Source code

Revision control

Copy as Markdown

Other Tools

//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// GLES1Renderer.cpp: Implements the GLES1Renderer renderer.
#include "libANGLE/GLES1Renderer.h"
#include <string.h>
#include <iterator>
#include <sstream>
#include <vector>
#include "common/hash_utils.h"
#include "libANGLE/Context.h"
#include "libANGLE/Context.inl.h"
#include "libANGLE/Program.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Shader.h"
#include "libANGLE/State.h"
#include "libANGLE/renderer/ContextImpl.h"
namespace
{
#include "libANGLE/GLES1Shaders.inc"
uint32_t GetLogicOpUniform(const gl::FramebufferAttachment *color, gl::LogicalOperation logicOp)
{
const uint32_t red = color->getRedSize();
const uint32_t green = color->getGreenSize();
const uint32_t blue = color->getBlueSize();
const uint32_t alpha = color->getAlphaSize();
ASSERT(red <= 8 && green <= 8 && blue <= 8 && alpha <= 8);
return red | green << 4 | blue << 8 | alpha << 12 | static_cast<uint32_t>(logicOp) << 16;
}
} // anonymous namespace
namespace gl
{
GLES1ShaderState::GLES1ShaderState() = default;
GLES1ShaderState::~GLES1ShaderState() = default;
GLES1ShaderState::GLES1ShaderState(const GLES1ShaderState &other)
{
memcpy(this, &other, sizeof(GLES1ShaderState));
}
bool operator==(const GLES1ShaderState &a, const GLES1ShaderState &b)
{
return memcmp(&a, &b, sizeof(GLES1ShaderState)) == 0;
}
bool operator!=(const GLES1ShaderState &a, const GLES1ShaderState &b)
{
return !(a == b);
}
size_t GLES1ShaderState::hash() const
{
return angle::ComputeGenericHash(*this);
}
GLES1Renderer::GLES1Renderer() : mRendererProgramInitialized(false) {}
void GLES1Renderer::onDestroy(Context *context, State *state)
{
if (mRendererProgramInitialized)
{
(void)state->setProgram(context, 0);
for (const auto &iter : mUberShaderState)
{
const GLES1UberShaderState &UberShaderState = iter.second;
mShaderPrograms->deleteProgram(context, {UberShaderState.programState.program});
}
mShaderPrograms->release(context);
mShaderPrograms = nullptr;
mRendererProgramInitialized = false;
}
}
GLES1Renderer::~GLES1Renderer() = default;
angle::Result GLES1Renderer::prepareForDraw(PrimitiveMode mode, Context *context, State *glState)
{
GLES1State &gles1State = glState->gles1();
GLES1ShaderState::BoolTexArray &tex2DEnables = mShaderState.tex2DEnables;
GLES1ShaderState::BoolTexArray &texCubeEnables = mShaderState.texCubeEnables;
GLES1ShaderState::IntTexArray &tex2DFormats = mShaderState.tex2DFormats;
for (int i = 0; i < kTexUnitCount; i++)
{
// GL_OES_cube_map allows only one of TEXTURE_2D / TEXTURE_CUBE_MAP
// to be enabled per unit, thankfully. From the extension text:
//
// -- Section 3.8.10 "Texture Application"
//
// Replace the beginning sentences of the first paragraph (page 138)
// with:
//
// "Texturing is enabled or disabled using the generic Enable
// and Disable commands, respectively, with the symbolic constants
// TEXTURE_2D or TEXTURE_CUBE_MAP_OES to enable the two-dimensional or cube
// map texturing respectively. If the cube map texture and the two-
// dimensional texture are enabled, then cube map texturing is used. If
// texturing is disabled, a rasterized fragment is passed on unaltered to the
// next stage of the GL (although its texture coordinates may be discarded).
// Otherwise, a texture value is found according to the parameter values of
// the currently bound texture image of the appropriate dimensionality.
texCubeEnables[i] = gles1State.isTextureTargetEnabled(i, TextureType::CubeMap);
tex2DEnables[i] =
!texCubeEnables[i] && gles1State.isTextureTargetEnabled(i, TextureType::_2D);
Texture *curr2DTexture = glState->getSamplerTexture(i, TextureType::_2D);
if (curr2DTexture)
{
tex2DFormats[i] = gl::GetUnsizedFormat(
curr2DTexture->getFormat(TextureTarget::_2D, 0).info->internalFormat);
}
Texture *currCubeTexture = glState->getSamplerTexture(i, TextureType::CubeMap);
// > If texturing is enabled for a texture unit at the time a primitive is rasterized, if
// > TEXTURE MIN FILTER is one that requires a mipmap, and if the texture image bound to the
// > enabled texture target is not complete, then it is as if texture mapping were disabled
// > for that texture unit.
if (tex2DEnables[i] && curr2DTexture && IsMipmapFiltered(curr2DTexture->getMinFilter()))
{
tex2DEnables[i] = curr2DTexture->isMipmapComplete();
}
if (texCubeEnables[i] && currCubeTexture &&
IsMipmapFiltered(currCubeTexture->getMinFilter()))
{
texCubeEnables[i] = curr2DTexture->isMipmapComplete();
}
}
GLES1ShaderState::IntTexArray &texEnvModes = mShaderState.texEnvModes;
GLES1ShaderState::IntTexArray &texCombineRgbs = mShaderState.texCombineRgbs;
GLES1ShaderState::IntTexArray &texCombineAlphas = mShaderState.texCombineAlphas;
GLES1ShaderState::IntTexArray &texCombineSrc0Rgbs = mShaderState.texCombineSrc0Rgbs;
GLES1ShaderState::IntTexArray &texCombineSrc0Alphas = mShaderState.texCombineSrc0Alphas;
GLES1ShaderState::IntTexArray &texCombineSrc1Rgbs = mShaderState.texCombineSrc1Rgbs;
GLES1ShaderState::IntTexArray &texCombineSrc1Alphas = mShaderState.texCombineSrc1Alphas;
GLES1ShaderState::IntTexArray &texCombineSrc2Rgbs = mShaderState.texCombineSrc2Rgbs;
GLES1ShaderState::IntTexArray &texCombineSrc2Alphas = mShaderState.texCombineSrc2Alphas;
GLES1ShaderState::IntTexArray &texCombineOp0Rgbs = mShaderState.texCombineOp0Rgbs;
GLES1ShaderState::IntTexArray &texCombineOp0Alphas = mShaderState.texCombineOp0Alphas;
GLES1ShaderState::IntTexArray &texCombineOp1Rgbs = mShaderState.texCombineOp1Rgbs;
GLES1ShaderState::IntTexArray &texCombineOp1Alphas = mShaderState.texCombineOp1Alphas;
GLES1ShaderState::IntTexArray &texCombineOp2Rgbs = mShaderState.texCombineOp2Rgbs;
GLES1ShaderState::IntTexArray &texCombineOp2Alphas = mShaderState.texCombineOp2Alphas;
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_TEXTURE_ENVIRONMENT))
{
for (int i = 0; i < kTexUnitCount; i++)
{
const auto &env = gles1State.textureEnvironment(i);
texEnvModes[i] = ToGLenum(env.mode);
texCombineRgbs[i] = ToGLenum(env.combineRgb);
texCombineAlphas[i] = ToGLenum(env.combineAlpha);
texCombineSrc0Rgbs[i] = ToGLenum(env.src0Rgb);
texCombineSrc0Alphas[i] = ToGLenum(env.src0Alpha);
texCombineSrc1Rgbs[i] = ToGLenum(env.src1Rgb);
texCombineSrc1Alphas[i] = ToGLenum(env.src1Alpha);
texCombineSrc2Rgbs[i] = ToGLenum(env.src2Rgb);
texCombineSrc2Alphas[i] = ToGLenum(env.src2Alpha);
texCombineOp0Rgbs[i] = ToGLenum(env.op0Rgb);
texCombineOp0Alphas[i] = ToGLenum(env.op0Alpha);
texCombineOp1Rgbs[i] = ToGLenum(env.op1Rgb);
texCombineOp1Alphas[i] = ToGLenum(env.op1Alpha);
texCombineOp2Rgbs[i] = ToGLenum(env.op2Rgb);
texCombineOp2Alphas[i] = ToGLenum(env.op2Alpha);
}
}
bool enableClipPlanes = false;
GLES1ShaderState::BoolClipPlaneArray &clipPlaneEnables = mShaderState.clipPlaneEnables;
for (int i = 0; i < kClipPlaneCount; i++)
{
clipPlaneEnables[i] = glState->getEnableFeature(GL_CLIP_PLANE0 + i);
enableClipPlanes = enableClipPlanes || clipPlaneEnables[i];
}
mShaderState.mGLES1StateEnabled[GLES1StateEnables::ClipPlanes] = enableClipPlanes;
mShaderState.mGLES1StateEnabled[GLES1StateEnables::DrawTexture] = mDrawTextureEnabled;
mShaderState.mGLES1StateEnabled[GLES1StateEnables::PointRasterization] =
mode == PrimitiveMode::Points;
mShaderState.mGLES1StateEnabled[GLES1StateEnables::ShadeModelFlat] =
gles1State.mShadeModel == ShadingModel::Flat;
mShaderState.mGLES1StateEnabled[GLES1StateEnables::AlphaTest] =
glState->getEnableFeature(GL_ALPHA_TEST);
mShaderState.mGLES1StateEnabled[GLES1StateEnables::Lighting] =
glState->getEnableFeature(GL_LIGHTING);
mShaderState.mGLES1StateEnabled[GLES1StateEnables::RescaleNormal] =
glState->getEnableFeature(GL_RESCALE_NORMAL);
mShaderState.mGLES1StateEnabled[GLES1StateEnables::Normalize] =
glState->getEnableFeature(GL_NORMALIZE);
mShaderState.mGLES1StateEnabled[GLES1StateEnables::Fog] = glState->getEnableFeature(GL_FOG);
mShaderState.mGLES1StateEnabled[GLES1StateEnables::PointSprite] =
glState->getEnableFeature(GL_POINT_SPRITE_OES);
mShaderState.mGLES1StateEnabled[GLES1StateEnables::ColorMaterial] =
glState->getEnableFeature(GL_COLOR_MATERIAL);
// TODO (lfy@google.com): Implement two-sided lighting model (lightModel.twoSided)
mShaderState.mGLES1StateEnabled[GLES1StateEnables::LightModelTwoSided] = false;
GLES1ShaderState::BoolTexArray &pointSpriteCoordReplaces =
mShaderState.pointSpriteCoordReplaces;
for (int i = 0; i < kTexUnitCount; i++)
{
const auto &env = gles1State.textureEnvironment(i);
pointSpriteCoordReplaces[i] = env.pointSpriteCoordReplace;
}
GLES1ShaderState::BoolLightArray &lightEnables = mShaderState.lightEnables;
for (int i = 0; i < kLightCount; i++)
{
const auto &light = gles1State.mLights[i];
lightEnables[i] = light.enabled;
}
mShaderState.alphaTestFunc = gles1State.mAlphaTestFunc;
mShaderState.fogMode = gles1State.fogParameters().mode;
const bool hasLogicOpANGLE = context->getExtensions().logicOpANGLE;
const bool hasFramebufferFetch = context->getExtensions().shaderFramebufferFetchEXT ||
context->getExtensions().shaderFramebufferFetchNonCoherentEXT;
if (!hasLogicOpANGLE && hasFramebufferFetch)
{
mShaderState.mGLES1StateEnabled[GLES1StateEnables::LogicOpThroughFramebufferFetch] =
gles1State.mLogicOpEnabled;
}
// All the states set before this spot affect ubershader creation
ANGLE_TRY(initializeRendererProgram(context, glState));
GLES1UberShaderState UberShaderState = getUberShaderState();
const GLES1ProgramState &programState = UberShaderState.programState;
GLES1UniformBuffers &uniformBuffers = UberShaderState.uniformBuffers;
Program *programObject = getProgram(programState.program);
// If anything is dirty in gles1 or the common parts of gles1/2, just redo these parts
// completely for now.
// Feature enables
// Texture unit enables and format info
std::array<Vec4Uniform, kTexUnitCount> texCropRects;
Vec4Uniform *cropRectBuffer = texCropRects.data();
for (int i = 0; i < kTexUnitCount; i++)
{
Texture *curr2DTexture = glState->getSamplerTexture(i, TextureType::_2D);
if (curr2DTexture)
{
const gl::Rectangle &cropRect = curr2DTexture->getCrop();
GLfloat textureWidth =
static_cast<GLfloat>(curr2DTexture->getWidth(TextureTarget::_2D, 0));
GLfloat textureHeight =
static_cast<GLfloat>(curr2DTexture->getHeight(TextureTarget::_2D, 0));
if (textureWidth > 0.0f && textureHeight > 0.0f)
{
cropRectBuffer[i][0] = cropRect.x / textureWidth;
cropRectBuffer[i][1] = cropRect.y / textureHeight;
cropRectBuffer[i][2] = cropRect.width / textureWidth;
cropRectBuffer[i][3] = cropRect.height / textureHeight;
}
}
}
setUniform4fv(programObject, programState.drawTextureNormalizedCropRectLoc, kTexUnitCount,
reinterpret_cast<GLfloat *>(cropRectBuffer));
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_LOGIC_OP) && hasLogicOpANGLE)
{
context->setLogicOpEnabled(gles1State.mLogicOpEnabled);
context->setLogicOp(gles1State.mLogicOp);
}
else if (hasFramebufferFetch)
{
const Framebuffer *drawFramebuffer = glState->getDrawFramebuffer();
const FramebufferAttachment *colorAttachment = drawFramebuffer->getColorAttachment(0);
if (gles1State.mLogicOpEnabled)
{
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_LOGIC_OP))
{
// Set up uniform value for logic op
setUniform1ui(programObject, programState.logicOpLoc,
GetLogicOpUniform(colorAttachment, gles1State.mLogicOp));
}
// Issue a framebuffer fetch barrier if non-coherent
if (!context->getExtensions().shaderFramebufferFetchEXT)
{
context->framebufferFetchBarrier();
}
}
}
// Client state / current vector enables
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_CLIENT_STATE_ENABLE) ||
gles1State.isDirty(GLES1State::DIRTY_GLES1_CURRENT_VECTOR))
{
if (!gles1State.isClientStateEnabled(ClientVertexArrayType::Normal))
{
const angle::Vector3 normal = gles1State.getCurrentNormal();
context->vertexAttrib3f(kNormalAttribIndex, normal.x(), normal.y(), normal.z());
}
if (!gles1State.isClientStateEnabled(ClientVertexArrayType::Color))
{
const ColorF color = gles1State.getCurrentColor();
context->vertexAttrib4f(kColorAttribIndex, color.red, color.green, color.blue,
color.alpha);
}
if (!gles1State.isClientStateEnabled(ClientVertexArrayType::PointSize))
{
GLfloat pointSize = gles1State.mPointParameters.pointSize;
context->vertexAttrib1f(kPointSizeAttribIndex, pointSize);
}
for (int i = 0; i < kTexUnitCount; i++)
{
if (!gles1State.mTexCoordArrayEnabled[i])
{
const TextureCoordF texcoord = gles1State.getCurrentTextureCoords(i);
context->vertexAttrib4f(kTextureCoordAttribIndexBase + i, texcoord.s, texcoord.t,
texcoord.r, texcoord.q);
}
}
}
// Matrices
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_MATRICES))
{
angle::Mat4 proj = gles1State.mProjectionMatrices.back();
setUniformMatrix4fv(programObject, programState.projMatrixLoc, 1, GL_FALSE, proj.data());
angle::Mat4 modelview = gles1State.mModelviewMatrices.back();
setUniformMatrix4fv(programObject, programState.modelviewMatrixLoc, 1, GL_FALSE,
modelview.data());
angle::Mat4 modelviewInvTr = modelview.transpose().inverse();
setUniformMatrix4fv(programObject, programState.modelviewInvTrLoc, 1, GL_FALSE,
modelviewInvTr.data());
Mat4Uniform *textureMatrixBuffer = uniformBuffers.textureMatrices.data();
for (int i = 0; i < kTexUnitCount; i++)
{
angle::Mat4 textureMatrix = gles1State.mTextureMatrices[i].back();
memcpy(textureMatrixBuffer + i, textureMatrix.data(), sizeof(Mat4Uniform));
}
setUniformMatrix4fv(programObject, programState.textureMatrixLoc, kTexUnitCount, GL_FALSE,
reinterpret_cast<float *>(uniformBuffers.textureMatrices.data()));
}
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_TEXTURE_ENVIRONMENT))
{
for (int i = 0; i < kTexUnitCount; i++)
{
const auto &env = gles1State.textureEnvironment(i);
uniformBuffers.texEnvColors[i][0] = env.color.red;
uniformBuffers.texEnvColors[i][1] = env.color.green;
uniformBuffers.texEnvColors[i][2] = env.color.blue;
uniformBuffers.texEnvColors[i][3] = env.color.alpha;
uniformBuffers.texEnvRgbScales[i] = env.rgbScale;
uniformBuffers.texEnvAlphaScales[i] = env.alphaScale;
}
setUniform4fv(programObject, programState.textureEnvColorLoc, kTexUnitCount,
reinterpret_cast<float *>(uniformBuffers.texEnvColors.data()));
setUniform1fv(programObject, programState.rgbScaleLoc, kTexUnitCount,
uniformBuffers.texEnvRgbScales.data());
setUniform1fv(programObject, programState.alphaScaleLoc, kTexUnitCount,
uniformBuffers.texEnvAlphaScales.data());
}
// Alpha test
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_ALPHA_TEST))
{
setUniform1f(programObject, programState.alphaTestRefLoc, gles1State.mAlphaTestRef);
}
// Shading, materials, and lighting
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_MATERIAL))
{
const auto &material = gles1State.mMaterial;
setUniform4fv(programObject, programState.materialAmbientLoc, 1, material.ambient.data());
setUniform4fv(programObject, programState.materialDiffuseLoc, 1, material.diffuse.data());
setUniform4fv(programObject, programState.materialSpecularLoc, 1, material.specular.data());
setUniform4fv(programObject, programState.materialEmissiveLoc, 1, material.emissive.data());
setUniform1f(programObject, programState.materialSpecularExponentLoc,
material.specularExponent);
}
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_LIGHTS))
{
const auto &lightModel = gles1State.mLightModel;
setUniform4fv(programObject, programState.lightModelSceneAmbientLoc, 1,
lightModel.color.data());
for (int i = 0; i < kLightCount; i++)
{
const auto &light = gles1State.mLights[i];
memcpy(uniformBuffers.lightAmbients.data() + i, light.ambient.data(),
sizeof(Vec4Uniform));
memcpy(uniformBuffers.lightDiffuses.data() + i, light.diffuse.data(),
sizeof(Vec4Uniform));
memcpy(uniformBuffers.lightSpeculars.data() + i, light.specular.data(),
sizeof(Vec4Uniform));
memcpy(uniformBuffers.lightPositions.data() + i, light.position.data(),
sizeof(Vec4Uniform));
memcpy(uniformBuffers.lightDirections.data() + i, light.direction.data(),
sizeof(Vec3Uniform));
uniformBuffers.spotlightExponents[i] = light.spotlightExponent;
uniformBuffers.spotlightCutoffAngles[i] = light.spotlightCutoffAngle;
uniformBuffers.attenuationConsts[i] = light.attenuationConst;
uniformBuffers.attenuationLinears[i] = light.attenuationLinear;
uniformBuffers.attenuationQuadratics[i] = light.attenuationQuadratic;
}
setUniform4fv(programObject, programState.lightAmbientsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.lightAmbients.data()));
setUniform4fv(programObject, programState.lightDiffusesLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.lightDiffuses.data()));
setUniform4fv(programObject, programState.lightSpecularsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.lightSpeculars.data()));
setUniform4fv(programObject, programState.lightPositionsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.lightPositions.data()));
setUniform3fv(programObject, programState.lightDirectionsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.lightDirections.data()));
setUniform1fv(programObject, programState.lightSpotlightExponentsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.spotlightExponents.data()));
setUniform1fv(programObject, programState.lightSpotlightCutoffAnglesLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.spotlightCutoffAngles.data()));
setUniform1fv(programObject, programState.lightAttenuationConstsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.attenuationConsts.data()));
setUniform1fv(programObject, programState.lightAttenuationLinearsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.attenuationLinears.data()));
setUniform1fv(programObject, programState.lightAttenuationQuadraticsLoc, kLightCount,
reinterpret_cast<float *>(uniformBuffers.attenuationQuadratics.data()));
}
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_FOG))
{
const FogParameters &fog = gles1State.fogParameters();
setUniform1f(programObject, programState.fogDensityLoc, fog.density);
setUniform1f(programObject, programState.fogStartLoc, fog.start);
setUniform1f(programObject, programState.fogEndLoc, fog.end);
setUniform4fv(programObject, programState.fogColorLoc, 1, fog.color.data());
}
// Clip planes
if (gles1State.isDirty(GLES1State::DIRTY_GLES1_CLIP_PLANES))
{
for (int i = 0; i < kClipPlaneCount; i++)
{
gles1State.getClipPlane(
i, reinterpret_cast<float *>(uniformBuffers.clipPlanes.data() + i));
}
setUniform4fv(programObject, programState.clipPlanesLoc, kClipPlaneCount,
reinterpret_cast<float *>(uniformBuffers.clipPlanes.data()));
}
// Point rasterization
{
const PointParameters &pointParams = gles1State.mPointParameters;
setUniform1f(programObject, programState.pointSizeMinLoc, pointParams.pointSizeMin);
setUniform1f(programObject, programState.pointSizeMaxLoc, pointParams.pointSizeMax);
setUniform3fv(programObject, programState.pointDistanceAttenuationLoc, 1,
pointParams.pointDistanceAttenuation.data());
}
// Draw texture
{
setUniform4fv(programObject, programState.drawTextureCoordsLoc, 1, mDrawTextureCoords);
setUniform2fv(programObject, programState.drawTextureDimsLoc, 1, mDrawTextureDims);
}
gles1State.clearDirty();
// None of those are changes in sampler, so there is no need to set the GL_PROGRAM dirty.
// Otherwise, put the dirtying here.
return angle::Result::Continue;
}
// static
int GLES1Renderer::VertexArrayIndex(ClientVertexArrayType type, const GLES1State &gles1)
{
switch (type)
{
case ClientVertexArrayType::Vertex:
return kVertexAttribIndex;
case ClientVertexArrayType::Normal:
return kNormalAttribIndex;
case ClientVertexArrayType::Color:
return kColorAttribIndex;
case ClientVertexArrayType::PointSize:
return kPointSizeAttribIndex;
case ClientVertexArrayType::TextureCoord:
return kTextureCoordAttribIndexBase + gles1.getClientTextureUnit();
default:
UNREACHABLE();
return 0;
}
}
// static
ClientVertexArrayType GLES1Renderer::VertexArrayType(int attribIndex)
{
switch (attribIndex)
{
case kVertexAttribIndex:
return ClientVertexArrayType::Vertex;
case kNormalAttribIndex:
return ClientVertexArrayType::Normal;
case kColorAttribIndex:
return ClientVertexArrayType::Color;
case kPointSizeAttribIndex:
return ClientVertexArrayType::PointSize;
default:
if (attribIndex < kTextureCoordAttribIndexBase + kTexUnitCount)
{
return ClientVertexArrayType::TextureCoord;
}
UNREACHABLE();
return ClientVertexArrayType::InvalidEnum;
}
}
// static
int GLES1Renderer::TexCoordArrayIndex(unsigned int unit)
{
return kTextureCoordAttribIndexBase + unit;
}
void GLES1Renderer::drawTexture(Context *context,
State *glState,
float x,
float y,
float z,
float width,
float height)
{
// get viewport
const gl::Rectangle &viewport = glState->getViewport();
// Translate from viewport to NDC for feeding the shader.
// Recenter, rescale. (e.g., [0, 0, 1080, 1920] -> [-1, -1, 1, 1])
float xNdc = scaleScreenCoordinateToNdc(x, static_cast<GLfloat>(viewport.width));
float yNdc = scaleScreenCoordinateToNdc(y, static_cast<GLfloat>(viewport.height));
float wNdc = scaleScreenDimensionToNdc(width, static_cast<GLfloat>(viewport.width));
float hNdc = scaleScreenDimensionToNdc(height, static_cast<GLfloat>(viewport.height));
float zNdc = 2.0f * clamp(z, 0.0f, 1.0f) - 1.0f;
mDrawTextureCoords[0] = xNdc;
mDrawTextureCoords[1] = yNdc;
mDrawTextureCoords[2] = zNdc;
mDrawTextureDims[0] = wNdc;
mDrawTextureDims[1] = hNdc;
mDrawTextureEnabled = true;
AttributesMask prevAttributesMask = glState->gles1().getVertexArraysAttributeMask();
setAttributesEnabled(context, glState, AttributesMask());
glState->gles1().setAllDirty();
context->drawArrays(PrimitiveMode::Triangles, 0, 6);
setAttributesEnabled(context, glState, prevAttributesMask);
mDrawTextureEnabled = false;
}
Shader *GLES1Renderer::getShader(ShaderProgramID handle) const
{
return mShaderPrograms->getShader(handle);
}
Program *GLES1Renderer::getProgram(ShaderProgramID handle) const
{
return mShaderPrograms->getProgram(handle);
}
angle::Result GLES1Renderer::compileShader(Context *context,
ShaderType shaderType,
const char *src,
ShaderProgramID *shaderOut)
{
rx::ContextImpl *implementation = context->getImplementation();
const Limitations &limitations = implementation->getNativeLimitations();
ShaderProgramID shader = mShaderPrograms->createShader(implementation, limitations, shaderType);
Shader *shaderObject = getShader(shader);
ANGLE_CHECK(context, shaderObject, "Missing shader object", GL_INVALID_OPERATION);
shaderObject->setSource(1, &src, nullptr);
shaderObject->compile(context);
*shaderOut = shader;
if (!shaderObject->isCompiled(context))
{
GLint infoLogLength = shaderObject->getInfoLogLength(context);
std::vector<char> infoLog(infoLogLength, 0);
shaderObject->getInfoLog(context, infoLogLength - 1, nullptr, infoLog.data());
ERR() << "Internal GLES 1 shader compile failed. Info log: " << infoLog.data();
ANGLE_CHECK(context, false, "GLES1Renderer shader compile failed.", GL_INVALID_OPERATION);
return angle::Result::Stop;
}
return angle::Result::Continue;
}
angle::Result GLES1Renderer::linkProgram(Context *context,
State *glState,
ShaderProgramID vertexShader,
ShaderProgramID fragmentShader,
const angle::HashMap<GLint, std::string> &attribLocs,
ShaderProgramID *programOut)
{
ShaderProgramID program = mShaderPrograms->createProgram(context->getImplementation());
Program *programObject = getProgram(program);
ANGLE_CHECK(context, programObject, "Missing program object", GL_INVALID_OPERATION);
*programOut = program;
programObject->attachShader(getShader(vertexShader));
programObject->attachShader(getShader(fragmentShader));
for (auto it : attribLocs)
{
GLint index = it.first;
const std::string &name = it.second;
programObject->bindAttributeLocation(index, name.c_str());
}
ANGLE_TRY(programObject->link(context));
programObject->resolveLink(context);
ANGLE_TRY(glState->onProgramExecutableChange(context, programObject));
if (!programObject->isLinked())
{
GLint infoLogLength = programObject->getExecutable().getInfoLogLength();
std::vector<char> infoLog(infoLogLength, 0);
programObject->getExecutable().getInfoLog(infoLogLength - 1, nullptr, infoLog.data());
ERR() << "Internal GLES 1 shader link failed. Info log: " << infoLog.data();
ANGLE_CHECK(context, false, "GLES1Renderer program link failed.", GL_INVALID_OPERATION);
return angle::Result::Stop;
}
programObject->detachShader(context, getShader(vertexShader));
programObject->detachShader(context, getShader(fragmentShader));
return angle::Result::Continue;
}
const char *GLES1Renderer::getShaderBool(GLES1StateEnables state)
{
if (mShaderState.mGLES1StateEnabled[state])
{
return "true";
}
else
{
return "false";
}
}
void GLES1Renderer::addShaderDefine(std::stringstream &outStream,
GLES1StateEnables state,
const char *enableString)
{
outStream << "\n";
outStream << "#define " << enableString << " " << getShaderBool(state);
}
void GLES1Renderer::addShaderInt(std::stringstream &outStream, const char *name, int value)
{
outStream << "\n";
outStream << "const int " << name << " = " << value << ";";
}
void GLES1Renderer::addShaderIntTexArray(std::stringstream &outStream,
const char *texString,
GLES1ShaderState::IntTexArray &texState)
{
outStream << "\n";
outStream << "const int " << texString << "[kMaxTexUnits] = int[kMaxTexUnits](";
for (int i = 0; i < kTexUnitCount; i++)
{
if (i != 0)
{
outStream << ", ";
}
outStream << texState[i];
}
outStream << ");";
}
void GLES1Renderer::addShaderBoolTexArray(std::stringstream &outStream,
const char *name,
GLES1ShaderState::BoolTexArray &value)
{
outStream << std::boolalpha;
outStream << "\n";
outStream << "bool " << name << "[kMaxTexUnits] = bool[kMaxTexUnits](";
for (int i = 0; i < kTexUnitCount; i++)
{
if (i != 0)
{
outStream << ", ";
}
outStream << value[i];
}
outStream << ");";
}
void GLES1Renderer::addShaderBoolLightArray(std::stringstream &outStream,
const char *name,
GLES1ShaderState::BoolLightArray &value)
{
outStream << std::boolalpha;
outStream << "\n";
outStream << "bool " << name << "[kMaxLights] = bool[kMaxLights](";
for (int i = 0; i < kLightCount; i++)
{
if (i != 0)
{
outStream << ", ";
}
outStream << value[i];
}
outStream << ");";
}
void GLES1Renderer::addShaderBoolClipPlaneArray(std::stringstream &outStream,
const char *name,
GLES1ShaderState::BoolClipPlaneArray &value)
{
outStream << std::boolalpha;
outStream << "\n";
outStream << "bool " << name << "[kMaxClipPlanes] = bool[kMaxClipPlanes](";
for (int i = 0; i < kClipPlaneCount; i++)
{
if (i != 0)
{
outStream << ", ";
}
outStream << value[i];
}
outStream << ");";
}
void GLES1Renderer::addVertexShaderDefs(std::stringstream &outStream)
{
addShaderDefine(outStream, GLES1StateEnables::Lighting, "enable_lighting");
addShaderDefine(outStream, GLES1StateEnables::ColorMaterial, "enable_color_material");
addShaderDefine(outStream, GLES1StateEnables::DrawTexture, "enable_draw_texture");
addShaderDefine(outStream, GLES1StateEnables::PointRasterization, "point_rasterization");
addShaderDefine(outStream, GLES1StateEnables::RescaleNormal, "enable_rescale_normal");
addShaderDefine(outStream, GLES1StateEnables::Normalize, "enable_normalize");
addShaderDefine(outStream, GLES1StateEnables::LightModelTwoSided, "light_model_two_sided");
// bool light_enables[kMaxLights] = bool[kMaxLights](...);
addShaderBoolLightArray(outStream, "light_enables", mShaderState.lightEnables);
}
void GLES1Renderer::addFragmentShaderDefs(std::stringstream &outStream)
{
addShaderDefine(outStream, GLES1StateEnables::Fog, "enable_fog");
addShaderDefine(outStream, GLES1StateEnables::ClipPlanes, "enable_clip_planes");
addShaderDefine(outStream, GLES1StateEnables::DrawTexture, "enable_draw_texture");
addShaderDefine(outStream, GLES1StateEnables::PointRasterization, "point_rasterization");
addShaderDefine(outStream, GLES1StateEnables::PointSprite, "point_sprite_enabled");
addShaderDefine(outStream, GLES1StateEnables::AlphaTest, "enable_alpha_test");
addShaderDefine(outStream, GLES1StateEnables::ShadeModelFlat, "shade_model_flat");
// bool enable_texture_2d[kMaxTexUnits] = bool[kMaxTexUnits](...);
addShaderBoolTexArray(outStream, "enable_texture_2d", mShaderState.tex2DEnables);
// bool enable_texture_cube_map[kMaxTexUnits] = bool[kMaxTexUnits](...);
addShaderBoolTexArray(outStream, "enable_texture_cube_map", mShaderState.texCubeEnables);
// int texture_format[kMaxTexUnits] = int[kMaxTexUnits](...);
addShaderIntTexArray(outStream, "texture_format", mShaderState.tex2DFormats);
// bool point_sprite_coord_replace[kMaxTexUnits] = bool[kMaxTexUnits](...);
addShaderBoolTexArray(outStream, "point_sprite_coord_replace",
mShaderState.pointSpriteCoordReplaces);
// bool clip_plane_enables[kMaxClipPlanes] = bool[kMaxClipPlanes](...);
addShaderBoolClipPlaneArray(outStream, "clip_plane_enables", mShaderState.clipPlaneEnables);
// int texture_format[kMaxTexUnits] = int[kMaxTexUnits](...);
addShaderIntTexArray(outStream, "texture_env_mode", mShaderState.texEnvModes);
// int combine_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "combine_rgb", mShaderState.texCombineRgbs);
// int combine_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "combine_alpha", mShaderState.texCombineAlphas);
// int src0_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "src0_rgb", mShaderState.texCombineSrc0Rgbs);
// int src0_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "src0_alpha", mShaderState.texCombineSrc0Alphas);
// int src1_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "src1_rgb", mShaderState.texCombineSrc1Rgbs);
// int src1_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "src1_alpha", mShaderState.texCombineSrc1Alphas);
// int src2_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "src2_rgb", mShaderState.texCombineSrc2Rgbs);
// int src2_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "src2_alpha", mShaderState.texCombineSrc2Alphas);
// int op0_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "op0_rgb", mShaderState.texCombineOp0Rgbs);
// int op0_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "op0_alpha", mShaderState.texCombineOp0Alphas);
// int op1_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "op1_rgb", mShaderState.texCombineOp1Rgbs);
// int op1_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "op1_alpha", mShaderState.texCombineOp1Alphas);
// int op2_rgb[kMaxTexUnits];
addShaderIntTexArray(outStream, "op2_rgb", mShaderState.texCombineOp2Rgbs);
// int op2_alpha[kMaxTexUnits];
addShaderIntTexArray(outStream, "op2_alpha", mShaderState.texCombineOp2Alphas);
// int alpha_func;
addShaderInt(outStream, "alpha_func", ToGLenum(mShaderState.alphaTestFunc));
// int fog_mode;
addShaderInt(outStream, "fog_mode", ToGLenum(mShaderState.fogMode));
}
angle::Result GLES1Renderer::initializeRendererProgram(Context *context, State *glState)
{
// See if we have the shader for this combination of states
if (mUberShaderState.find(mShaderState) != mUberShaderState.end())
{
Program *programObject = getProgram(getUberShaderState().programState.program);
// If this is different than the current program, we need to sync everything
// TODO: This could be optimized to only dirty state that differs between the two programs
if (glState->getProgram()->id() != programObject->id())
{
glState->gles1().setAllDirty();
}
ANGLE_TRY(glState->setProgram(context, programObject));
return angle::Result::Continue;
}
if (!mRendererProgramInitialized)
{
mShaderPrograms = new ShaderProgramManager();
}
// If we get here, we don't have a shader for this state, need to create it
GLES1ProgramState &programState = mUberShaderState[mShaderState].programState;
ShaderProgramID vertexShader;
ShaderProgramID fragmentShader;
std::stringstream GLES1DrawVShaderStateDefs;
addVertexShaderDefs(GLES1DrawVShaderStateDefs);
std::stringstream vertexStream;
vertexStream << kGLES1DrawVShaderHeader;
vertexStream << GLES1DrawVShaderStateDefs.str();
vertexStream << kGLES1DrawVShader;
ANGLE_TRY(
compileShader(context, ShaderType::Vertex, vertexStream.str().c_str(), &vertexShader));
std::stringstream GLES1DrawFShaderStateDefs;
addFragmentShaderDefs(GLES1DrawFShaderStateDefs);
std::stringstream fragmentStream;
fragmentStream << kGLES1DrawFShaderVersion;
if (mShaderState.mGLES1StateEnabled[GLES1StateEnables::LogicOpThroughFramebufferFetch])
{
if (context->getExtensions().shaderFramebufferFetchEXT)
{
fragmentStream << "#extension GL_EXT_shader_framebuffer_fetch : require\n";
}
else
{
fragmentStream << "#extension GL_EXT_shader_framebuffer_fetch_non_coherent : require\n";
}
}
fragmentStream << kGLES1DrawFShaderHeader;
fragmentStream << GLES1DrawFShaderStateDefs.str();
fragmentStream << kGLES1DrawFShaderUniformDefs;
if (mShaderState.mGLES1StateEnabled[GLES1StateEnables::LogicOpThroughFramebufferFetch])
{
if (context->getExtensions().shaderFramebufferFetchEXT)
{
fragmentStream << kGLES1DrawFShaderFramebufferFetchOutputDef;
}
else
{
fragmentStream << kGLES1DrawFShaderFramebufferFetchNonCoherentOutputDef;
}
fragmentStream << kGLES1DrawFShaderLogicOpFramebufferFetchEnabled;
}
else
{
fragmentStream << kGLES1DrawFShaderOutputDef;
fragmentStream << kGLES1DrawFShaderLogicOpFramebufferFetchDisabled;
}
fragmentStream << kGLES1DrawFShaderFunctions;
fragmentStream << kGLES1DrawFShaderMultitexturing;
fragmentStream << kGLES1DrawFShaderMain;
ANGLE_TRY(compileShader(context, ShaderType::Fragment, fragmentStream.str().c_str(),
&fragmentShader));
angle::HashMap<GLint, std::string> attribLocs;
attribLocs[(GLint)kVertexAttribIndex] = "pos";
attribLocs[(GLint)kNormalAttribIndex] = "normal";
attribLocs[(GLint)kColorAttribIndex] = "color";
attribLocs[(GLint)kPointSizeAttribIndex] = "pointsize";
for (int i = 0; i < kTexUnitCount; i++)
{
std::stringstream ss;
ss << "texcoord" << i;
attribLocs[kTextureCoordAttribIndexBase + i] = ss.str();
}
ANGLE_TRY(linkProgram(context, glState, vertexShader, fragmentShader, attribLocs,
&programState.program));
mShaderPrograms->deleteShader(context, vertexShader);
mShaderPrograms->deleteShader(context, fragmentShader);
Program *programObject = getProgram(programState.program);
programState.projMatrixLoc = programObject->getUniformLocation("projection");
programState.modelviewMatrixLoc = programObject->getUniformLocation("modelview");
programState.textureMatrixLoc = programObject->getUniformLocation("texture_matrix");
programState.modelviewInvTrLoc = programObject->getUniformLocation("modelview_invtr");
for (int i = 0; i < kTexUnitCount; i++)
{
std::stringstream ss2d;
std::stringstream sscube;
ss2d << "tex_sampler" << i;
sscube << "tex_cube_sampler" << i;
programState.tex2DSamplerLocs[i] = programObject->getUniformLocation(ss2d.str().c_str());
programState.texCubeSamplerLocs[i] =
programObject->getUniformLocation(sscube.str().c_str());
}
programState.textureEnvColorLoc = programObject->getUniformLocation("texture_env_color");
programState.rgbScaleLoc = programObject->getUniformLocation("texture_env_rgb_scale");
programState.alphaScaleLoc = programObject->getUniformLocation("texture_env_alpha_scale");
programState.alphaTestRefLoc = programObject->getUniformLocation("alpha_test_ref");
programState.materialAmbientLoc = programObject->getUniformLocation("material_ambient");
programState.materialDiffuseLoc = programObject->getUniformLocation("material_diffuse");
programState.materialSpecularLoc = programObject->getUniformLocation("material_specular");
programState.materialEmissiveLoc = programObject->getUniformLocation("material_emissive");
programState.materialSpecularExponentLoc =
programObject->getUniformLocation("material_specular_exponent");
programState.lightModelSceneAmbientLoc =
programObject->getUniformLocation("light_model_scene_ambient");
programState.lightAmbientsLoc = programObject->getUniformLocation("light_ambients");
programState.lightDiffusesLoc = programObject->getUniformLocation("light_diffuses");
programState.lightSpecularsLoc = programObject->getUniformLocation("light_speculars");
programState.lightPositionsLoc = programObject->getUniformLocation("light_positions");
programState.lightDirectionsLoc = programObject->getUniformLocation("light_directions");
programState.lightSpotlightExponentsLoc =
programObject->getUniformLocation("light_spotlight_exponents");
programState.lightSpotlightCutoffAnglesLoc =
programObject->getUniformLocation("light_spotlight_cutoff_angles");
programState.lightAttenuationConstsLoc =
programObject->getUniformLocation("light_attenuation_consts");
programState.lightAttenuationLinearsLoc =
programObject->getUniformLocation("light_attenuation_linears");
programState.lightAttenuationQuadraticsLoc =
programObject->getUniformLocation("light_attenuation_quadratics");
programState.fogDensityLoc = programObject->getUniformLocation("fog_density");
programState.fogStartLoc = programObject->getUniformLocation("fog_start");
programState.fogEndLoc = programObject->getUniformLocation("fog_end");
programState.fogColorLoc = programObject->getUniformLocation("fog_color");
programState.clipPlanesLoc = programObject->getUniformLocation("clip_planes");
programState.logicOpLoc = programObject->getUniformLocation("logic_op");
programState.pointSizeMinLoc = programObject->getUniformLocation("point_size_min");
programState.pointSizeMaxLoc = programObject->getUniformLocation("point_size_max");
programState.pointDistanceAttenuationLoc =
programObject->getUniformLocation("point_distance_attenuation");
programState.drawTextureCoordsLoc = programObject->getUniformLocation("draw_texture_coords");
programState.drawTextureDimsLoc = programObject->getUniformLocation("draw_texture_dims");
programState.drawTextureNormalizedCropRectLoc =
programObject->getUniformLocation("draw_texture_normalized_crop_rect");
ANGLE_TRY(glState->setProgram(context, programObject));
for (int i = 0; i < kTexUnitCount; i++)
{
setUniform1i(context, programObject, programState.tex2DSamplerLocs[i], i);
setUniform1i(context, programObject, programState.texCubeSamplerLocs[i], i + kTexUnitCount);
}
glState->setObjectDirty(GL_PROGRAM);
// We just created a new program, we need to sync everything
glState->gles1().setAllDirty();
mRendererProgramInitialized = true;
return angle::Result::Continue;
}
void GLES1Renderer::setUniform1i(Context *context,
Program *programObject,
UniformLocation location,
GLint value)
{
if (location.value == -1)
return;
programObject->setUniform1iv(context, location, 1, &value);
}
void GLES1Renderer::setUniform1ui(Program *programObject, UniformLocation location, GLuint value)
{
if (location.value == -1)
return;
programObject->setUniform1uiv(location, 1, &value);
}
void GLES1Renderer::setUniform1iv(Context *context,
Program *programObject,
UniformLocation location,
GLint count,
const GLint *value)
{
if (location.value == -1)
return;
programObject->setUniform1iv(context, location, count, value);
}
void GLES1Renderer::setUniformMatrix4fv(Program *programObject,
UniformLocation location,
GLint count,
GLboolean transpose,
const GLfloat *value)
{
if (location.value == -1)
return;
programObject->setUniformMatrix4fv(location, count, transpose, value);
}
void GLES1Renderer::setUniform4fv(Program *programObject,
UniformLocation location,
GLint count,
const GLfloat *value)
{
if (location.value == -1)
return;
programObject->setUniform4fv(location, count, value);
}
void GLES1Renderer::setUniform3fv(Program *programObject,
UniformLocation location,
GLint count,
const GLfloat *value)
{
if (location.value == -1)
return;
programObject->setUniform3fv(location, count, value);
}
void GLES1Renderer::setUniform2fv(Program *programObject,
UniformLocation location,
GLint count,
const GLfloat *value)
{
if (location.value == -1)
return;
programObject->setUniform2fv(location, count, value);
}
void GLES1Renderer::setUniform1f(Program *programObject, UniformLocation location, GLfloat value)
{
if (location.value == -1)
return;
programObject->setUniform1fv(location, 1, &value);
}
void GLES1Renderer::setUniform1fv(Program *programObject,
UniformLocation location,
GLint count,
const GLfloat *value)
{
if (location.value == -1)
return;
programObject->setUniform1fv(location, count, value);
}
void GLES1Renderer::setAttributesEnabled(Context *context, State *glState, AttributesMask mask)
{
GLES1State &gles1 = glState->gles1();
ClientVertexArrayType nonTexcoordArrays[] = {
ClientVertexArrayType::Vertex,
ClientVertexArrayType::Normal,
ClientVertexArrayType::Color,
ClientVertexArrayType::PointSize,
};
for (const ClientVertexArrayType attrib : nonTexcoordArrays)
{
int index = VertexArrayIndex(attrib, glState->gles1());
if (mask.test(index))
{
gles1.setClientStateEnabled(attrib, true);
context->enableVertexAttribArray(index);
}
else
{
gles1.setClientStateEnabled(attrib, false);
context->disableVertexAttribArray(index);
}
}
for (unsigned int i = 0; i < kTexUnitCount; i++)
{
int index = TexCoordArrayIndex(i);
if (mask.test(index))
{
gles1.setTexCoordArrayEnabled(i, true);
context->enableVertexAttribArray(index);
}
else
{
gles1.setTexCoordArrayEnabled(i, false);
context->disableVertexAttribArray(index);
}
}
}
} // namespace gl