Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "clang/AST/AST.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/raw_ostream.h"
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <unordered_set>
#include <stdio.h>
#include <stdlib.h>
#include "BindingOperations.h"
#include "FileOperations.h"
#include "StringOperations.h"
#include "from-clangd/HeuristicResolver.h"
#if CLANG_VERSION_MAJOR < 8
// Starting with Clang 8.0 some basic functions have been renamed
#define getBeginLoc getLocStart
#define getEndLoc getLocEnd
#endif
// We want std::make_unique, but that's only available in c++14. In versions
// prior to that, we need to fall back to llvm's make_unique. It's also the
// case that we expect clang 10 to build with c++14 and clang 9 and earlier to
// build with c++11, at least as suggested by the llvm-config --cxxflags on
// non-windows platforms. mozilla-central seems to build with -std=c++17 on
// windows so we need to make this decision based on __cplusplus instead of
// the CLANG_VERSION_MAJOR.
#if __cplusplus < 201402L
using llvm::make_unique;
#else
using std::make_unique;
#endif
using namespace clang;
const std::string GENERATED("__GENERATED__" PATHSEP_STRING);
// Absolute path to directory containing source code.
std::string Srcdir;
// Absolute path to objdir (including generated code).
std::string Objdir;
// Absolute path where analysis JSON output will be stored.
std::string Outdir;
enum class FileType {
// The file was either in the source tree nor objdir. It might be a system
// include, for example.
Unknown,
// A file from the source tree.
Source,
// A file from the objdir.
Generated,
};
// Takes an absolute path to a file, and returns the type of file it is. If
// it's a Source or Generated file, the provided inout path argument is modified
// in-place so that it is relative to the source dir or objdir, respectively.
FileType relativizePath(std::string& path) {
if (path.compare(0, Objdir.length(), Objdir) == 0) {
path.replace(0, Objdir.length(), GENERATED);
return FileType::Generated;
}
// Empty filenames can get turned into Srcdir when they are resolved as
// absolute paths, so we should exclude files that are exactly equal to
// Srcdir or anything outside Srcdir.
if (path.length() > Srcdir.length() && path.compare(0, Srcdir.length(), Srcdir) == 0) {
// Remove the trailing `/' as well.
path.erase(0, Srcdir.length() + 1);
return FileType::Source;
}
return FileType::Unknown;
}
#if !defined(_WIN32) && !defined(_WIN64)
#include <sys/time.h>
static double time() {
struct timeval Tv;
gettimeofday(&Tv, nullptr);
return double(Tv.tv_sec) + double(Tv.tv_usec) / 1000000.;
}
#endif
// Return true if |input| is a valid C++ identifier. We don't want to generate
// analysis information for operators, string literals, etc. by accident since
// it trips up consumers of the data.
static bool isValidIdentifier(std::string Input) {
for (char C : Input) {
if (!(isalpha(C) || isdigit(C) || C == '_')) {
return false;
}
}
return true;
}
struct RAIITracer {
RAIITracer(const char *log) : mLog(log) {
printf("<%s>\n", mLog);
}
~RAIITracer() {
printf("</%s>\n", mLog);
}
const char* mLog;
};
#define TRACEFUNC RAIITracer tracer(__FUNCTION__);
class IndexConsumer;
bool isPure(FunctionDecl* D) {
#if CLANG_VERSION_MAJOR >= 18
return D->isPureVirtual();
#else
return D->isPure();
#endif
}
// For each C++ file seen by the analysis (.cpp or .h), we track a
// FileInfo. This object tracks whether the file is "interesting" (i.e., whether
// it's in the source dir or the objdir). We also store the analysis output
// here.
struct FileInfo {
FileInfo(std::string &Rname) : Realname(Rname) {
switch (relativizePath(Realname)) {
case FileType::Generated:
Interesting = true;
Generated = true;
break;
case FileType::Source:
Interesting = true;
Generated = false;
break;
case FileType::Unknown:
Interesting = false;
Generated = false;
break;
}
}
std::string Realname;
std::vector<std::string> Output;
bool Interesting;
bool Generated;
};
class IndexConsumer;
class PreprocessorHook : public PPCallbacks {
IndexConsumer *Indexer;
public:
PreprocessorHook(IndexConsumer *C) : Indexer(C) {}
virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType,
FileID PrevFID) override;
virtual void InclusionDirective(SourceLocation HashLoc,
const Token &IncludeTok,
StringRef FileName,
bool IsAngled,
CharSourceRange FileNameRange,
#if CLANG_VERSION_MAJOR >= 16
OptionalFileEntryRef File,
#elif CLANG_VERSION_MAJOR >= 15
Optional<FileEntryRef> File,
#else
const FileEntry *File,
#endif
StringRef SearchPath,
StringRef RelativePath,
const Module *Imported,
SrcMgr::CharacteristicKind FileType) override;
virtual void MacroDefined(const Token &Tok,
const MacroDirective *Md) override;
virtual void MacroExpands(const Token &Tok, const MacroDefinition &Md,
SourceRange Range, const MacroArgs *Ma) override;
virtual void MacroUndefined(const Token &Tok, const MacroDefinition &Md,
const MacroDirective *Undef) override;
virtual void Defined(const Token &Tok, const MacroDefinition &Md,
SourceRange Range) override;
virtual void Ifdef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) override;
virtual void Ifndef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) override;
};
class IndexConsumer : public ASTConsumer,
public RecursiveASTVisitor<IndexConsumer>,
public DiagnosticConsumer {
private:
CompilerInstance &CI;
SourceManager &SM;
LangOptions &LO;
std::map<FileID, std::unique_ptr<FileInfo>> FileMap;
MangleContext *CurMangleContext;
ASTContext *AstContext;
std::unique_ptr<clangd::HeuristicResolver> Resolver;
typedef RecursiveASTVisitor<IndexConsumer> Super;
// Tracks the set of declarations that the current expression/statement is
// nested inside of.
struct AutoSetContext {
AutoSetContext(IndexConsumer *Self, NamedDecl *Context, bool VisitImplicit = false)
: Self(Self), Prev(Self->CurDeclContext), Decl(Context) {
this->VisitImplicit = VisitImplicit || (Prev ? Prev->VisitImplicit : false);
Self->CurDeclContext = this;
}
~AutoSetContext() { Self->CurDeclContext = Prev; }
IndexConsumer *Self;
AutoSetContext *Prev;
NamedDecl *Decl;
bool VisitImplicit;
};
AutoSetContext *CurDeclContext;
FileInfo *getFileInfo(SourceLocation Loc) {
FileID Id = SM.getFileID(Loc);
std::map<FileID, std::unique_ptr<FileInfo>>::iterator It;
It = FileMap.find(Id);
if (It == FileMap.end()) {
// We haven't seen this file before. We need to make the FileInfo
// structure information ourselves
std::string Filename = std::string(SM.getFilename(Loc));
std::string Absolute;
// If Loc is a macro id rather than a file id, it Filename might be
// empty. Also for some types of file locations that are clang-internal
// like "<scratch>" it can return an empty Filename. In these cases we
// want to leave Absolute as empty.
if (!Filename.empty()) {
Absolute = getAbsolutePath(Filename);
if (Absolute.empty()) {
Absolute = Filename;
}
}
std::unique_ptr<FileInfo> Info = make_unique<FileInfo>(Absolute);
It = FileMap.insert(std::make_pair(Id, std::move(Info))).first;
}
return It->second.get();
}
// Helpers for processing declarations
// Should we ignore this location?
bool isInterestingLocation(SourceLocation Loc) {
if (Loc.isInvalid()) {
return false;
}
return getFileInfo(Loc)->Interesting;
}
// Convert location to "line:column" or "line:column-column" given length.
// In resulting string rep, line is 1-based and zero-padded to 5 digits, while
// column is 0-based and unpadded.
std::string locationToString(SourceLocation Loc, size_t Length = 0) {
std::pair<FileID, unsigned> Pair = SM.getDecomposedLoc(Loc);
bool IsInvalid;
unsigned Line = SM.getLineNumber(Pair.first, Pair.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Column = SM.getColumnNumber(Pair.first, Pair.second, &IsInvalid);
if (IsInvalid) {
return "";
}
if (Length) {
return stringFormat("%05d:%d-%d", Line, Column - 1, Column - 1 + Length);
} else {
return stringFormat("%05d:%d", Line, Column - 1);
}
}
// Convert SourceRange to "line-line".
// In the resulting string rep, line is 1-based.
std::string lineRangeToString(SourceRange Range) {
std::pair<FileID, unsigned> Begin = SM.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> End = SM.getDecomposedLoc(Range.getEnd());
bool IsInvalid;
unsigned Line1 = SM.getLineNumber(Begin.first, Begin.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Line2 = SM.getLineNumber(End.first, End.second, &IsInvalid);
if (IsInvalid) {
return "";
}
return stringFormat("%d-%d", Line1, Line2);
}
// Convert SourceRange to "line:column-line:column".
// In the resulting string rep, line is 1-based, column is 0-based.
std::string fullRangeToString(SourceRange Range) {
std::pair<FileID, unsigned> Begin = SM.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> End = SM.getDecomposedLoc(Range.getEnd());
bool IsInvalid;
unsigned Line1 = SM.getLineNumber(Begin.first, Begin.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Column1 = SM.getColumnNumber(Begin.first, Begin.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Line2 = SM.getLineNumber(End.first, End.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Column2 = SM.getColumnNumber(End.first, End.second, &IsInvalid);
if (IsInvalid) {
return "";
}
return stringFormat("%d:%d-%d:%d", Line1, Column1 - 1, Line2, Column2 - 1);
}
// Returns the qualified name of `d` without considering template parameters.
std::string getQualifiedName(const NamedDecl *D) {
const DeclContext *Ctx = D->getDeclContext();
if (Ctx->isFunctionOrMethod()) {
return D->getQualifiedNameAsString();
}
std::vector<const DeclContext *> Contexts;
// Collect contexts.
while (Ctx && isa<NamedDecl>(Ctx)) {
Contexts.push_back(Ctx);
Ctx = Ctx->getParent();
}
std::string Result;
std::reverse(Contexts.begin(), Contexts.end());
for (const DeclContext *DC : Contexts) {
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
Result += Spec->getNameAsString();
if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
std::string Backing;
llvm::raw_string_ostream Stream(Backing);
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
printTemplateArgumentList(
Stream, TemplateArgs.asArray(), PrintingPolicy(CI.getLangOpts()));
Result += Stream.str();
}
} else if (const auto *Nd = dyn_cast<NamespaceDecl>(DC)) {
if (Nd->isAnonymousNamespace() || Nd->isInline()) {
continue;
}
Result += Nd->getNameAsString();
} else if (const auto *Rd = dyn_cast<RecordDecl>(DC)) {
if (!Rd->getIdentifier()) {
Result += "(anonymous)";
} else {
Result += Rd->getNameAsString();
}
} else if (const auto *Fd = dyn_cast<FunctionDecl>(DC)) {
Result += Fd->getNameAsString();
} else if (const auto *Ed = dyn_cast<EnumDecl>(DC)) {
// C++ [dcl.enum]p10: Each enum-name and each unscoped
// enumerator is declared in the scope that immediately contains
// the enum-specifier. Each scoped enumerator is declared in the
// scope of the enumeration.
if (Ed->isScoped() || Ed->getIdentifier())
Result += Ed->getNameAsString();
else
continue;
} else {
Result += cast<NamedDecl>(DC)->getNameAsString();
}
Result += "::";
}
if (D->getDeclName())
Result += D->getNameAsString();
else
Result += "(anonymous)";
return Result;
}
std::string mangleLocation(SourceLocation Loc,
std::string Backup = std::string()) {
FileInfo *F = getFileInfo(Loc);
std::string Filename = F->Realname;
if (Filename.length() == 0 && Backup.length() != 0) {
return Backup;
}
if (F->Generated) {
// Since generated files may be different on different platforms,
// we need to include a platform-specific thing in the hash. Otherwise
// we can end up with hash collisions where different symbols from
// different platforms map to the same thing.
char* Platform = getenv("MOZSEARCH_PLATFORM");
Filename = std::string(Platform ? Platform : "") + std::string("@") + Filename;
}
return hash(Filename + std::string("@") + locationToString(Loc));
}
bool isAcceptableSymbolChar(char c) {
return isalpha(c) || isdigit(c) || c == '_' || c == '/';
}
std::string mangleFile(std::string Filename, FileType Type) {
// "Mangle" the file path, such that:
// 1. The majority of paths will still be mostly human-readable.
// 2. The sanitization algorithm doesn't produce collisions where two
// different unsanitized paths can result in the same sanitized paths.
// 3. The produced symbol doesn't cause problems with downstream consumers.
// In order to accomplish this, we keep alphanumeric chars, underscores,
// and slashes, and replace everything else with an "@xx" hex encoding.
// The majority of path characters are letters and slashes which don't get
// encoded, so that satisfies (1). Since "@" characters in the unsanitized
// path get encoded, there should be no "@" characters in the sanitized path
// that got preserved from the unsanitized input, so that should satisfy (2).
// And (3) was done by trial-and-error. Note in particular the dot (.)
// character needs to be encoded, or the symbol-search feature of mozsearch
// doesn't work correctly, as all dot characters in the symbol query get
// replaced by #.
for (size_t i = 0; i < Filename.length(); i++) {
char c = Filename[i];
if (isAcceptableSymbolChar(c)) {
continue;
}
char hex[4];
sprintf(hex, "@%02X", ((int)c) & 0xFF);
Filename.replace(i, 1, hex);
i += 2;
}
if (Type == FileType::Generated) {
// Since generated files may be different on different platforms,
// we need to include a platform-specific thing in the hash. Otherwise
// we can end up with hash collisions where different symbols from
// different platforms map to the same thing.
char* Platform = getenv("MOZSEARCH_PLATFORM");
Filename = std::string(Platform ? Platform : "") + std::string("@") + Filename;
}
return Filename;
}
std::string mangleQualifiedName(std::string Name) {
std::replace(Name.begin(), Name.end(), ' ', '_');
return Name;
}
std::string getMangledName(clang::MangleContext *Ctx,
const clang::NamedDecl *Decl) {
if (isa<FunctionDecl>(Decl) && cast<FunctionDecl>(Decl)->isExternC()) {
return cast<FunctionDecl>(Decl)->getNameAsString();
}
if (isa<FunctionDecl>(Decl) || isa<VarDecl>(Decl)) {
const DeclContext *DC = Decl->getDeclContext();
if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC) ||
isa<LinkageSpecDecl>(DC) ||
// isa<ExternCContextDecl>(DC) ||
isa<TagDecl>(DC)) {
llvm::SmallVector<char, 512> Output;
llvm::raw_svector_ostream Out(Output);
#if CLANG_VERSION_MAJOR >= 11
// This code changed upstream in version 11:
GlobalDecl GD;
if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(Decl)) {
GD = GlobalDecl(D, Ctor_Complete);
} else if (const CXXDestructorDecl *D =
dyn_cast<CXXDestructorDecl>(Decl)) {
GD = GlobalDecl(D, Dtor_Complete);
} else {
GD = GlobalDecl(Decl);
}
Ctx->mangleName(GD, Out);
#else
if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(Decl)) {
Ctx->mangleCXXCtor(D, CXXCtorType::Ctor_Complete, Out);
} else if (const CXXDestructorDecl *D =
dyn_cast<CXXDestructorDecl>(Decl)) {
Ctx->mangleCXXDtor(D, CXXDtorType::Dtor_Complete, Out);
} else {
Ctx->mangleName(Decl, Out);
}
#endif
return Out.str().str();
} else {
return std::string("V_") + mangleLocation(Decl->getLocation()) +
std::string("_") + hash(std::string(Decl->getName()));
}
} else if (isa<TagDecl>(Decl) || isa<ObjCInterfaceDecl>(Decl)) {
if (!Decl->getIdentifier()) {
// Anonymous.
return std::string("T_") + mangleLocation(Decl->getLocation());
}
return std::string("T_") + mangleQualifiedName(getQualifiedName(Decl));
} else if (isa<TypedefNameDecl>(Decl)) {
if (!Decl->getIdentifier()) {
// Anonymous.
return std::string("TA_") + mangleLocation(Decl->getLocation());
}
return std::string("TA_") + mangleQualifiedName(getQualifiedName(Decl));
} else if (isa<NamespaceDecl>(Decl) || isa<NamespaceAliasDecl>(Decl)) {
if (!Decl->getIdentifier()) {
// Anonymous.
return std::string("NS_") + mangleLocation(Decl->getLocation());
}
return std::string("NS_") + mangleQualifiedName(getQualifiedName(Decl));
} else if (const ObjCIvarDecl *D2 = dyn_cast<ObjCIvarDecl>(Decl)) {
const ObjCInterfaceDecl *Iface = D2->getContainingInterface();
return std::string("F_<") + getMangledName(Ctx, Iface) + ">_" +
D2->getNameAsString();
} else if (const FieldDecl *D2 = dyn_cast<FieldDecl>(Decl)) {
const RecordDecl *Record = D2->getParent();
return std::string("F_<") + getMangledName(Ctx, Record) + ">_" +
D2->getNameAsString();
} else if (const EnumConstantDecl *D2 = dyn_cast<EnumConstantDecl>(Decl)) {
const DeclContext *DC = Decl->getDeclContext();
if (const NamedDecl *Named = dyn_cast<NamedDecl>(DC)) {
return std::string("E_<") + getMangledName(Ctx, Named) + ">_" +
D2->getNameAsString();
}
}
assert(false);
return std::string("");
}
void debugLocation(SourceLocation Loc) {
std::string S = locationToString(Loc);
StringRef Filename = SM.getFilename(Loc);
printf("--> %s %s\n", std::string(Filename).c_str(), S.c_str());
}
void debugRange(SourceRange Range) {
printf("Range\n");
debugLocation(Range.getBegin());
debugLocation(Range.getEnd());
}
public:
IndexConsumer(CompilerInstance &CI)
: CI(CI), SM(CI.getSourceManager()), LO(CI.getLangOpts()), CurMangleContext(nullptr),
AstContext(nullptr), CurDeclContext(nullptr), TemplateStack(nullptr) {
CI.getPreprocessor().addPPCallbacks(
make_unique<PreprocessorHook>(this));
}
virtual DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
return new IndexConsumer(CI);
}
#if !defined(_WIN32) && !defined(_WIN64)
struct AutoTime {
AutoTime(double *Counter) : Counter(Counter), Start(time()) {}
~AutoTime() {
if (Start) {
*Counter += time() - Start;
}
}
void stop() {
*Counter += time() - Start;
Start = 0;
}
double *Counter;
double Start;
};
#endif
// All we need is to follow the final declaration.
virtual void HandleTranslationUnit(ASTContext &Ctx) {
CurMangleContext =
clang::ItaniumMangleContext::create(Ctx, CI.getDiagnostics());
AstContext = &Ctx;
Resolver = std::make_unique<clangd::HeuristicResolver>(Ctx);
TraverseDecl(Ctx.getTranslationUnitDecl());
// Emit the JSON data for all files now.
std::map<FileID, std::unique_ptr<FileInfo>>::iterator It;
for (It = FileMap.begin(); It != FileMap.end(); It++) {
if (!It->second->Interesting) {
continue;
}
FileInfo &Info = *It->second;
std::string Filename = Outdir + Info.Realname;
std::string SrcFilename = Info.Generated
? Objdir + Info.Realname.substr(GENERATED.length())
: Srcdir + PATHSEP_STRING + Info.Realname;
ensurePath(Filename);
// We lock the output file in case some other clang process is trying to
// write to it at the same time.
AutoLockFile Lock(SrcFilename, Filename);
if (!Lock.success()) {
fprintf(stderr, "Unable to lock file %s\n", Filename.c_str());
exit(1);
}
// Merge our results with the existing lines from the output file.
// This ensures that header files that are included multiple times
// in different ways are analyzed completely.
std::ifstream Fin(Filename.c_str(), std::ios::in | std::ios::binary);
FILE *OutFp = Lock.openTmp();
if (!OutFp) {
fprintf(stderr, "Unable to open tmp out file for %s\n", Filename.c_str());
exit(1);
}
// Sort our new results and get an iterator to them
std::sort(Info.Output.begin(), Info.Output.end());
std::vector<std::string>::const_iterator NewLinesIter = Info.Output.begin();
std::string LastNewWritten;
// Loop over the existing (sorted) lines in the analysis output file.
// (The good() check also handles the case where Fin did not exist when we
// went to open it.)
while(Fin.good()) {
std::string OldLine;
std::getline(Fin, OldLine);
// Skip blank lines.
if (OldLine.length() == 0) {
continue;
}
// We need to put the newlines back that getline() eats.
OldLine.push_back('\n');
// Write any results from Info.Output that are lexicographically
// smaller than OldLine (read from the existing file), but make sure
// to skip duplicates. Keep advancing NewLinesIter until we reach an
// entry that is lexicographically greater than OldLine.
for (; NewLinesIter != Info.Output.end(); NewLinesIter++) {
if (*NewLinesIter > OldLine) {
break;
}
if (*NewLinesIter == OldLine) {
continue;
}
if (*NewLinesIter == LastNewWritten) {
// dedupe the new entries being written
continue;
}
if (fwrite(NewLinesIter->c_str(), NewLinesIter->length(), 1, OutFp) != 1) {
fprintf(stderr, "Unable to write %zu bytes[1] to tmp output file for %s\n",
NewLinesIter->length(), Filename.c_str());
exit(1);
}
LastNewWritten = *NewLinesIter;
}
// Write the entry read from the existing file.
if (fwrite(OldLine.c_str(), OldLine.length(), 1, OutFp) != 1) {
fprintf(stderr, "Unable to write %zu bytes[2] to tmp output file for %s\n",
OldLine.length(), Filename.c_str());
exit(1);
}
}
// We finished reading from Fin
Fin.close();
// Finish iterating our new results, discarding duplicates
for (; NewLinesIter != Info.Output.end(); NewLinesIter++) {
if (*NewLinesIter == LastNewWritten) {
continue;
}
if (fwrite(NewLinesIter->c_str(), NewLinesIter->length(), 1, OutFp) != 1) {
fprintf(stderr, "Unable to write %zu bytes[3] to tmp output file for %s\n",
NewLinesIter->length(), Filename.c_str());
exit(1);
}
LastNewWritten = *NewLinesIter;
}
// Done writing all the things, close it and replace the old output file
// with the new one.
fclose(OutFp);
if (!Lock.moveTmp()) {
fprintf(stderr, "Unable to move tmp output file into place for %s (err %d)\n", Filename.c_str(), errno);
exit(1);
}
}
}
// Unfortunately, we have to override all these methods in order to track the
// context we're inside.
bool TraverseEnumDecl(EnumDecl *D) {
AutoSetContext Asc(this, D);
return Super::TraverseEnumDecl(D);
}
bool TraverseRecordDecl(RecordDecl *D) {
AutoSetContext Asc(this, D);
return Super::TraverseRecordDecl(D);
}
bool TraverseCXXRecordDecl(CXXRecordDecl *D) {
AutoSetContext Asc(this, D);
return Super::TraverseCXXRecordDecl(D);
}
bool TraverseFunctionDecl(FunctionDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// (See the larger AutoTemplateContext comment for more information.) If a
// method on a templated class is declared out-of-line, we need to analyze
// the definition inside the scope of the template or else we won't properly
// handle member access on the templated type.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseFunctionDecl(D);
}
bool TraverseCXXMethodDecl(CXXMethodDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXMethodDecl(D);
}
bool TraverseCXXConstructorDecl(CXXConstructorDecl *D) {
AutoSetContext Asc(this, D, /*VisitImplicit=*/true);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXConstructorDecl(D);
}
bool TraverseCXXConversionDecl(CXXConversionDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXConversionDecl(D);
}
bool TraverseCXXDestructorDecl(CXXDestructorDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXDestructorDecl(D);
}
// Used to keep track of the context in which a token appears.
struct Context {
// Ultimately this becomes the "context" JSON property.
std::string Name;
// Ultimately this becomes the "contextsym" JSON property.
std::string Symbol;
Context() {}
Context(std::string Name, std::string Symbol)
: Name(Name), Symbol(Symbol) {}
};
Context translateContext(NamedDecl *D) {
const FunctionDecl *F = dyn_cast<FunctionDecl>(D);
if (F && F->isTemplateInstantiation()) {
D = F->getTemplateInstantiationPattern();
}
return Context(D->getQualifiedNameAsString(), getMangledName(CurMangleContext, D));
}
Context getContext(SourceLocation Loc) {
if (SM.isMacroBodyExpansion(Loc)) {
// If we're inside a macro definition, we don't return any context. It
// will probably not be what the user expects if we do.
return Context();
}
if (CurDeclContext) {
return translateContext(CurDeclContext->Decl);
}
return Context();
}
// Similar to GetContext(SourceLocation), but it skips the declaration passed
// in. This is useful if we want the context of a declaration that's already
// on the stack.
Context getContext(Decl *D) {
if (SM.isMacroBodyExpansion(D->getLocation())) {
// If we're inside a macro definition, we don't return any context. It
// will probably not be what the user expects if we do.
return Context();
}
AutoSetContext *Ctxt = CurDeclContext;
while (Ctxt) {
if (Ctxt->Decl != D) {
return translateContext(Ctxt->Decl);
}
Ctxt = Ctxt->Prev;
}
return Context();
}
// Analyzing template code is tricky. Suppose we have this code:
//
// template<class T>
// bool Foo(T* ptr) { return T::StaticMethod(ptr); }
//
// If we analyze the body of Foo without knowing the type T, then we will not
// be able to generate any information for StaticMethod. However, analyzing
// Foo for every possible instantiation is inefficient and it also generates
// too much data in some cases. For example, the following code would generate
// one definition of Baz for every instantiation, which is undesirable:
//
// template<class T>
// class Bar { struct Baz { ... }; };
//
// To solve this problem, we analyze templates only once. We do so in a
// GatherDependent mode where we look for "dependent scoped member
// expressions" (i.e., things like StaticMethod). We keep track of the
// locations of these expressions. If we find one or more of them, we analyze
// the template for each instantiation, in an AnalyzeDependent mode. This mode
// ignores all source locations except for the ones where we found dependent
// scoped member expressions before. For these locations, we generate a
// separate JSON result for each instantiation.
//
// We inherit our parent's mode if it is exists. This is because if our
// parent is in analyze mode, it means we've already lived a full life in
// gather mode and we must not restart in gather mode or we'll cause the
// indexer to visit EVERY identifier, which is way too much data.
struct AutoTemplateContext {
AutoTemplateContext(IndexConsumer *Self)
: Self(Self)
, CurMode(Self->TemplateStack ? Self->TemplateStack->CurMode : Mode::GatherDependent)
, Parent(Self->TemplateStack) {
Self->TemplateStack = this;
}
~AutoTemplateContext() { Self->TemplateStack = Parent; }
// We traverse templates in two modes:
enum class Mode {
// Gather mode does not traverse into specializations. It looks for
// locations where it would help to have more info from template
// specializations.
GatherDependent,
// Analyze mode traverses into template specializations and records
// information about token locations saved in gather mode.
AnalyzeDependent,
};
// We found a dependent scoped member expression! Keep track of it for
// later.
void visitDependent(SourceLocation Loc) {
if (CurMode == Mode::AnalyzeDependent) {
return;
}
DependentLocations.insert(Loc.getRawEncoding());
if (Parent) {
Parent->visitDependent(Loc);
}
}
bool inGatherMode() {
return CurMode == Mode::GatherDependent;
}
// Do we need to perform the extra AnalyzeDependent passes (one per
// instantiation)?
bool needsAnalysis() const {
if (!DependentLocations.empty()) {
return true;
}
if (Parent) {
return Parent->needsAnalysis();
}
return false;
}
void switchMode() { CurMode = Mode::AnalyzeDependent; }
// Do we want to analyze each template instantiation separately?
bool shouldVisitTemplateInstantiations() const {
if (CurMode == Mode::AnalyzeDependent) {
return true;
}
if (Parent) {
return Parent->shouldVisitTemplateInstantiations();
}
return false;
}
// For a given expression/statement, should we emit JSON data for it?
bool shouldVisit(SourceLocation Loc) {
if (CurMode == Mode::GatherDependent) {
return true;
}
if (DependentLocations.find(Loc.getRawEncoding()) !=
DependentLocations.end()) {
return true;
}
if (Parent) {
return Parent->shouldVisit(Loc);
}
return false;
}
private:
IndexConsumer *Self;
Mode CurMode;
std::unordered_set<unsigned> DependentLocations;
AutoTemplateContext *Parent;
};
AutoTemplateContext *TemplateStack;
bool shouldVisitTemplateInstantiations() const {
if (TemplateStack) {
return TemplateStack->shouldVisitTemplateInstantiations();
}
return false;
}
bool shouldVisitImplicitCode() const {
return CurDeclContext && CurDeclContext->VisitImplicit;
}
bool TraverseClassTemplateDecl(ClassTemplateDecl *D) {
AutoTemplateContext Atc(this);
Super::TraverseClassTemplateDecl(D);
if (!Atc.needsAnalysis()) {
return true;
}
Atc.switchMode();
if (D != D->getCanonicalDecl()) {
return true;
}
for (auto *Spec : D->specializations()) {
for (auto *Rd : Spec->redecls()) {
// We don't want to visit injected-class-names in this traversal.
if (cast<CXXRecordDecl>(Rd)->isInjectedClassName())
continue;
TraverseDecl(Rd);
}
}
return true;
}
bool TraverseFunctionTemplateDecl(FunctionTemplateDecl *D) {
AutoTemplateContext Atc(this);
if (Atc.inGatherMode()) {
Super::TraverseFunctionTemplateDecl(D);
}
if (!Atc.needsAnalysis()) {
return true;
}
Atc.switchMode();
if (D != D->getCanonicalDecl()) {
return true;
}
for (auto *Spec : D->specializations()) {
for (auto *Rd : Spec->redecls()) {
TraverseDecl(Rd);
}
}
return true;
}
bool shouldVisit(SourceLocation Loc) {
if (TemplateStack) {
return TemplateStack->shouldVisit(Loc);
}
return true;
}
enum {
// Flag to omit the identifier from being cross-referenced across files.
// This is usually desired for local variables.
NoCrossref = 1 << 0,
// Flag to indicate the token with analysis data is not an identifier. Indicates
// we want to skip the check that tries to ensure a sane identifier token.
NotIdentifierToken = 1 << 1,
// This indicates that the end of the provided SourceRange is valid and
// should be respected. If this flag is not set, the visitIdentifier
// function should use only the start of the SourceRange and auto-detect
// the end based on whatever token is found at the start.
LocRangeEndValid = 1 << 2
};
void emitStructuredInfo(SourceLocation Loc, const RecordDecl *decl) {
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
unsigned StartOffset = SM.getFileOffset(Loc);
unsigned EndOffset =
StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts());
J.attribute("loc", locationToString(Loc, EndOffset - StartOffset));
J.attribute("structured", 1);
J.attribute("pretty", getQualifiedName(decl));
J.attribute("sym", getMangledName(CurMangleContext, decl));
J.attribute("kind", TypeWithKeyword::getTagTypeKindName(decl->getTagKind()));
const ASTContext &C = *AstContext;
const ASTRecordLayout &Layout = C.getASTRecordLayout(decl);
J.attribute("sizeBytes", Layout.getSize().getQuantity());
emitBindingAttributes(J, *decl);
auto cxxDecl = dyn_cast<CXXRecordDecl>(decl);
if (cxxDecl) {
J.attributeBegin("supers");
J.arrayBegin();
for (const CXXBaseSpecifier &Base : cxxDecl->bases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
J.objectBegin();
J.attribute("sym", getMangledName(CurMangleContext, BaseDecl));
J.attributeBegin("props");
J.arrayBegin();
if (Base.isVirtual()) {
J.value("virtual");
}
J.arrayEnd();
J.attributeEnd();
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
J.attributeBegin("methods");
J.arrayBegin();
for (const CXXMethodDecl *MethodDecl : cxxDecl->methods()) {
J.objectBegin();
J.attribute("pretty", getQualifiedName(MethodDecl));
J.attribute("sym", getMangledName(CurMangleContext, MethodDecl));
// TODO: Better figure out what to do for non-isUserProvided methods
// which means there's potentially semantic data that doesn't correspond
// to a source location in the source. Should we be emitting
// structured info for those when we're processing the class here?
J.attributeBegin("props");
J.arrayBegin();
if (MethodDecl->isStatic()) {
J.value("static");
}
if (MethodDecl->isInstance()) {
J.value("instance");
}
if (MethodDecl->isVirtual()) {
J.value("virtual");
}
if (MethodDecl->isUserProvided()) {
J.value("user");
}
if (MethodDecl->isDefaulted()) {
J.value("defaulted");
}
if (MethodDecl->isDeleted()) {
J.value("deleted");
}
if (MethodDecl->isConstexpr()) {
J.value("constexpr");
}
J.arrayEnd();
J.attributeEnd();
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
}
J.attributeBegin("fields");
J.arrayBegin();
uint64_t iField = 0;
for (RecordDecl::field_iterator It = decl->field_begin(),
End = decl->field_end(); It != End; ++It, ++iField) {
const FieldDecl &Field = **It;
uint64_t localOffsetBits = Layout.getFieldOffset(iField);
CharUnits localOffsetBytes = C.toCharUnitsFromBits(localOffsetBits);
J.objectBegin();
J.attribute("pretty", getQualifiedName(&Field));
J.attribute("sym", getMangledName(CurMangleContext, &Field));
QualType FieldType = Field.getType();
QualType CanonicalFieldType = FieldType.getCanonicalType();
J.attribute("type", CanonicalFieldType.getAsString());
const TagDecl *tagDecl = CanonicalFieldType->getAsTagDecl();
if (!tagDecl) {
// Try again piercing any pointers/references involved. Note that our
// typesym semantics are dubious-ish and right now crossref just does
// some parsing of "type" itself until we improve this rep.
CanonicalFieldType = CanonicalFieldType->getPointeeType();
if (!CanonicalFieldType.isNull()) {
tagDecl = CanonicalFieldType->getAsTagDecl();
}
}
if (tagDecl) {
J.attribute("typesym", getMangledName(CurMangleContext, tagDecl));
}
J.attribute("offsetBytes", localOffsetBytes.getQuantity());
if (Field.isBitField()) {
J.attributeBegin("bitPositions");
J.objectBegin();
J.attribute("begin", unsigned(localOffsetBits - C.toBits(localOffsetBytes)));
J.attribute("width", Field.getBitWidthValue(C));
J.objectEnd();
J.attributeEnd();
} else {
// Try and get the field as a record itself so we can know its size, but
// we don't actually want to recurse into it.
if (auto FieldRec = Field.getType()->getAs<RecordType>()) {
auto const &FieldLayout = C.getASTRecordLayout(FieldRec->getDecl());
J.attribute("sizeBytes", FieldLayout.getSize().getQuantity());
} else {
// We were unable to get it as a record, which suggests it's a normal
// type, in which case let's just ask for the type size. (Maybe this
// would also work for the above case too?)
uint64_t typeSizeBits = C.getTypeSize(Field.getType());
CharUnits typeSizeBytes = C.toCharUnitsFromBits(typeSizeBits);
J.attribute("sizeBytes", typeSizeBytes.getQuantity());
}
}
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
// End the top-level object.
J.objectEnd();
FileInfo *F = getFileInfo(Loc);
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
void emitStructuredInfo(SourceLocation Loc, const FunctionDecl *decl) {
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
unsigned StartOffset = SM.getFileOffset(Loc);
unsigned EndOffset =
StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts());
J.attribute("loc", locationToString(Loc, EndOffset - StartOffset));
J.attribute("structured", 1);
J.attribute("pretty", getQualifiedName(decl));
J.attribute("sym", getMangledName(CurMangleContext, decl));
emitBindingAttributes(J, *decl);
J.attributeBegin("args");
J.arrayBegin();
for (auto param : decl->parameters()) {
J.objectBegin();
J.attribute("name", param->getName());
QualType ArgType = param->getOriginalType();
J.attribute("type", ArgType.getAsString());
QualType CanonicalArgType = ArgType.getCanonicalType();
const TagDecl *canonDecl = CanonicalArgType->getAsTagDecl();
if (!canonDecl) {
// Try again piercing any pointers/references involved. Note that our
// typesym semantics are dubious-ish and right now crossref just does
// some parsing of "type" itself until we improve this rep.
CanonicalArgType = CanonicalArgType->getPointeeType();
if (!CanonicalArgType.isNull()) {
canonDecl = CanonicalArgType->getAsTagDecl();
}
}
if (canonDecl) {
J.attribute("typesym", getMangledName(CurMangleContext, canonDecl));
}
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
auto cxxDecl = dyn_cast<CXXMethodDecl>(decl);
if (cxxDecl) {
J.attribute("kind", "method");
if (auto parentDecl = cxxDecl->getParent()) {
J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl));
}
J.attributeBegin("overrides");
J.arrayBegin();
for (const CXXMethodDecl *MethodDecl : cxxDecl->overridden_methods()) {
J.objectBegin();
// TODO: Make sure we're doing template traversals appropriately...
// findOverriddenMethods (now removed) liked to do:
// if (Decl->isTemplateInstantiation()) {
// Decl = dyn_cast<CXXMethodDecl>(Decl->getTemplateInstantiationPattern());
// }
// I think our pre-emptive dereferencing/avoidance of templates may
// protect us from this, but it needs more investigation.
J.attribute("sym", getMangledName(CurMangleContext, MethodDecl));
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
} else {
J.attribute("kind", "function");
}
// ## Props
J.attributeBegin("props");
J.arrayBegin();
// some of these are only possible on a CXXMethodDecl, but we want them all
// in the same array, so condition these first ones.
if (cxxDecl) {
if (cxxDecl->isStatic()) {
J.value("static");
}
if (cxxDecl->isInstance()) {
J.value("instance");
}
if (cxxDecl->isVirtual()) {
J.value("virtual");
}
if (cxxDecl->isUserProvided()) {
J.value("user");
}
}
if (decl->isDefaulted()) {
J.value("defaulted");
}
if (decl->isDeleted()) {
J.value("deleted");
}
if (decl->isConstexpr()) {
J.value("constexpr");
}
J.arrayEnd();
J.attributeEnd();
// End the top-level object.
J.objectEnd();
FileInfo *F = getFileInfo(Loc);
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
/**
* Emit structured info for a field. Right now the intent is for this to just
* be a pointer to its parent's structured info with this method entirely
* avoiding getting the ASTRecordLayout.
*
* TODO: Give more thought on where to locate the canonical info on fields and
* how to normalize their exposure over the web. We could relink the info
* both at cross-reference time and web-server lookup time. This is also
* called out in `analysis.md`.
*/
void emitStructuredInfo(SourceLocation Loc, const FieldDecl *decl) {
// XXX the call to decl::getParent will assert below for ObjCIvarDecl
// instances because their DecContext is not a RecordDecl. So just bail
// for now.
// TODO: better support ObjC.
if (const ObjCIvarDecl *D2 = dyn_cast<ObjCIvarDecl>(decl)) {
return;
}
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
unsigned StartOffset = SM.getFileOffset(Loc);
unsigned EndOffset =
StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts());
J.attribute("loc", locationToString(Loc, EndOffset - StartOffset));
J.attribute("structured", 1);
J.attribute("pretty", getQualifiedName(decl));
J.attribute("sym", getMangledName(CurMangleContext, decl));
J.attribute("kind", "field");
if (auto parentDecl = decl->getParent()) {
J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl));
}
// End the top-level object.
J.objectEnd();
FileInfo *F = getFileInfo(Loc);
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
/**
* Emit structured info for a variable if it is a static class member.
*/
void emitStructuredInfo(SourceLocation Loc, const VarDecl *decl) {
const auto *parentDecl = dyn_cast_or_null<RecordDecl>(decl->getDeclContext());
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
unsigned StartOffset = SM.getFileOffset(Loc);
unsigned EndOffset =
StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts());
J.attribute("loc", locationToString(Loc, EndOffset - StartOffset));
J.attribute("structured", 1);
J.attribute("pretty", getQualifiedName(decl));
J.attribute("sym", getMangledName(CurMangleContext, decl));
J.attribute("kind", "field");
if (parentDecl) {
J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl));
}
emitBindingAttributes(J, *decl);
// End the top-level object.
J.objectEnd();
FileInfo *F = getFileInfo(Loc);
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
// XXX Type annotating.
// QualType is the type class. It has helpers like TagDecl via getAsTagDecl.
// ValueDecl exposes a getType() method.
//
// Arguably it makes sense to only expose types that Searchfox has definitions
// for as first-class. Probably the way to go is like context/contextsym.
// We expose a "type" which is just a human-readable string which has no
// semantic purposes and is just a display string, plus then a "typesym" which
// we expose if we were able to map the type.
//
// Other meta-info: field offsets. Ancestor types.
// This is the only function that emits analysis JSON data. It should be
// called for each identifier that corresponds to a symbol.
void visitIdentifier(const char *Kind, const char *SyntaxKind,
llvm::StringRef QualName, SourceRange LocRange,
std::string Symbol,
QualType MaybeType = QualType(),
Context TokenContext = Context(), int Flags = 0,
SourceRange PeekRange = SourceRange(),
SourceRange NestingRange = SourceRange(),
std::vector<SourceRange> *ArgRanges = nullptr) {
SourceLocation Loc = LocRange.getBegin();
if (!shouldVisit(Loc)) {
return;
}
// Find the file positions corresponding to the token.
unsigned StartOffset = SM.getFileOffset(Loc);
unsigned EndOffset = (Flags & LocRangeEndValid)
? SM.getFileOffset(LocRange.getEnd())
: StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts());
std::string LocStr = locationToString(Loc, EndOffset - StartOffset);
std::string RangeStr = locationToString(Loc, EndOffset - StartOffset);
std::string PeekRangeStr;
if (!(Flags & NotIdentifierToken)) {
// Get the token's characters so we can make sure it's a valid token.
const char *StartChars = SM.getCharacterData(Loc);
std::string Text(StartChars, EndOffset - StartOffset);
if (!isValidIdentifier(Text)) {
return;
}
}
FileInfo *F = getFileInfo(Loc);
if (!(Flags & NoCrossref)) {
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
J.attribute("loc", LocStr);
J.attribute("target", 1);
J.attribute("kind", Kind);
J.attribute("pretty", QualName.data());
J.attribute("sym", Symbol);
if (!TokenContext.Name.empty()) {
J.attribute("context", TokenContext.Name);
}
if (!TokenContext.Symbol.empty()) {
J.attribute("contextsym", TokenContext.Symbol);
}
if (PeekRange.isValid()) {
PeekRangeStr = lineRangeToString(PeekRange);
if (!PeekRangeStr.empty()) {
J.attribute("peekRange", PeekRangeStr);
}
}
if (ArgRanges) {
J.attributeBegin("argRanges");
J.arrayBegin();
for (auto range : *ArgRanges) {
std::string ArgRangeStr = fullRangeToString(range);
if (!ArgRangeStr.empty()) {
J.value(ArgRangeStr);
}
}
J.arrayEnd();
J.attributeEnd();
}
// End the top-level object.
J.objectEnd();
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
// Generate a single "source":1 for all the symbols. If we search from here,
// we want to union the results for every symbol in `symbols`.
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
J.attribute("loc", RangeStr);
J.attribute("source", 1);
if (NestingRange.isValid()) {
std::string NestingRangeStr = fullRangeToString(NestingRange);
if (!NestingRangeStr.empty()) {
J.attribute("nestingRange", NestingRangeStr);
}
}
std::string Syntax;
if (Flags & NoCrossref) {
J.attribute("syntax", "");
} else {
Syntax = Kind;
Syntax.push_back(',');
Syntax.append(SyntaxKind);
J.attribute("syntax", Syntax);
}
if (!MaybeType.isNull()) {
J.attribute("type", MaybeType.getAsString());
QualType canonical = MaybeType.getCanonicalType();
const TagDecl *decl = canonical->getAsTagDecl();
if (!decl) {
// Try again piercing any pointers/references involved. Note that our
// typesym semantics are dubious-ish and right now crossref just does
// some parsing of "type" itself until we improve this rep.
canonical = canonical->getPointeeType();
if (!canonical.isNull()) {
decl = canonical->getAsTagDecl();
}
}
if (decl) {
std::string Mangled = getMangledName(CurMangleContext, decl);
J.attribute("typesym", Mangled);
}
}
std::string Pretty(SyntaxKind);
Pretty.push_back(' ');
Pretty.append(QualName.data());
J.attribute("pretty", Pretty);
J.attribute("sym", Symbol);
if (Flags & NoCrossref) {
J.attribute("no_crossref", 1);
}
if (ArgRanges) {
J.attributeBegin("argRanges");
J.arrayBegin();
for (auto range : *ArgRanges) {
std::string ArgRangeStr = fullRangeToString(range);
if (!ArgRangeStr.empty()) {
J.value(ArgRangeStr);
}
}
J.arrayEnd();
J.attributeEnd();
}
// End the top-level object.
J.objectEnd();
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
void normalizeLocation(SourceLocation *Loc) {
*Loc = SM.getSpellingLoc(*Loc);
}
// For cases where the left-brace is not directly accessible from the AST,
// helper to use the lexer to find the brace. Make sure you're picking the
// start location appropriately!
SourceLocation findLeftBraceFromLoc(SourceLocation Loc) {
return Lexer::findLocationAfterToken(Loc, tok::l_brace, SM, LO, false);
}
// If the provided statement is compound, return its range.
SourceRange getCompoundStmtRange(Stmt* D) {
if (!D) {
return SourceRange();
}
CompoundStmt *D2 = dyn_cast<CompoundStmt>(D);
if (D2) {
return D2->getSourceRange();
}
return SourceRange();
}
SourceRange getFunctionPeekRange(FunctionDecl* D) {
// We always start at the start of the function decl, which may include the
// return type on a separate line.
SourceLocation Start = D->getBeginLoc();
// By default, we end at the line containing the function's name.
SourceLocation End = D->getLocation();
std::pair<FileID, unsigned> FuncLoc = SM.getDecomposedLoc(End);
// But if there are parameters, we want to include those as well.
for (ParmVarDecl* Param : D->parameters()) {
std::pair<FileID, unsigned> ParamLoc = SM.getDecomposedLoc(Param->getLocation());
// It's possible there are macros involved or something. We don't include
// the parameters in that case.
if (ParamLoc.first == FuncLoc.first) {
// Assume parameters are in order, so we always take the last one.
End = Param->getEndLoc();
}
}
return SourceRange(Start, End);
}
SourceRange getTagPeekRange(TagDecl* D) {
SourceLocation Start = D->getBeginLoc();
// By default, we end at the line containing the name.
SourceLocation End = D->getLocation();
std::pair<FileID, unsigned> FuncLoc = SM.getDecomposedLoc(End);
if (CXXRecordDecl* D2 = dyn_cast<CXXRecordDecl>(D)) {
// But if there are parameters, we want to include those as well.
for (CXXBaseSpecifier& Base : D2->bases()) {
std::pair<FileID, unsigned> Loc = SM.getDecomposedLoc(Base.getEndLoc());
// It's possible there are macros involved or something. We don't include
// the parameters in that case.
if (Loc.first == FuncLoc.first) {
// Assume parameters are in order, so we always take the last one.
End = Base.getEndLoc();
}
}
}
return SourceRange(Start, End);
}
SourceRange getCommentRange(NamedDecl* D) {
const RawComment* RC =
AstContext->getRawCommentForDeclNoCache(D);
if (!RC) {
return SourceRange();
}
return RC->getSourceRange();
}
// Sanity checks that all ranges are in the same file, returning the first if
// they're in different files. Unions the ranges based on which is first.
SourceRange combineRanges(SourceRange Range1, SourceRange Range2) {
if (Range1.isInvalid()) {
return Range2;
}
if (Range2.isInvalid()) {
return Range1;
}
std::pair<FileID, unsigned> Begin1 = SM.getDecomposedLoc(Range1.getBegin());
std::pair<FileID, unsigned> End1 = SM.getDecomposedLoc(Range1.getEnd());
std::pair<FileID, unsigned> Begin2 = SM.getDecomposedLoc(Range2.getBegin());
std::pair<FileID, unsigned> End2 = SM.getDecomposedLoc(Range2.getEnd());
if (End1.first != Begin2.first) {
// Something weird is probably happening with the preprocessor. Just
// return the first range.
return Range1;
}
// See which range comes first.
if (Begin1.second <= End2.second) {
return SourceRange(Range1.getBegin(), Range2.getEnd());
} else {
return SourceRange(Range2.getBegin(), Range1.getEnd());
}
}
// Given a location and a range, returns the range if:
// - The location and the range live in the same file.
// - The range is well ordered (end is not before begin).
// Returns an empty range otherwise.
SourceRange validateRange(SourceLocation Loc, SourceRange Range) {
std::pair<FileID, unsigned> Decomposed = SM.getDecomposedLoc(Loc);
std::pair<FileID, unsigned> Begin = SM.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> End = SM.getDecomposedLoc(Range.getEnd());
if (Begin.first != Decomposed.first || End.first != Decomposed.first) {
return SourceRange();
}
if (Begin.second >= End.second) {
return SourceRange();
}
return Range;
}
bool VisitNamedDecl(NamedDecl *D) {
SourceLocation Loc = D->getLocation();
// If the token is from a macro expansion and the expansion location
// is interesting, use that instead as it tends to be more useful.
SourceLocation expandedLoc = Loc;
if (SM.isMacroBodyExpansion(Loc)) {
Loc = SM.getFileLoc(Loc);
}
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
if (isa<ParmVarDecl>(D) && !D->getDeclName().getAsIdentifierInfo()) {
// Unnamed parameter in function proto.
return true;
}
int Flags = 0;
const char *Kind = "def";
const char *PrettyKind = "?";
bool wasTemplate = false;
SourceRange PeekRange(D->getBeginLoc(), D->getEndLoc());
// The nesting range identifies the left brace and right brace, which
// heavily depends on the AST node type.
SourceRange NestingRange;
QualType qtype = QualType();
if (FunctionDecl *D2 = dyn_cast<FunctionDecl>(D)) {
if (D2->isTemplateInstantiation()) {
wasTemplate = true;
D = D2->getTemplateInstantiationPattern();
}
// We treat pure virtual declarations as definitions.
Kind = (D2->isThisDeclarationADefinition() || isPure(D2)) ? "def" : "decl";
PrettyKind = "function";
PeekRange = getFunctionPeekRange(D2);
// Only emit the nesting range if:
// - This is a definition AND
// - This isn't a template instantiation. Function templates'
// instantiations can end up as a definition with a Loc at their point
// of declaration but with the CompoundStmt of the template's
// point of definition. This really messes up the nesting range logic.
// At the time of writing this, the test repo's `big_header.h`'s
// `WhatsYourVector_impl::forwardDeclaredTemplateThingInlinedBelow` as
// instantiated by `big_cpp.cpp` triggers this phenomenon.
//
// Note: As covered elsewhere, template processing is tricky and it's
// conceivable that we may change traversal patterns in the future,
// mooting this guard.
if (D2->isThisDeclarationADefinition() &&
!D2->isTemplateInstantiation()) {
// The CompoundStmt range is the brace range.
NestingRange = getCompoundStmtRange(D2->getBody());
}
} else if (TagDecl *D2 = dyn_cast<TagDecl>(D)) {
Kind = D2->isThisDeclarationADefinition() ? "def" : "forward";
PrettyKind = "type";
if (D2->isThisDeclarationADefinition() && D2->getDefinition() == D2) {
PeekRange = getTagPeekRange(D2);
NestingRange = D2->getBraceRange();
} else {
PeekRange = SourceRange();
}
} else if (TypedefNameDecl *D2 = dyn_cast<TypedefNameDecl>(D)) {
Kind = "alias";
PrettyKind = "type";
PeekRange = SourceRange(Loc, Loc);
qtype = D2->getUnderlyingType();
} else if (VarDecl *D2 = dyn_cast<VarDecl>(D)) {
if (D2->isLocalVarDeclOrParm()) {
Flags = NoCrossref;
}
Kind = D2->isThisDeclarationADefinition() == VarDecl::DeclarationOnly
? "decl"
: "def";
PrettyKind = "variable";
} else if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D)) {
Kind = "def";
PrettyKind = "namespace";
PeekRange = SourceRange(Loc, Loc);
NamespaceDecl *D2 = dyn_cast<NamespaceDecl>(D);
if (D2) {
// There's no exposure of the left brace so we have to find it.
NestingRange = SourceRange(
findLeftBraceFromLoc(D2->isAnonymousNamespace() ? D2->getBeginLoc() : Loc),
D2->getRBraceLoc());
}
} else if (isa<FieldDecl>(D)) {
Kind = "def";
PrettyKind = "field";
} else if (isa<EnumConstantDecl>(D)) {
Kind = "def";
PrettyKind = "enum constant";
} else {
return true;
}
if (ValueDecl *D2 = dyn_cast<ValueDecl>(D)) {
qtype = D2->getType();
}
SourceRange CommentRange = getCommentRange(D);
PeekRange = combineRanges(PeekRange, CommentRange);
PeekRange = validateRange(Loc, PeekRange);
NestingRange = validateRange(Loc, NestingRange);
std::string Symbol = getMangledName(CurMangleContext, D);
// In the case of destructors, Loc might point to the ~ character. In that
// case we want to skip to the name of the class. However, Loc might also
// point to other places that generate destructors, such as the use site of
// a macro that expands to generate a destructor, or a lambda (apparently
// clang 8 creates a destructor declaration for at least some lambdas). In
// the former case we'll use the macro use site as the location, and in the
// latter we'll just drop the declaration.
if (isa<CXXDestructorDecl>(D)) {
PrettyKind = "destructor";
const char *P = SM.getCharacterData(Loc);
if (*P == '~') {
// Advance Loc to the class name
P++;
unsigned Skipped = 1;
while (*P == ' ' || *P == '\t' || *P == '\r' || *P == '\n') {
P++;
Skipped++;
}
Loc = Loc.getLocWithOffset(Skipped);
} else {
// See if the destructor is coming from a macro expansion
P = SM.getCharacterData(expandedLoc);
if (*P != '~') {
// It's not
return true;
}
// It is, so just use Loc as-is
}
}
visitIdentifier(Kind, PrettyKind, getQualifiedName(D), SourceRange(Loc), Symbol,
qtype,
getContext(D), Flags, PeekRange, NestingRange);
// In-progress structured info emission.
if (RecordDecl *D2 = dyn_cast<RecordDecl>(D)) {
if (D2->isThisDeclarationADefinition() &&
// XXX getASTRecordLayout doesn't work for dependent types, so we
// avoid calling into emitStructuredInfo for now if there's a
// dependent type or if we're in any kind of template context. This
// should be re-evaluated once this is working for normal classes and
// we can better evaluate what is useful.
!D2->isDependentType() &&
!TemplateStack) {
if (auto *D3 = dyn_cast<CXXRecordDecl>(D2)) {
findBindingToJavaClass(*AstContext, *D3);
findBoundAsJavaClasses(*AstContext, *D3);
}
emitStructuredInfo(Loc, D2);
}
}
if (FunctionDecl *D2 = dyn_cast<FunctionDecl>(D)) {
if ((D2->isThisDeclarationADefinition() || isPure(D2)) &&
// a clause at the top should have generalized and set wasTemplate so
// it shouldn't be the case that isTemplateInstantiation() is true.
!D2->isTemplateInstantiation() &&
!wasTemplate &&
!D2->isFunctionTemplateSpecialization() &&
!TemplateStack) {
if (auto *D3 = dyn_cast<CXXMethodDecl>(D2)) {
findBindingToJavaMember(*AstContext, *D3);
} else {
findBindingToJavaFunction(*AstContext, *D2);
}
emitStructuredInfo(Loc, D2);
}
}
if (FieldDecl *D2 = dyn_cast<FieldDecl>(D)) {
if (!D2->isTemplated() &&
!TemplateStack) {
emitStructuredInfo(Loc, D2);
}
}
if (VarDecl *D2 = dyn_cast<VarDecl>(D)) {
if (!D2->isTemplated() &&
!TemplateStack &&
isa<CXXRecordDecl>(D2->getDeclContext())) {
findBindingToJavaConstant(*AstContext, *D2);
emitStructuredInfo(Loc, D2);
}
}
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
SourceLocation Loc = E->getBeginLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
FunctionDecl *Ctor = E->getConstructor();
if (Ctor->isTemplateInstantiation()) {
Ctor = Ctor->getTemplateInstantiationPattern();
}
std::string Mangled = getMangledName(CurMangleContext, Ctor);
// FIXME: Need to do something different for list initialization.
visitIdentifier("use", "constructor", getQualifiedName(Ctor), Loc, Mangled,
QualType(), getContext(Loc));
return true;
}
bool VisitCallExpr(CallExpr *E) {
Decl *Callee = E->getCalleeDecl();
if (!Callee || !FunctionDecl::classof(Callee)) {
return true;
}
const NamedDecl *NamedCallee = dyn_cast<NamedDecl>(Callee);
SourceLocation Loc;
const FunctionDecl *F = dyn_cast<FunctionDecl>(NamedCallee);
if (F->isTemplateInstantiation()) {
NamedCallee = F->getTemplateInstantiationPattern();
}
std::string Mangled = getMangledName(CurMangleContext, NamedCallee);
int Flags = 0;
Expr *CalleeExpr = E->getCallee()->IgnoreParenImpCasts();
if (CXXOperatorCallExpr::classof(E)) {
// Just take the first token.
CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E);
Loc = Op->getOperatorLoc();
Flags |= NotIdentifierToken;
} else if (MemberExpr::classof(CalleeExpr)) {
MemberExpr *Member = dyn_cast<MemberExpr>(CalleeExpr);
Loc = Member->getMemberLoc();
} else if (DeclRefExpr::classof(CalleeExpr)) {
// We handle this in VisitDeclRefExpr.
return true;
} else {
return true;
}
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
std::vector<SourceRange> argRanges;
for (auto argExpr : E->arguments()) {
argRanges.push_back(argExpr->getSourceRange());
}
visitIdentifier("use", "function", getQualifiedName(NamedCallee), Loc, Mangled,
E->getCallReturnType(*AstContext), getContext(Loc), Flags,
SourceRange(), SourceRange(), &argRanges);
return true;
}
bool VisitTagTypeLoc(TagTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
TagDecl *Decl = L.getDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
L.getType(), getContext(Loc));
return true;
}
bool VisitTypedefTypeLoc(TypedefTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
NamedDecl *Decl = L.getTypedefNameDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
L.getType(), getContext(Loc));
return true;
}
bool VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
NamedDecl *Decl = L.getDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
L.getType(), getContext(Loc));
return true;
}
bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
TemplateDecl *Td = L.getTypePtr()->getTemplateName().getAsTemplateDecl();
if (ClassTemplateDecl *D = dyn_cast<ClassTemplateDecl>(Td)) {
NamedDecl *Decl = D->getTemplatedDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
QualType(), getContext(Loc));
} else if (TypeAliasTemplateDecl *D = dyn_cast<TypeAliasTemplateDecl>(Td)) {
NamedDecl *Decl = D->getTemplatedDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
QualType(), getContext(Loc));
}
return true;
}
bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
SourceLocation Loc = L.getNameLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
for (const NamedDecl *D :
Resolver->resolveDependentNameType(L.getTypePtr())) {
visitHeuristicResult(Loc, D);
}
return true;
}
bool VisitDeclRefExpr(DeclRefExpr *E) {
SourceLocation Loc = E->getExprLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
if (E->hasQualifier()) {
Loc = E->getNameInfo().getLoc();
normalizeLocation(&Loc);
}
NamedDecl *Decl = E->getDecl();
if (const VarDecl *D2 = dyn_cast<VarDecl>(Decl)) {
int Flags = 0;
if (D2->isLocalVarDeclOrParm()) {
Flags = NoCrossref;
}
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "variable", getQualifiedName(Decl), Loc, Mangled,
D2->getType(), getContext(Loc), Flags);
} else if (isa<FunctionDecl>(Decl)) {
const FunctionDecl *F = dyn_cast<FunctionDecl>(Decl);
if (F->isTemplateInstantiation()) {
Decl = F->getTemplateInstantiationPattern();
}
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "function", getQualifiedName(Decl), Loc, Mangled,
E->getType(), getContext(Loc));
} else if (isa<EnumConstantDecl>(Decl)) {
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "enum", getQualifiedName(Decl), Loc, Mangled,
E->getType(), getContext(Loc));
}
return true;
}
bool VisitCXXConstructorDecl(CXXConstructorDecl *D) {
if (!isInterestingLocation(D->getLocation())) {
return true;
}
for (CXXConstructorDecl::init_const_iterator It = D->init_begin();
It != D->init_end(); ++It) {
const CXXCtorInitializer *Ci = *It;
if (!Ci->getMember() || !Ci->isWritten()) {
continue;
}
SourceLocation Loc = Ci->getMemberLocation();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
continue;
}
FieldDecl *Member = Ci->getMember();
std::string Mangled = getMangledName(CurMangleContext, Member);
visitIdentifier("use", "field", getQualifiedName(Member), Loc, Mangled,
Member->getType(), getContext(D));
}
return true;
}
bool VisitMemberExpr(MemberExpr *E) {
SourceLocation Loc = E->getExprLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
ValueDecl *Decl = E->getMemberDecl();
if (FieldDecl *Field = dyn_cast<FieldDecl>(Decl)) {
std::string Mangled = getMangledName(CurMangleContext, Field);
visitIdentifier("use", "field", getQualifiedName(Field), Loc, Mangled,
Field->getType(), getContext(Loc));
}
return true;
}
// Helper function for producing heuristic results for usages in dependent
// code. These should be distinguished from concrete results (obtained for
// dependent code using the AutoTemplateContext machinery) once bug 1833552 is
// fixed.
// We don't expect this method to be intentionally called multiple times for
// a given (Loc, NamedDecl) pair because our callers should be mutually
// exclusive AST node types. However, it's fine if this method is called
// multiple time for a given pair because we explicitly de-duplicate records
// with an identical string representation (which is a good reason to have
// this helper, as it ensures identical representations).
void visitHeuristicResult(SourceLocation Loc, const NamedDecl *ND) {
if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND)) {
ND = TD->getTemplatedDecl();
}
QualType MaybeType;
const char *SyntaxKind = nullptr;
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(ND)) {
MaybeType = F->getType();
SyntaxKind = "function";
} else if (const FieldDecl *F = dyn_cast<FieldDecl>(ND)) {
MaybeType = F->getType();
SyntaxKind = "field";
} else if (const EnumConstantDecl *E = dyn_cast<EnumConstantDecl>(ND)) {
MaybeType = E->getType();
SyntaxKind = "enum";
} else if (const TypedefNameDecl *T = dyn_cast<TypedefNameDecl>(ND)) {
MaybeType = T->getUnderlyingType();
SyntaxKind = "type";
}
if (SyntaxKind) {
std::string Mangled = getMangledName(CurMangleContext, ND);
visitIdentifier("use", SyntaxKind, getQualifiedName(ND), Loc, Mangled,
MaybeType, getContext(Loc));
}
}
bool VisitOverloadExpr(OverloadExpr *E) {
SourceLocation Loc = E->getExprLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
for (auto *Candidate : E->decls()) {
visitHeuristicResult(Loc, Candidate);
}
return true;
}
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
SourceLocation Loc = E->getMemberLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
// If possible, provide a heuristic result without instantiation.
for (const NamedDecl *D : Resolver->resolveMemberExpr(E)) {
visitHeuristicResult(Loc, D);
}
// Also record this location so that if we have instantiations, we can
// gather more accurate results from them.
if (TemplateStack) {
TemplateStack->visitDependent(Loc);
}
return true;
}
bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
SourceLocation Loc = E->getLocation();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
for (const NamedDecl *D : Resolver->resolveDeclRefExpr(E)) {
visitHeuristicResult(Loc, D);
}
return true;
}
void enterSourceFile(SourceLocation Loc) {
normalizeLocation(&Loc);
FileInfo* newFile = getFileInfo(Loc);
if (!newFile->Interesting) {
return;
}
FileType type = newFile->Generated ? FileType::Generated : FileType::Source;
std::string symbol =
std::string("FILE_") + mangleFile(newFile->Realname, type);
// We use an explicit zero-length source range at the start of the file. If we
// don't set the LocRangeEndValid flag, the visitIdentifier code will use the
// entire first token, which could be e.g. a long multiline-comment.
visitIdentifier("def", "file", newFile->Realname, SourceRange(Loc),
symbol, QualType(), Context(),
NotIdentifierToken | LocRangeEndValid);
}
void inclusionDirective(SourceRange FileNameRange, const FileEntry* File) {
std::string includedFile(File->tryGetRealPathName());
FileType type = relativizePath(includedFile);
if (type == FileType::Unknown) {
return;
}
std::string symbol =
std::string("FILE_") + mangleFile(includedFile, type);
visitIdentifier("use", "file", includedFile, FileNameRange, symbol,
QualType(), Context(),
NotIdentifierToken | LocRangeEndValid);
}
void macroDefined(const Token &Tok, const MacroDirective *Macro) {
if (Macro->getMacroInfo()->isBuiltinMacro()) {
return;
}
SourceLocation Loc = Tok.getLocation();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return;
}
IdentifierInfo *Ident = Tok.getIdentifierInfo();
if (Ident) {
std::string Mangled =
std::string("M_") + mangleLocation(Loc, std::string(Ident->getName()));
visitIdentifier("def", "macro", Ident->getName(), Loc, Mangled);
}
}
void macroUsed(const Token &Tok, const MacroInfo *Macro) {
if (!Macro) {
return;
}
if (Macro->isBuiltinMacro()) {
return;
}
SourceLocation Loc = Tok.getLocation();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return;
}
IdentifierInfo *Ident = Tok.getIdentifierInfo();
if (Ident) {
std::string Mangled =
std::string("M_") +
mangleLocation(Macro->getDefinitionLoc(), std::string(Ident->getName()));
visitIdentifier("use", "macro", Ident->getName(), Loc, Mangled);
}
}
};
void PreprocessorHook::FileChanged(SourceLocation Loc, FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType,
FileID PrevFID = FileID()) {
switch (Reason) {
case PPCallbacks::RenameFile:
case PPCallbacks::SystemHeaderPragma:
// Don't care about these, since we want the actual on-disk filenames
break;
case PPCallbacks::EnterFile:
Indexer->enterSourceFile(Loc);
break;
case PPCallbacks::ExitFile:
// Don't care about exiting files
break;
}
}
void PreprocessorHook::InclusionDirective(SourceLocation HashLoc,
const Token &IncludeTok,
StringRef FileName,
bool IsAngled,
CharSourceRange FileNameRange,
#if CLANG_VERSION_MAJOR >= 16
OptionalFileEntryRef File,
#elif CLANG_VERSION_MAJOR >= 15
Optional<FileEntryRef> File,
#else
const FileEntry *File,
#endif
StringRef SearchPath,
StringRef RelativePath,
const Module *Imported,
SrcMgr::CharacteristicKind FileType) {
#if CLANG_VERSION_MAJOR >= 15
if (!File) {
return;
}
Indexer->inclusionDirective(FileNameRange.getAsRange(), &File->getFileEntry());
#else
Indexer->inclusionDirective(FileNameRange.getAsRange(), File);
#endif
}
void PreprocessorHook::MacroDefined(const Token &Tok,
const MacroDirective *Md) {
Indexer->macroDefined(Tok, Md);
}
void PreprocessorHook::MacroExpands(const Token &Tok, const MacroDefinition &Md,
SourceRange Range, const MacroArgs *Ma) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::MacroUndefined(const Token &Tok,
const MacroDefinition &Md,
const MacroDirective *Undef)
{
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::Defined(const Token &Tok, const MacroDefinition &Md,
SourceRange Range) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::Ifdef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::Ifndef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
class IndexAction : public PluginASTAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
llvm::StringRef F) {
return make_unique<IndexConsumer>(CI);
}
bool ParseArgs(const CompilerInstance &CI,
const std::vector<std::string> &Args) {
if (Args.size() != 3) {
DiagnosticsEngine &D = CI.getDiagnostics();
unsigned DiagID = D.getCustomDiagID(
DiagnosticsEngine::Error,
"Need arguments for the source, output, and object directories");
D.Report(DiagID);
return false;
}
// Load our directories
Srcdir = getAbsolutePath(Args[0]);
if (Srcdir.empty()) {
DiagnosticsEngine &D = CI.getDiagnostics();
unsigned DiagID = D.getCustomDiagID(
DiagnosticsEngine::Error, "Source directory '%0' does not exist");
D.Report(DiagID) << Args[0];
return false;
}
ensurePath(Args[1] + PATHSEP_STRING);
Outdir = getAbsolutePath(Args[1]);
Outdir += PATHSEP_STRING;
Objdir = getAbsolutePath(Args[2]);
if (Objdir.empty()) {
DiagnosticsEngine &D = CI.getDiagnostics();
unsigned DiagID = D.getCustomDiagID(DiagnosticsEngine::Error,
"Objdir '%0' does not exist");
D.Report(DiagID) << Args[2];
return false;
}
Objdir += PATHSEP_STRING;
printf("MOZSEARCH: %s %s %s\n", Srcdir.c_str(), Outdir.c_str(),
Objdir.c_str());
return true;
}
void printHelp(llvm::raw_ostream &Ros) {
Ros << "Help for mozsearch plugin goes here\n";
}
};
static FrontendPluginRegistry::Add<IndexAction>
Y("mozsearch-index", "create the mozsearch index database");