DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (585fe4556335)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "SVGPathData.h"

#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Types.h"
#include "mozilla/gfx/Point.h"
#include "mozilla/RefPtr.h"
#include "nsError.h"
#include "nsString.h"
#include "SVGPathDataParser.h"
#include <stdarg.h>
#include "nsStyleConsts.h"
#include "SVGContentUtils.h"
#include "SVGGeometryElement.h"
#include "SVGPathSegUtils.h"
#include <algorithm>

using namespace mozilla::dom::SVGPathSeg_Binding;
using namespace mozilla::gfx;

namespace mozilla {

static inline bool IsMoveto(uint16_t aSegType) {
  return aSegType == PATHSEG_MOVETO_ABS || aSegType == PATHSEG_MOVETO_REL;
}

static inline bool IsMoveto(StylePathCommand::Tag aSegType) {
  return aSegType == StylePathCommand::Tag::MoveTo;
}

static inline bool IsValidType(uint16_t aSegType) {
  return SVGPathSegUtils::IsValidType(aSegType);
}

static inline bool IsValidType(StylePathCommand::Tag aSegType) {
  return aSegType != StylePathCommand::Tag::Unknown;
}

static inline bool IsClosePath(uint16_t aSegType) {
  return aSegType == PATHSEG_CLOSEPATH;
}

static inline bool IsClosePath(StylePathCommand::Tag aSegType) {
  return aSegType == StylePathCommand::Tag::ClosePath;
}

nsresult SVGPathData::CopyFrom(const SVGPathData& rhs) {
  if (!mData.Assign(rhs.mData, fallible)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }
  return NS_OK;
}

void SVGPathData::GetValueAsString(nsAString& aValue) const {
  // we need this function in DidChangePathSegList
  aValue.Truncate();
  if (!Length()) {
    return;
  }
  uint32_t i = 0;
  for (;;) {
    nsAutoString segAsString;
    SVGPathSegUtils::GetValueAsString(&mData[i], segAsString);
    // We ignore OOM, since it's not useful for us to return an error.
    aValue.Append(segAsString);
    i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
    if (i >= mData.Length()) {
      MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
      return;
    }
    aValue.Append(' ');
  }
}

nsresult SVGPathData::SetValueFromString(const nsAString& aValue) {
  // We don't use a temp variable since the spec says to parse everything up to
  // the first error. We still return any error though so that callers know if
  // there's a problem.

  SVGPathDataParser pathParser(aValue, this);
  return pathParser.Parse() ? NS_OK : NS_ERROR_DOM_SYNTAX_ERR;
}

nsresult SVGPathData::AppendSeg(uint32_t aType, ...) {
  uint32_t oldLength = mData.Length();
  uint32_t newLength = oldLength + 1 + SVGPathSegUtils::ArgCountForType(aType);
  if (!mData.SetLength(newLength, fallible)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  mData[oldLength] = SVGPathSegUtils::EncodeType(aType);
  va_list args;
  va_start(args, aType);
  for (uint32_t i = oldLength + 1; i < newLength; ++i) {
    // NOTE! 'float' is promoted to 'double' when passed through '...'!
    mData[i] = float(va_arg(args, double));
  }
  va_end(args);
  return NS_OK;
}

float SVGPathData::GetPathLength() const {
  SVGPathTraversalState state;

  uint32_t i = 0;
  while (i < mData.Length()) {
    SVGPathSegUtils::TraversePathSegment(&mData[i], state);
    i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");

  return state.length;
}

#ifdef DEBUG
uint32_t SVGPathData::CountItems() const {
  uint32_t i = 0, count = 0;

  while (i < mData.Length()) {
    i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
    count++;
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");

  return count;
}
#endif

bool SVGPathData::GetSegmentLengths(nsTArray<double>* aLengths) const {
  aLengths->Clear();
  SVGPathTraversalState state;

  uint32_t i = 0;
  while (i < mData.Length()) {
    state.length = 0.0;
    SVGPathSegUtils::TraversePathSegment(&mData[i], state);
    if (!aLengths->AppendElement(state.length)) {
      aLengths->Clear();
      return false;
    }
    i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");

  return true;
}

bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments(
    FallibleTArray<double>* aOutput) const {
  SVGPathTraversalState state;

  aOutput->Clear();

  uint32_t i = 0;
  while (i < mData.Length()) {
    uint32_t segType = SVGPathSegUtils::DecodeType(mData[i]);
    SVGPathSegUtils::TraversePathSegment(&mData[i], state);

    // With degenerately large point coordinates, TraversePathSegment can fail
    // and end up producing NaNs.
    if (!std::isfinite(state.length)) {
      return false;
    }

    // We skip all moveto commands except an initial moveto. See the text 'A
    // "move to" command does not count as an additional point when dividing up
    // the duration...':
    //
    // http://www.w3.org/TR/SVG11/animate.html#AnimateMotionElement
    //
    // This is important in the non-default case of calcMode="linear". In
    // this case an equal amount of time is spent on each path segment,
    // except on moveto segments which are jumped over immediately.

    if (i == 0 ||
        (segType != PATHSEG_MOVETO_ABS && segType != PATHSEG_MOVETO_REL)) {
      if (!aOutput->AppendElement(state.length, fallible)) {
        return false;
      }
    }
    i += 1 + SVGPathSegUtils::ArgCountForType(segType);
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt?");

  return true;
}

uint32_t SVGPathData::GetPathSegAtLength(float aDistance) const {
  // TODO [SVGWG issue] get specified what happen if 'aDistance' < 0, or
  // 'aDistance' > the length of the path, or the seg list is empty.
  // Return -1? Throwing would better help authors avoid tricky bugs (DOM
  // could do that if we return -1).

  uint32_t i = 0, segIndex = 0;
  SVGPathTraversalState state;

  while (i < mData.Length()) {
    SVGPathSegUtils::TraversePathSegment(&mData[i], state);
    if (state.length >= aDistance) {
      return segIndex;
    }
    i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
    segIndex++;
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");

  return std::max(1U, segIndex) -
         1;  // -1 because while loop takes us 1 too far
}

/**
 * The SVG spec says we have to paint stroke caps for zero length subpaths:
 *
 *   http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
 *
 * Cairo only does this for |stroke-linecap: round| and not for
 * |stroke-linecap: square| (since that's what Adobe Acrobat has always done).
 * Most likely the other backends that DrawTarget uses have the same behavior.
 *
 * To help us conform to the SVG spec we have this helper function to draw an
 * approximation of square caps for zero length subpaths. It does this by
 * inserting a subpath containing a single user space axis aligned straight
 * line that is as small as it can be while minimizing the risk of it being
 * thrown away by the DrawTarget's backend for being too small to affect
 * rendering. The idea is that we'll then get stroke caps drawn for this axis
 * aligned line, creating an axis aligned rectangle that approximates the
 * square that would ideally be drawn.
 *
 * Since we don't have any information about transforms from user space to
 * device space, we choose the length of the small line that we insert by
 * making it a small percentage of the stroke width of the path. This should
 * hopefully allow us to make the line as long as possible (to avoid rounding
 * issues in the backend resulting in the backend seeing it as having zero
 * length) while still avoiding the small rectangle being noticeably different
 * from a square.
 *
 * Note that this function inserts a subpath into the current gfx path that
 * will be present during both fill and stroke operations.
 */
static void ApproximateZeroLengthSubpathSquareCaps(PathBuilder* aPB,
                                                   const Point& aPoint,
                                                   Float aStrokeWidth) {
  // Note that caps are proportional to stroke width, so if stroke width is
  // zero it's actually fine for |tinyLength| below to end up being zero.
  // However, it would be a waste to inserting a LineTo in that case, so better
  // not to.
  MOZ_ASSERT(aStrokeWidth > 0.0f,
             "Make the caller check for this, or check it here");

  // The fraction of the stroke width that we choose for the length of the
  // line is rather arbitrary, other than being chosen to meet the requirements
  // described in the comment above.

  Float tinyLength = aStrokeWidth / SVG_ZERO_LENGTH_PATH_FIX_FACTOR;

  aPB->LineTo(aPoint + Point(tinyLength, 0));
  aPB->MoveTo(aPoint);
}

#define MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT  \
  do {                                                           \
    if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 &&  \
        subpathContainsNonMoveTo && IsValidType(prevSegType) &&  \
        (!IsMoveto(prevSegType) || IsClosePath(segType))) {      \
      ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart, \
                                             aStrokeWidth);      \
    }                                                            \
  } while (0)

already_AddRefed<Path> SVGPathData::BuildPath(PathBuilder* aBuilder,
                                              uint8_t aStrokeLineCap,
                                              Float aStrokeWidth) const {
  if (mData.IsEmpty() || !IsMoveto(SVGPathSegUtils::DecodeType(mData[0]))) {
    return nullptr;  // paths without an initial moveto are invalid
  }

  bool hasLineCaps = aStrokeLineCap != NS_STYLE_STROKE_LINECAP_BUTT;
  bool subpathHasLength = false;  // visual length
  bool subpathContainsNonMoveTo = false;

  uint32_t segType = PATHSEG_UNKNOWN;
  uint32_t prevSegType = PATHSEG_UNKNOWN;
  Point pathStart(0.0, 0.0);  // start point of [sub]path
  Point segStart(0.0, 0.0);
  Point segEnd;
  Point cp1, cp2;    // previous bezier's control points
  Point tcp1, tcp2;  // temporaries

  // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve,
  // then cp2 is its second control point. If the previous segment was a
  // quadratic curve, then cp1 is its (only) control point.

  uint32_t i = 0;
  while (i < mData.Length()) {
    segType = SVGPathSegUtils::DecodeType(mData[i++]);
    uint32_t argCount = SVGPathSegUtils::ArgCountForType(segType);

    switch (segType) {
      case PATHSEG_CLOSEPATH:
        // set this early to allow drawing of square caps for "M{x},{y} Z":
        subpathContainsNonMoveTo = true;
        MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
        segEnd = pathStart;
        aBuilder->Close();
        break;

      case PATHSEG_MOVETO_ABS:
        MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
        pathStart = segEnd = Point(mData[i], mData[i + 1]);
        aBuilder->MoveTo(segEnd);
        subpathHasLength = false;
        break;

      case PATHSEG_MOVETO_REL:
        MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
        pathStart = segEnd = segStart + Point(mData[i], mData[i + 1]);
        aBuilder->MoveTo(segEnd);
        subpathHasLength = false;
        break;

      case PATHSEG_LINETO_ABS:
        segEnd = Point(mData[i], mData[i + 1]);
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(segEnd);
        }
        break;

      case PATHSEG_LINETO_REL:
        segEnd = segStart + Point(mData[i], mData[i + 1]);
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(segEnd);
        }
        break;

      case PATHSEG_CURVETO_CUBIC_ABS:
        cp1 = Point(mData[i], mData[i + 1]);
        cp2 = Point(mData[i + 2], mData[i + 3]);
        segEnd = Point(mData[i + 4], mData[i + 5]);
        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(cp1, cp2, segEnd);
        }
        break;

      case PATHSEG_CURVETO_CUBIC_REL:
        cp1 = segStart + Point(mData[i], mData[i + 1]);
        cp2 = segStart + Point(mData[i + 2], mData[i + 3]);
        segEnd = segStart + Point(mData[i + 4], mData[i + 5]);
        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(cp1, cp2, segEnd);
        }
        break;

      case PATHSEG_CURVETO_QUADRATIC_ABS:
        cp1 = Point(mData[i], mData[i + 1]);
        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;
        segEnd = Point(mData[i + 2], mData[i + 3]);  // set before setting tcp2!
        tcp2 = cp1 + (segEnd - cp1) / 3;
        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(tcp1, tcp2, segEnd);
        }
        break;

      case PATHSEG_CURVETO_QUADRATIC_REL:
        cp1 = segStart + Point(mData[i], mData[i + 1]);
        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;
        segEnd = segStart +
                 Point(mData[i + 2], mData[i + 3]);  // set before setting tcp2!
        tcp2 = cp1 + (segEnd - cp1) / 3;
        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(tcp1, tcp2, segEnd);
        }
        break;

      case PATHSEG_ARC_ABS:
      case PATHSEG_ARC_REL: {
        Point radii(mData[i], mData[i + 1]);
        segEnd = Point(mData[i + 5], mData[i + 6]);
        if (segType == PATHSEG_ARC_REL) {
          segEnd += segStart;
        }
        if (segEnd != segStart) {
          subpathHasLength = true;
          if (radii.x == 0.0f || radii.y == 0.0f) {
            aBuilder->LineTo(segEnd);
          } else {
            SVGArcConverter converter(segStart, segEnd, radii, mData[i + 2],
                                      mData[i + 3] != 0, mData[i + 4] != 0);
            while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) {
              aBuilder->BezierTo(cp1, cp2, segEnd);
            }
          }
        }
        break;
      }

      case PATHSEG_LINETO_HORIZONTAL_ABS:
        segEnd = Point(mData[i], segStart.y);
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(segEnd);
        }
        break;

      case PATHSEG_LINETO_HORIZONTAL_REL:
        segEnd = segStart + Point(mData[i], 0.0f);
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(segEnd);
        }
        break;

      case PATHSEG_LINETO_VERTICAL_ABS:
        segEnd = Point(segStart.x, mData[i]);
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(segEnd);
        }
        break;

      case PATHSEG_LINETO_VERTICAL_REL:
        segEnd = segStart + Point(0.0f, mData[i]);
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(segEnd);
        }
        break;

      case PATHSEG_CURVETO_CUBIC_SMOOTH_ABS:
        cp1 = SVGPathSegUtils::IsCubicType(prevSegType) ? segStart * 2 - cp2
                                                        : segStart;
        cp2 = Point(mData[i], mData[i + 1]);
        segEnd = Point(mData[i + 2], mData[i + 3]);
        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(cp1, cp2, segEnd);
        }
        break;

      case PATHSEG_CURVETO_CUBIC_SMOOTH_REL:
        cp1 = SVGPathSegUtils::IsCubicType(prevSegType) ? segStart * 2 - cp2
                                                        : segStart;
        cp2 = segStart + Point(mData[i], mData[i + 1]);
        segEnd = segStart + Point(mData[i + 2], mData[i + 3]);
        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(cp1, cp2, segEnd);
        }
        break;

      case PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS:
        cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) ? segStart * 2 - cp1
                                                            : segStart;
        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;
        segEnd = Point(mData[i], mData[i + 1]);  // set before setting tcp2!
        tcp2 = cp1 + (segEnd - cp1) / 3;
        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(tcp1, tcp2, segEnd);
        }
        break;

      case PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL:
        cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) ? segStart * 2 - cp1
                                                            : segStart;
        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;
        segEnd = segStart +
                 Point(mData[i], mData[i + 1]);  // changed before setting tcp2!
        tcp2 = cp1 + (segEnd - cp1) / 3;
        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(tcp1, tcp2, segEnd);
        }
        break;

      default:
        MOZ_ASSERT_UNREACHABLE("Bad path segment type");
        return nullptr;  // according to spec we'd use everything up to the bad
                         // seg anyway
    }

    subpathContainsNonMoveTo =
        segType != PATHSEG_MOVETO_ABS && segType != PATHSEG_MOVETO_REL;
    i += argCount;
    prevSegType = segType;
    segStart = segEnd;
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
  MOZ_ASSERT(prevSegType == segType,
             "prevSegType should be left at the final segType");

  MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;

  return aBuilder->Finish();
}

already_AddRefed<Path> SVGPathData::BuildPathForMeasuring() const {
  // Since the path that we return will not be used for painting it doesn't
  // matter what we pass to CreatePathBuilder as aFillRule. Hawever, we do want
  // to pass something other than NS_STYLE_STROKE_LINECAP_SQUARE as
  // aStrokeLineCap to avoid the insertion of extra little lines (by
  // ApproximateZeroLengthSubpathSquareCaps), in which case the value that we
  // pass as aStrokeWidth doesn't matter (since it's only used to determine the
  // length of those extra little lines).

  RefPtr<DrawTarget> drawTarget =
      gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
  RefPtr<PathBuilder> builder =
      drawTarget->CreatePathBuilder(FillRule::FILL_WINDING);
  return BuildPath(builder, NS_STYLE_STROKE_LINECAP_BUTT, 0);
}

// We could simplify this function because this is only used by CSS motion path
// and clip-path, which don't render the SVG Path. i.e. The returned path is
// used as a reference.
/* static */
already_AddRefed<Path> SVGPathData::BuildPath(
    Span<const StylePathCommand> aPath, PathBuilder* aBuilder,
    uint8_t aStrokeLineCap, Float aStrokeWidth, float aZoomFactor) {
  if (aPath.IsEmpty() || !aPath[0].IsMoveTo()) {
    return nullptr;  // paths without an initial moveto are invalid
  }

  auto toGfxPoint = [](const StyleCoordPair& aPair) {
    return Point(aPair._0, aPair._1);
  };

  auto isCubicType = [](StylePathCommand::Tag aType) {
    return aType == StylePathCommand::Tag::CurveTo ||
           aType == StylePathCommand::Tag::SmoothCurveTo;
  };

  auto isQuadraticType = [](StylePathCommand::Tag aType) {
    return aType == StylePathCommand::Tag::QuadBezierCurveTo ||
           aType == StylePathCommand::Tag::SmoothQuadBezierCurveTo;
  };

  bool hasLineCaps = aStrokeLineCap != NS_STYLE_STROKE_LINECAP_BUTT;
  bool subpathHasLength = false;  // visual length
  bool subpathContainsNonMoveTo = false;

  StylePathCommand::Tag segType = StylePathCommand::Tag::Unknown;
  StylePathCommand::Tag prevSegType = StylePathCommand::Tag::Unknown;
  Point pathStart(0.0, 0.0);  // start point of [sub]path
  Point segStart(0.0, 0.0);
  Point segEnd;
  Point cp1, cp2;    // previous bezier's control points
  Point tcp1, tcp2;  // temporaries

  auto scale = [aZoomFactor](const Point& p) {
    return Point(p.x * aZoomFactor, p.y * aZoomFactor);
  };

  // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve,
  // then cp2 is its second control point. If the previous segment was a
  // quadratic curve, then cp1 is its (only) control point.

  for (const StylePathCommand& cmd : aPath) {
    segType = cmd.tag;
    switch (segType) {
      case StylePathCommand::Tag::ClosePath:
        // set this early to allow drawing of square caps for "M{x},{y} Z":
        subpathContainsNonMoveTo = true;
        MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
        segEnd = pathStart;
        aBuilder->Close();
        break;
      case StylePathCommand::Tag::MoveTo: {
        MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
        const Point& p = toGfxPoint(cmd.move_to.point);
        pathStart = segEnd =
            cmd.move_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p;
        aBuilder->MoveTo(scale(segEnd));
        subpathHasLength = false;
        break;
      }
      case StylePathCommand::Tag::LineTo: {
        const Point& p = toGfxPoint(cmd.line_to.point);
        segEnd =
            cmd.line_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p;
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(scale(segEnd));
        }
        break;
      }
      case StylePathCommand::Tag::CurveTo:
        cp1 = toGfxPoint(cmd.curve_to.control1);
        cp2 = toGfxPoint(cmd.curve_to.control2);
        segEnd = toGfxPoint(cmd.curve_to.point);

        if (cmd.curve_to.absolute == StyleIsAbsolute::No) {
          cp1 += segStart;
          cp2 += segStart;
          segEnd += segStart;
        }

        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
        }
        break;

      case StylePathCommand::Tag::QuadBezierCurveTo:
        cp1 = toGfxPoint(cmd.quad_bezier_curve_to.control1);
        segEnd = toGfxPoint(cmd.quad_bezier_curve_to.point);

        if (cmd.quad_bezier_curve_to.absolute == StyleIsAbsolute::No) {
          cp1 += segStart;
          segEnd += segStart;  // set before setting tcp2!
        }

        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;
        tcp2 = cp1 + (segEnd - cp1) / 3;

        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd));
        }
        break;

      case StylePathCommand::Tag::EllipticalArc: {
        const auto& arc = cmd.elliptical_arc;
        Point radii(arc.rx, arc.ry);
        segEnd = toGfxPoint(arc.point);
        if (arc.absolute == StyleIsAbsolute::No) {
          segEnd += segStart;
        }
        if (segEnd != segStart) {
          subpathHasLength = true;
          if (radii.x == 0.0f || radii.y == 0.0f) {
            aBuilder->LineTo(scale(segEnd));
          } else {
            SVGArcConverter converter(segStart, segEnd, radii, arc.angle,
                                      arc.large_arc_flag._0, arc.sweep_flag._0);
            while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) {
              aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
            }
          }
        }
        break;
      }
      case StylePathCommand::Tag::HorizontalLineTo:
        if (cmd.horizontal_line_to.absolute == StyleIsAbsolute::Yes) {
          segEnd = Point(cmd.horizontal_line_to.x, segStart.y);
        } else {
          segEnd = segStart + Point(cmd.horizontal_line_to.x, 0.0f);
        }

        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(scale(segEnd));
        }
        break;

      case StylePathCommand::Tag::VerticalLineTo:
        if (cmd.vertical_line_to.absolute == StyleIsAbsolute::Yes) {
          segEnd = Point(segStart.x, cmd.vertical_line_to.y);
        } else {
          segEnd = segStart + Point(0.0f, cmd.vertical_line_to.y);
        }

        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(scale(segEnd));
        }
        break;

      case StylePathCommand::Tag::SmoothCurveTo:
        cp1 = isCubicType(prevSegType) ? segStart * 2 - cp2 : segStart;
        cp2 = toGfxPoint(cmd.smooth_curve_to.control2);
        segEnd = toGfxPoint(cmd.smooth_curve_to.point);

        if (cmd.smooth_curve_to.absolute == StyleIsAbsolute::No) {
          cp2 += segStart;
          segEnd += segStart;
        }

        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
        }
        break;

      case StylePathCommand::Tag::SmoothQuadBezierCurveTo: {
        cp1 = isQuadraticType(prevSegType) ? segStart * 2 - cp1 : segStart;
        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;

        const Point& p = toGfxPoint(cmd.smooth_quad_bezier_curve_to.point);
        // set before setting tcp2!
        segEnd =
            cmd.smooth_quad_bezier_curve_to.absolute == StyleIsAbsolute::Yes
                ? p
                : segStart + p;
        tcp2 = cp1 + (segEnd - cp1) / 3;

        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd));
        }
        break;
      }
      case StylePathCommand::Tag::Unknown:
        MOZ_ASSERT_UNREACHABLE("Unacceptable path segment type");
        return nullptr;
    }

    subpathContainsNonMoveTo = !IsMoveto(segType);
    prevSegType = segType;
    segStart = segEnd;
  }

  MOZ_ASSERT(prevSegType == segType,
             "prevSegType should be left at the final segType");

  MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;

  return aBuilder->Finish();
}

static double AngleOfVector(const Point& aVector) {
  // C99 says about atan2 "A domain error may occur if both arguments are
  // zero" and "On a domain error, the function returns an implementation-
  // defined value". In the case of atan2 the implementation-defined value
  // seems to commonly be zero, but it could just as easily be a NaN value.
  // We specifically want zero in this case, hence the check:

  return (aVector != Point(0.0, 0.0)) ? atan2(aVector.y, aVector.x) : 0.0;
}

static float AngleOfVector(const Point& cp1, const Point& cp2) {
  return static_cast<float>(AngleOfVector(cp1 - cp2));
}

void SVGPathData::GetMarkerPositioningData(nsTArray<SVGMark>* aMarks) const {
  // This code should assume that ANY type of segment can appear at ANY index.
  // It should also assume that segments such as M and Z can appear in weird
  // places, and repeat multiple times consecutively.

  // info on current [sub]path (reset every M command):
  Point pathStart(0.0, 0.0);
  float pathStartAngle = 0.0f;
  uint32_t pathStartIndex = 0;

  // info on previous segment:
  uint16_t prevSegType = PATHSEG_UNKNOWN;
  Point prevSegEnd(0.0, 0.0);
  float prevSegEndAngle = 0.0f;
  Point prevCP;  // if prev seg was a bezier, this was its last control point

  uint32_t i = 0;
  while (i < mData.Length()) {
    // info on current segment:
    uint16_t segType =
        SVGPathSegUtils::DecodeType(mData[i++]);  // advances i to args
    Point& segStart = prevSegEnd;
    Point segEnd;
    float segStartAngle, segEndAngle;

    switch (segType)  // to find segStartAngle, segEnd and segEndAngle
    {
      case PATHSEG_CLOSEPATH:
        segEnd = pathStart;
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;

      case PATHSEG_MOVETO_ABS:
      case PATHSEG_MOVETO_REL:
        if (segType == PATHSEG_MOVETO_ABS) {
          segEnd = Point(mData[i], mData[i + 1]);
        } else {
          segEnd = segStart + Point(mData[i], mData[i + 1]);
        }
        pathStart = segEnd;
        pathStartIndex = aMarks->Length();
        // If authors are going to specify multiple consecutive moveto commands
        // with markers, me might as well make the angle do something useful:
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        i += 2;
        break;

      case PATHSEG_LINETO_ABS:
      case PATHSEG_LINETO_REL:
        if (segType == PATHSEG_LINETO_ABS) {
          segEnd = Point(mData[i], mData[i + 1]);
        } else {
          segEnd = segStart + Point(mData[i], mData[i + 1]);
        }
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        i += 2;
        break;

      case PATHSEG_CURVETO_CUBIC_ABS:
      case PATHSEG_CURVETO_CUBIC_REL: {
        Point cp1, cp2;  // control points
        if (segType == PATHSEG_CURVETO_CUBIC_ABS) {
          cp1 = Point(mData[i], mData[i + 1]);
          cp2 = Point(mData[i + 2], mData[i + 3]);
          segEnd = Point(mData[i + 4], mData[i + 5]);
        } else {
          cp1 = segStart + Point(mData[i], mData[i + 1]);
          cp2 = segStart + Point(mData[i + 2], mData[i + 3]);
          segEnd = segStart + Point(mData[i + 4], mData[i + 5]);
        }
        prevCP = cp2;
        segStartAngle = AngleOfVector(
            cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
        segEndAngle = AngleOfVector(
            segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
        i += 6;
        break;
      }

      case PATHSEG_CURVETO_QUADRATIC_ABS:
      case PATHSEG_CURVETO_QUADRATIC_REL: {
        Point cp1;  // control point
        if (segType == PATHSEG_CURVETO_QUADRATIC_ABS) {
          cp1 = Point(mData[i], mData[i + 1]);
          segEnd = Point(mData[i + 2], mData[i + 3]);
        } else {
          cp1 = segStart + Point(mData[i], mData[i + 1]);
          segEnd = segStart + Point(mData[i + 2], mData[i + 3]);
        }
        prevCP = cp1;
        segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
        segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
        i += 4;
        break;
      }

      case PATHSEG_ARC_ABS:
      case PATHSEG_ARC_REL: {
        double rx = mData[i];
        double ry = mData[i + 1];
        double angle = mData[i + 2];
        bool largeArcFlag = mData[i + 3] != 0.0f;
        bool sweepFlag = mData[i + 4] != 0.0f;
        if (segType == PATHSEG_ARC_ABS) {
          segEnd = Point(mData[i + 5], mData[i + 6]);
        } else {
          segEnd = segStart + Point(mData[i + 5], mData[i + 6]);
        }

        // See section F.6 of SVG 1.1 for details on what we're doing here:
        // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes

        if (segStart == segEnd) {
          // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical,
          // then this is equivalent to omitting the elliptical arc segment
          // entirely." We take that very literally here, not adding a mark, and
          // not even setting any of the 'prev' variables so that it's as if
          // this arc had never existed; note the difference this will make e.g.
          // if the arc is proceeded by a bezier curve and followed by a
          // "smooth" bezier curve of the same degree!
          i += 7;
          continue;
        }

        // Below we have funny interleaving of F.6.6 (Correction of out-of-range
        // radii) and F.6.5 (Conversion from endpoint to center
        // parameterization) which is designed to avoid some unnecessary
        // calculations.

        if (rx == 0.0 || ry == 0.0) {
          // F.6.6 step 1 - straight line or coincidental points
          segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
          i += 7;
          break;
        }
        rx = fabs(rx);  // F.6.6.1
        ry = fabs(ry);

        // F.6.5.1:
        angle = angle * M_PI / 180.0;
        double x1p = cos(angle) * (segStart.x - segEnd.x) / 2.0 +
                     sin(angle) * (segStart.y - segEnd.y) / 2.0;
        double y1p = -sin(angle) * (segStart.x - segEnd.x) / 2.0 +
                     cos(angle) * (segStart.y - segEnd.y) / 2.0;

        // This is the root in F.6.5.2 and the numerator under that root:
        double root;
        double numerator =
            rx * rx * ry * ry - rx * rx * y1p * y1p - ry * ry * x1p * x1p;

        if (numerator >= 0.0) {
          root = sqrt(numerator / (rx * rx * y1p * y1p + ry * ry * x1p * x1p));
          if (largeArcFlag == sweepFlag) root = -root;
        } else {
          // F.6.6 step 3 - |numerator < 0.0|. This is equivalent to the result
          // of F.6.6.2 (lamedh) being greater than one. What we have here is
          // ellipse radii that are too small for the ellipse to reach between
          // segStart and segEnd. We scale the radii up uniformly so that the
          // ellipse is just big enough to fit (i.e. to the point where there is
          // exactly one solution).

          double lamedh =
              1.0 - numerator / (rx * rx * ry * ry);  // equiv to eqn F.6.6.2
          double s = sqrt(lamedh);
          rx *= s;  // F.6.6.3
          ry *= s;
          root = 0.0;
        }

        double cxp = root * rx * y1p / ry;  // F.6.5.2
        double cyp = -root * ry * x1p / rx;

        double theta, delta;
        theta = AngleOfVector(
            Point((x1p - cxp) / rx, (y1p - cyp) / ry));  // F.6.5.5
        delta = AngleOfVector(
                    Point((-x1p - cxp) / rx, (-y1p - cyp) / ry)) -  // F.6.5.6
                theta;
        if (!sweepFlag && delta > 0)
          delta -= 2.0 * M_PI;
        else if (sweepFlag && delta < 0)
          delta += 2.0 * M_PI;

        double tx1, ty1, tx2, ty2;
        tx1 = -cos(angle) * rx * sin(theta) - sin(angle) * ry * cos(theta);
        ty1 = -sin(angle) * rx * sin(theta) + cos(angle) * ry * cos(theta);
        tx2 = -cos(angle) * rx * sin(theta + delta) -
              sin(angle) * ry * cos(theta + delta);
        ty2 = -sin(angle) * rx * sin(theta + delta) +
              cos(angle) * ry * cos(theta + delta);

        if (delta < 0.0f) {
          tx1 = -tx1;
          ty1 = -ty1;
          tx2 = -tx2;
          ty2 = -ty2;
        }

        segStartAngle = static_cast<float>(atan2(ty1, tx1));
        segEndAngle = static_cast<float>(atan2(ty2, tx2));
        i += 7;
        break;
      }

      case PATHSEG_LINETO_HORIZONTAL_ABS:
      case PATHSEG_LINETO_HORIZONTAL_REL:
        if (segType == PATHSEG_LINETO_HORIZONTAL_ABS) {
          segEnd = Point(mData[i++], segStart.y);
        } else {
          segEnd = segStart + Point(mData[i++], 0.0f);
        }
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;

      case PATHSEG_LINETO_VERTICAL_ABS:
      case PATHSEG_LINETO_VERTICAL_REL:
        if (segType == PATHSEG_LINETO_VERTICAL_ABS) {
          segEnd = Point(segStart.x, mData[i++]);
        } else {
          segEnd = segStart + Point(0.0f, mData[i++]);
        }
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;

      case PATHSEG_CURVETO_CUBIC_SMOOTH_ABS:
      case PATHSEG_CURVETO_CUBIC_SMOOTH_REL: {
        Point cp1 = SVGPathSegUtils::IsCubicType(prevSegType)
                        ? segStart * 2 - prevCP
                        : segStart;
        Point cp2;
        if (segType == PATHSEG_CURVETO_CUBIC_SMOOTH_ABS) {
          cp2 = Point(mData[i], mData[i + 1]);
          segEnd = Point(mData[i + 2], mData[i + 3]);
        } else {
          cp2 = segStart + Point(mData[i], mData[i + 1]);
          segEnd = segStart + Point(mData[i + 2], mData[i + 3]);
        }
        prevCP = cp2;
        segStartAngle = AngleOfVector(
            cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
        segEndAngle = AngleOfVector(
            segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
        i += 4;
        break;
      }

      case PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS:
      case PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL: {
        Point cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType)
                        ? segStart * 2 - prevCP
                        : segStart;
        if (segType == PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS) {
          segEnd = Point(mData[i], mData[i + 1]);
        } else {
          segEnd = segStart + Point(mData[i], mData[i + 1]);
        }
        prevCP = cp1;
        segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
        segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
        i += 2;
        break;
      }

      default:
        // Leave any existing marks in aMarks so we have a visual indication of
        // when things went wrong.
        MOZ_ASSERT(false, "Unknown segment type - path corruption?");
        return;
    }

    // Set the angle of the mark at the start of this segment:
    if (aMarks->Length()) {
      SVGMark& mark = aMarks->LastElement();
      if (!IsMoveto(segType) && IsMoveto(prevSegType)) {
        // start of new subpath
        pathStartAngle = mark.angle = segStartAngle;
      } else if (IsMoveto(segType) && !IsMoveto(prevSegType)) {
        // end of a subpath
        if (prevSegType != PATHSEG_CLOSEPATH) mark.angle = prevSegEndAngle;
      } else {
        if (!(segType == PATHSEG_CLOSEPATH && prevSegType == PATHSEG_CLOSEPATH))
          mark.angle =
              SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle);
      }
    }

    // Add the mark at the end of this segment, and set its position:
    if (!aMarks->AppendElement(SVGMark(static_cast<float>(segEnd.x),
                                       static_cast<float>(segEnd.y), 0.0f,
                                       SVGMark::eMid))) {
      aMarks->Clear();  // OOM, so try to free some
      return;
    }

    if (segType == PATHSEG_CLOSEPATH && prevSegType != PATHSEG_CLOSEPATH) {
      aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle =
          SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle);
    }

    prevSegType = segType;
    prevSegEnd = segEnd;
    prevSegEndAngle = segEndAngle;
  }

  MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");

  if (aMarks->Length()) {
    if (prevSegType != PATHSEG_CLOSEPATH) {
      aMarks->LastElement().angle = prevSegEndAngle;
    }
    aMarks->LastElement().type = SVGMark::eEnd;
    aMarks->ElementAt(0).type = SVGMark::eStart;
  }
}

size_t SVGPathData::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
  return mData.ShallowSizeOfExcludingThis(aMallocSizeOf);
}

size_t SVGPathData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
  return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}

}  // namespace mozilla