairo_scaled_font_t *
cairo_get_scaled_font (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_scaled_font_create_in_error (cr->status);
return cr->backend->get_scaled_font (cr);
}
slim_hidden_def (cairo_get_scaled_font);
/**
* cairo_text_extents:
* @cr: a #cairo_t
* @utf8: a NUL-terminated string of text encoded in UTF-8, or %NULL
* @extents: a #cairo_text_extents_t object into which the results
* will be stored
*
* Gets the extents for a string of text. The extents describe a
* user-space rectangle that encloses the "inked" portion of the text,
* (as it would be drawn by cairo_show_text()). Additionally, the
* x_advance and y_advance values indicate the amount by which the
* current point would be advanced by cairo_show_text().
*
* Note that whitespace characters do not directly contribute to the
* size of the rectangle (extents.width and extents.height). They do
* contribute indirectly by changing the position of non-whitespace
* characters. In particular, trailing whitespace characters are
* likely to not affect the size of the rectangle, though they will
* affect the x_advance and y_advance values.
*
* Since: 1.0
**/
void
cairo_text_extents (cairo_t *cr,
const char *utf8,
cairo_text_extents_t *extents)
{
cairo_status_t status;
cairo_scaled_font_t *scaled_font;
cairo_glyph_t *glyphs = NULL;
int num_glyphs = 0;
double x, y;
extents->x_bearing = 0.0;
extents->y_bearing = 0.0;
extents->width = 0.0;
extents->height = 0.0;
extents->x_advance = 0.0;
extents->y_advance = 0.0;
if (unlikely (cr->status))
return;
if (utf8 == NULL)
return;
scaled_font = cairo_get_scaled_font (cr);
if (unlikely (scaled_font->status)) {
_cairo_set_error (cr, scaled_font->status);
return;
}
cairo_get_current_point (cr, &x, &y);
status = cairo_scaled_font_text_to_glyphs (scaled_font,
x, y,
utf8, -1,
&glyphs, &num_glyphs,
NULL, NULL, NULL);
if (likely (status == CAIRO_STATUS_SUCCESS)) {
status = cr->backend->glyph_extents (cr,
glyphs, num_glyphs,
extents);
}
cairo_glyph_free (glyphs);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_glyph_extents:
* @cr: a #cairo_t
* @glyphs: an array of #cairo_glyph_t objects
* @num_glyphs: the number of elements in @glyphs
* @extents: a #cairo_text_extents_t object into which the results
* will be stored
*
* Gets the extents for an array of glyphs. The extents describe a
* user-space rectangle that encloses the "inked" portion of the
* glyphs, (as they would be drawn by cairo_show_glyphs()).
* Additionally, the x_advance and y_advance values indicate the
* amount by which the current point would be advanced by
* cairo_show_glyphs().
*
* Note that whitespace glyphs do not contribute to the size of the
* rectangle (extents.width and extents.height).
*
* Since: 1.0
**/
void
cairo_glyph_extents (cairo_t *cr,
const cairo_glyph_t *glyphs,
int num_glyphs,
cairo_text_extents_t *extents)
{
cairo_status_t status;
extents->x_bearing = 0.0;
extents->y_bearing = 0.0;
extents->width = 0.0;
extents->height = 0.0;
extents->x_advance = 0.0;
extents->y_advance = 0.0;
if (unlikely (cr->status))
return;
if (num_glyphs == 0)
return;
if (unlikely (num_glyphs < 0)) {
_cairo_set_error (cr, CAIRO_STATUS_NEGATIVE_COUNT);
return;
}
if (unlikely (glyphs == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
status = cr->backend->glyph_extents (cr, glyphs, num_glyphs, extents);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_show_text:
* @cr: a cairo context
* @utf8: a NUL-terminated string of text encoded in UTF-8, or %NULL
*
* A drawing operator that generates the shape from a string of UTF-8
* characters, rendered according to the current font_face, font_size
* (font_matrix), and font_options.
*
* This function first computes a set of glyphs for the string of
* text. The first glyph is placed so that its origin is at the
* current point. The origin of each subsequent glyph is offset from
* that of the previous glyph by the advance values of the previous
* glyph.
*
* After this call the current point is moved to the origin of where
* the next glyph would be placed in this same progression. That is,
* the current point will be at the origin of the final glyph offset
* by its advance values. This allows for easy display of a single
* logical string with multiple calls to cairo_show_text().
*
* Note: The cairo_show_text() function call is part of what the cairo
* designers call the "toy" text API. It is convenient for short demos
* and simple programs, but it is not expected to be adequate for
* serious text-using applications. See cairo_show_glyphs() for the
* "real" text display API in cairo.
*
* Since: 1.0
**/
void
cairo_show_text (cairo_t *cr, const char *utf8)
{
cairo_text_extents_t extents;
cairo_status_t status;
cairo_glyph_t *glyphs, *last_glyph;
cairo_text_cluster_t *clusters;
int utf8_len, num_glyphs, num_clusters;
cairo_text_cluster_flags_t cluster_flags;
double x, y;
cairo_bool_t has_show_text_glyphs;
cairo_glyph_t stack_glyphs[CAIRO_STACK_ARRAY_LENGTH (cairo_glyph_t)];
cairo_text_cluster_t stack_clusters[CAIRO_STACK_ARRAY_LENGTH (cairo_text_cluster_t)];
cairo_scaled_font_t *scaled_font;
cairo_glyph_text_info_t info, *i;
if (unlikely (cr->status))
return;
if (utf8 == NULL)
return;
scaled_font = cairo_get_scaled_font (cr);
if (unlikely (scaled_font->status)) {
_cairo_set_error (cr, scaled_font->status);
return;
}
utf8_len = strlen (utf8);
has_show_text_glyphs =
cairo_surface_has_show_text_glyphs (cairo_get_target (cr));
glyphs = stack_glyphs;
num_glyphs = ARRAY_LENGTH (stack_glyphs);
if (has_show_text_glyphs) {
clusters = stack_clusters;
num_clusters = ARRAY_LENGTH (stack_clusters);
} else {
clusters = NULL;
num_clusters = 0;
}
cairo_get_current_point (cr, &x, &y);
status = cairo_scaled_font_text_to_glyphs (scaled_font,
x, y,
utf8, utf8_len,
&glyphs, &num_glyphs,
has_show_text_glyphs ? &clusters : NULL, &num_clusters,
&cluster_flags);
if (unlikely (status))
goto BAIL;
if (num_glyphs == 0)
return;
i = NULL;
if (has_show_text_glyphs) {
info.utf8 = utf8;
info.utf8_len = utf8_len;
info.clusters = clusters;
info.num_clusters = num_clusters;
info.cluster_flags = cluster_flags;
i = &info;
}
status = cr->backend->glyphs (cr, glyphs, num_glyphs, i);
if (unlikely (status))
goto BAIL;
last_glyph = &glyphs[num_glyphs - 1];
status = cr->backend->glyph_extents (cr, last_glyph, 1, &extents);
if (unlikely (status))
goto BAIL;
x = last_glyph->x + extents.x_advance;
y = last_glyph->y + extents.y_advance;
cr->backend->move_to (cr, x, y);
BAIL:
if (glyphs != stack_glyphs)
cairo_glyph_free (glyphs);
if (clusters != stack_clusters)
cairo_text_cluster_free (clusters);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_show_glyphs:
* @cr: a cairo context
* @glyphs: array of glyphs to show
* @num_glyphs: number of glyphs to show
*
* A drawing operator that generates the shape from an array of glyphs,
* rendered according to the current font face, font size
* (font matrix), and font options.
*
* Since: 1.0
**/
void
cairo_show_glyphs (cairo_t *cr, const cairo_glyph_t *glyphs, int num_glyphs)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (num_glyphs == 0)
return;
if (num_glyphs < 0) {
_cairo_set_error (cr, CAIRO_STATUS_NEGATIVE_COUNT);
return;
}
if (glyphs == NULL) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
status = cr->backend->glyphs (cr, glyphs, num_glyphs, NULL);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_show_text_glyphs:
* @cr: a cairo context
* @utf8: a string of text encoded in UTF-8
* @utf8_len: length of @utf8 in bytes, or -1 if it is NUL-terminated
* @glyphs: array of glyphs to show
* @num_glyphs: number of glyphs to show
* @clusters: array of cluster mapping information
* @num_clusters: number of clusters in the mapping
* @cluster_flags: cluster mapping flags
*
* This operation has rendering effects similar to cairo_show_glyphs()
* but, if the target surface supports it, uses the provided text and
* cluster mapping to embed the text for the glyphs shown in the output.
* If the target does not support the extended attributes, this function
* acts like the basic cairo_show_glyphs() as if it had been passed
* @glyphs and @num_glyphs.
*
* The mapping between @utf8 and @glyphs is provided by an array of
* <firstterm>clusters</firstterm>. Each cluster covers a number of
* text bytes and glyphs, and neighboring clusters cover neighboring
* areas of @utf8 and @glyphs. The clusters should collectively cover @utf8
* and @glyphs in entirety.
*
* The first cluster always covers bytes from the beginning of @utf8.
* If @cluster_flags do not have the %CAIRO_TEXT_CLUSTER_FLAG_BACKWARD
* set, the first cluster also covers the beginning
* of @glyphs, otherwise it covers the end of the @glyphs array and
* following clusters move backward.
*
* See #cairo_text_cluster_t for constraints on valid clusters.
*
* Since: 1.8
**/
void
cairo_show_text_glyphs (cairo_t *cr,
const char *utf8,
int utf8_len,
const cairo_glyph_t *glyphs,
int num_glyphs,
const cairo_text_cluster_t *clusters,
int num_clusters,
cairo_text_cluster_flags_t cluster_flags)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
/* A slew of sanity checks */
/* Special case for NULL and -1 */
if (utf8 == NULL && utf8_len == -1)
utf8_len = 0;
/* No NULLs for non-zeros */
if ((num_glyphs && glyphs == NULL) ||
(utf8_len && utf8 == NULL) ||
(num_clusters && clusters == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
/* A -1 for utf8_len means NUL-terminated */
if (utf8_len == -1)
utf8_len = strlen (utf8);
/* Apart from that, no negatives */
if (num_glyphs < 0 || utf8_len < 0 || num_clusters < 0) {
_cairo_set_error (cr, CAIRO_STATUS_NEGATIVE_COUNT);
return;
}
if (num_glyphs == 0 && utf8_len == 0)
return;
if (utf8) {
/* Make sure clusters cover the entire glyphs and utf8 arrays,
* and that cluster boundaries are UTF-8 boundaries. */
status = _cairo_validate_text_clusters (utf8, utf8_len,
glyphs, num_glyphs,
clusters, num_clusters, cluster_flags);
if (status == CAIRO_STATUS_INVALID_CLUSTERS) {
/* Either got invalid UTF-8 text, or cluster mapping is bad.
* Differentiate those. */
cairo_status_t status2;
status2 = _cairo_utf8_to_ucs4 (utf8, utf8_len, NULL, NULL);
if (status2)
status = status2;
} else {
cairo_glyph_text_info_t info;
info.utf8 = utf8;
info.utf8_len = utf8_len;
info.clusters = clusters;
info.num_clusters = num_clusters;
info.cluster_flags = cluster_flags;
status = cr->backend->glyphs (cr, glyphs, num_glyphs, &info);
}
} else {
status = cr->backend->glyphs (cr, glyphs, num_glyphs, NULL);
}
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_text_path:
* @cr: a cairo context
* @utf8: a NUL-terminated string of text encoded in UTF-8, or %NULL
*
* Adds closed paths for text to the current path. The generated
* path if filled, achieves an effect similar to that of
* cairo_show_text().
*
* Text conversion and positioning is done similar to cairo_show_text().
*
* Like cairo_show_text(), After this call the current point is
* moved to the origin of where the next glyph would be placed in
* this same progression. That is, the current point will be at
* the origin of the final glyph offset by its advance values.
* This allows for chaining multiple calls to to cairo_text_path()
* without having to set current point in between.
*
* Note: The cairo_text_path() function call is part of what the cairo
* designers call the "toy" text API. It is convenient for short demos
* and simple programs, but it is not expected to be adequate for
* serious text-using applications. See cairo_glyph_path() for the
* "real" text path API in cairo.
*
* Since: 1.0
**/
void
cairo_text_path (cairo_t *cr, const char *utf8)
{
cairo_status_t status;
cairo_text_extents_t extents;
cairo_glyph_t stack_glyphs[CAIRO_STACK_ARRAY_LENGTH (cairo_glyph_t)];
cairo_glyph_t *glyphs, *last_glyph;
cairo_scaled_font_t *scaled_font;
int num_glyphs;
double x, y;
if (unlikely (cr->status))
return;
if (utf8 == NULL)
return;
glyphs = stack_glyphs;
num_glyphs = ARRAY_LENGTH (stack_glyphs);
scaled_font = cairo_get_scaled_font (cr);
if (unlikely (scaled_font->status)) {
_cairo_set_error (cr, scaled_font->status);
return;
}
cairo_get_current_point (cr, &x, &y);
status = cairo_scaled_font_text_to_glyphs (scaled_font,
x, y,
utf8, -1,
&glyphs, &num_glyphs,
NULL, NULL, NULL);
if (num_glyphs == 0)
return;
status = cr->backend->glyph_path (cr, glyphs, num_glyphs);
if (unlikely (status))
goto BAIL;
last_glyph = &glyphs[num_glyphs - 1];
status = cr->backend->glyph_extents (cr, last_glyph, 1, &extents);
if (unlikely (status))
goto BAIL;
x = last_glyph->x + extents.x_advance;
y = last_glyph->y + extents.y_advance;
cr->backend->move_to (cr, x, y);
BAIL:
if (glyphs != stack_glyphs)
cairo_glyph_free (glyphs);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_glyph_path:
* @cr: a cairo context
* @glyphs: array of glyphs to show
* @num_glyphs: number of glyphs to show
*
* Adds closed paths for the glyphs to the current path. The generated
* path if filled, achieves an effect similar to that of
* cairo_show_glyphs().
*
* Since: 1.0
**/
void
cairo_glyph_path (cairo_t *cr, const cairo_glyph_t *glyphs, int num_glyphs)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (num_glyphs == 0)
return;
if (unlikely (num_glyphs < 0)) {
_cairo_set_error (cr, CAIRO_STATUS_NEGATIVE_COUNT);
return;
}
if (unlikely (glyphs == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
status = cr->backend->glyph_path (cr, glyphs, num_glyphs);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_get_operator:
* @cr: a cairo context
*
* Gets the current compositing operator for a cairo context.
*
* Return value: the current compositing operator.
*
* Since: 1.0
**/
cairo_operator_t
cairo_get_operator (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_OPERATOR_DEFAULT;
return cr->backend->get_operator (cr);
}
#if 0
/**
* cairo_get_opacity:
* @cr: a cairo context
*
* Gets the current compositing opacity for a cairo context.
*
* Return value: the current compositing opacity.
*
* Since: TBD
**/
double
cairo_get_opacity (cairo_t *cr)
{
if (unlikely (cr->status))
return 1.;
return cr->backend->get_opacity (cr);
}
#endif
/**
* cairo_get_tolerance:
* @cr: a cairo context
*
* Gets the current tolerance value, as set by cairo_set_tolerance().
*
* Return value: the current tolerance value.
*
* Since: 1.0
**/
double
cairo_get_tolerance (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_TOLERANCE_DEFAULT;
return cr->backend->get_tolerance (cr);
}
slim_hidden_def (cairo_get_tolerance);
/**
* cairo_get_antialias:
* @cr: a cairo context
*
* Gets the current shape antialiasing mode, as set by
* cairo_set_antialias().
*
* Return value: the current shape antialiasing mode.
*
* Since: 1.0
**/
cairo_antialias_t
cairo_get_antialias (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_ANTIALIAS_DEFAULT;
return cr->backend->get_antialias (cr);
}
/**
* cairo_has_current_point:
* @cr: a cairo context
*
* Returns whether a current point is defined on the current path.
* See cairo_get_current_point() for details on the current point.
*
* Return value: whether a current point is defined.
*
* Since: 1.6
**/
cairo_bool_t
cairo_has_current_point (cairo_t *cr)
{
if (unlikely (cr->status))
return FALSE;
return cr->backend->has_current_point (cr);
}
/**
* cairo_get_current_point:
* @cr: a cairo context
* @x: return value for X coordinate of the current point
* @y: return value for Y coordinate of the current point
*
* Gets the current point of the current path, which is
* conceptually the final point reached by the path so far.
*
* The current point is returned in the user-space coordinate
* system. If there is no defined current point or if @cr is in an
* error status, @x and @y will both be set to 0.0. It is possible to
* check this in advance with cairo_has_current_point().
*
* Most path construction functions alter the current point. See the
* following for details on how they affect the current point:
* cairo_new_path(), cairo_new_sub_path(),
* cairo_append_path(), cairo_close_path(),
* cairo_move_to(), cairo_line_to(), cairo_curve_to(),
* cairo_rel_move_to(), cairo_rel_line_to(), cairo_rel_curve_to(),
* cairo_arc(), cairo_arc_negative(), cairo_rectangle(),
* cairo_text_path(), cairo_glyph_path(), cairo_stroke_to_path().
*
* Some functions use and alter the current point but do not
* otherwise change current path:
* cairo_show_text().
*
* Some functions unset the current path and as a result, current point:
* cairo_fill(), cairo_stroke().
*
* Since: 1.0
**/
void
cairo_get_current_point (cairo_t *cr, double *x_ret, double *y_ret)
{
double x, y;
x = y = 0;
if (cr->status == CAIRO_STATUS_SUCCESS &&
cr->backend->has_current_point (cr))
{
cr->backend->get_current_point (cr, &x, &y);
}
if (x_ret)
*x_ret = x;
if (y_ret)
*y_ret = y;
}
slim_hidden_def(cairo_get_current_point);
/**
* cairo_get_fill_rule:
* @cr: a cairo context
*
* Gets the current fill rule, as set by cairo_set_fill_rule().
*
* Return value: the current fill rule.
*
* Since: 1.0
**/
cairo_fill_rule_t
cairo_get_fill_rule (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_FILL_RULE_DEFAULT;
return cr->backend->get_fill_rule (cr);
}
/**
* cairo_get_line_width:
* @cr: a cairo context
*
* This function returns the current line width value exactly as set by
* cairo_set_line_width(). Note that the value is unchanged even if
* the CTM has changed between the calls to cairo_set_line_width() and
* cairo_get_line_width().
*
* Return value: the current line width.
*
* Since: 1.0
**/
double
cairo_get_line_width (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_LINE_WIDTH_DEFAULT;
return cr->backend->get_line_width (cr);
}
slim_hidden_def (cairo_get_line_width);
/**
* cairo_get_line_cap:
* @cr: a cairo context
*
* Gets the current line cap style, as set by cairo_set_line_cap().
*
* Return value: the current line cap style.
*
* Since: 1.0
**/
cairo_line_cap_t
cairo_get_line_cap (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_LINE_CAP_DEFAULT;
return cr->backend->get_line_cap (cr);
}
/**
* cairo_get_line_join:
* @cr: a cairo context
*
* Gets the current line join style, as set by cairo_set_line_join().
*
* Return value: the current line join style.
*
* Since: 1.0
**/
cairo_line_join_t
cairo_get_line_join (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_LINE_JOIN_DEFAULT;
return cr->backend->get_line_join (cr);
}
/**
* cairo_get_miter_limit:
* @cr: a cairo context
*
* Gets the current miter limit, as set by cairo_set_miter_limit().
*
* Return value: the current miter limit.
*
* Since: 1.0
**/
double
cairo_get_miter_limit (cairo_t *cr)
{
if (unlikely (cr->status))
return CAIRO_GSTATE_MITER_LIMIT_DEFAULT;
return cr->backend->get_miter_limit (cr);
}
/**
* cairo_get_matrix:
* @cr: a cairo context
* @matrix: return value for the matrix
*
* Stores the current transformation matrix (CTM) into @matrix.
*
* Since: 1.0
**/
void
cairo_get_matrix (cairo_t *cr, cairo_matrix_t *matrix)
{
if (unlikely (cr->status)) {
cairo_matrix_init_identity (matrix);
return;
}
cr->backend->get_matrix (cr, matrix);
}
slim_hidden_def (cairo_get_matrix);
/**
* cairo_get_target:
* @cr: a cairo context
*
* Gets the target surface for the cairo context as passed to
* cairo_create().
*
* This function will always return a valid pointer, but the result
* can be a "nil" surface if @cr is already in an error state,
* (ie. cairo_status() <literal>!=</literal> %CAIRO_STATUS_SUCCESS).
* A nil surface is indicated by cairo_surface_status()
* <literal>!=</literal> %CAIRO_STATUS_SUCCESS.
*
* Return value: the target surface. This object is owned by cairo. To
* keep a reference to it, you must call cairo_surface_reference().
*
* Since: 1.0
**/
cairo_surface_t *
cairo_get_target (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_surface_create_in_error (cr->status);
return cr->backend->get_original_target (cr);
}
slim_hidden_def (cairo_get_target);
/**
* cairo_get_group_target:
* @cr: a cairo context
*
* Gets the current destination surface for the context. This is either
* the original target surface as passed to cairo_create() or the target
* surface for the current group as started by the most recent call to
* cairo_push_group() or cairo_push_group_with_content().
*
* This function will always return a valid pointer, but the result
* can be a "nil" surface if @cr is already in an error state,
* (ie. cairo_status() <literal>!=</literal> %CAIRO_STATUS_SUCCESS).
* A nil surface is indicated by cairo_surface_status()
* <literal>!=</literal> %CAIRO_STATUS_SUCCESS.
*
* Return value: the target surface. This object is owned by cairo. To
* keep a reference to it, you must call cairo_surface_reference().
*
* Since: 1.2
**/
cairo_surface_t *
cairo_get_group_target (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_surface_create_in_error (cr->status);
return cr->backend->get_current_target (cr);
}
/**
* cairo_copy_path:
* @cr: a cairo context
*
* Creates a copy of the current path and returns it to the user as a
* #cairo_path_t. See #cairo_path_data_t for hints on how to iterate
* over the returned data structure.
*
* This function will always return a valid pointer, but the result
* will have no data (<literal>data==%NULL</literal> and
* <literal>num_data==0</literal>), if either of the following
* conditions hold:
*
* <orderedlist>
* <listitem>If there is insufficient memory to copy the path. In this
* case <literal>path->status</literal> will be set to
* %CAIRO_STATUS_NO_MEMORY.</listitem>
* <listitem>If @cr is already in an error state. In this case
* <literal>path->status</literal> will contain the same status that
* would be returned by cairo_status().</listitem>
* </orderedlist>
*
* Return value: the copy of the current path. The caller owns the
* returned object and should call cairo_path_destroy() when finished
* with it.
*
* Since: 1.0
**/
cairo_path_t *
cairo_copy_path (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_path_create_in_error (cr->status);
return cr->backend->copy_path (cr);
}
/**
* cairo_copy_path_flat:
* @cr: a cairo context
*
* Gets a flattened copy of the current path and returns it to the
* user as a #cairo_path_t. See #cairo_path_data_t for hints on
* how to iterate over the returned data structure.
*
* This function is like cairo_copy_path() except that any curves
* in the path will be approximated with piecewise-linear
* approximations, (accurate to within the current tolerance
* value). That is, the result is guaranteed to not have any elements
* of type %CAIRO_PATH_CURVE_TO which will instead be replaced by a
* series of %CAIRO_PATH_LINE_TO elements.
*
* This function will always return a valid pointer, but the result
* will have no data (<literal>data==%NULL</literal> and
* <literal>num_data==0</literal>), if either of the following
* conditions hold:
*
* <orderedlist>
* <listitem>If there is insufficient memory to copy the path. In this
* case <literal>path->status</literal> will be set to
* %CAIRO_STATUS_NO_MEMORY.</listitem>
* <listitem>If @cr is already in an error state. In this case
* <literal>path->status</literal> will contain the same status that
* would be returned by cairo_status().</listitem>
* </orderedlist>
*
* Return value: the copy of the current path. The caller owns the
* returned object and should call cairo_path_destroy() when finished
* with it.
*
* Since: 1.0
**/
cairo_path_t *
cairo_copy_path_flat (cairo_t *cr)
{
if (unlikely (cr->status))
return _cairo_path_create_in_error (cr->status);
return cr->backend->copy_path_flat (cr);
}
/**
* cairo_append_path:
* @cr: a cairo context
* @path: path to be appended
*
* Append the @path onto the current path. The @path may be either the
* return value from one of cairo_copy_path() or
* cairo_copy_path_flat() or it may be constructed manually. See
* #cairo_path_t for details on how the path data structure should be
* initialized, and note that <literal>path->status</literal> must be
* initialized to %CAIRO_STATUS_SUCCESS.
*
* Since: 1.0
**/
void
cairo_append_path (cairo_t *cr,
const cairo_path_t *path)
{
cairo_status_t status;
if (unlikely (cr->status))
return;
if (unlikely (path == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
if (unlikely (path->status)) {
if (path->status > CAIRO_STATUS_SUCCESS &&
path->status <= CAIRO_STATUS_LAST_STATUS)
_cairo_set_error (cr, path->status);
else
_cairo_set_error (cr, CAIRO_STATUS_INVALID_STATUS);
return;
}
if (path->num_data == 0)
return;
if (unlikely (path->data == NULL)) {
_cairo_set_error (cr, CAIRO_STATUS_NULL_POINTER);
return;
}
status = cr->backend->append_path (cr, path);
if (unlikely (status))
_cairo_set_error (cr, status);
}
/**
* cairo_status:
* @cr: a cairo context
*
* Checks whether an error has previously occurred for this context.
*
* Returns: the current status of this context, see #cairo_status_t
*
* Since: 1.0
**/
cairo_status_t
cairo_status (cairo_t *cr)
{
return cr->status;
}
slim_hidden_def (cairo_status);