DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![deny(missing_docs)]

//! # Fx Hash
//!
//! This hashing algorithm was extracted from the Rustc compiler.  This is the same hashing
//! algoirthm used for some internal operations in FireFox.  The strength of this algorithm
//! is in hashing 8 bytes at a time on 64-bit platforms, where the FNV algorithm works on one
//! byte at a time.
//!
//! ## Disclaimer
//!
//! It is **not a cryptographically secure** hash, so it is strongly recommended that you do
//! not use this hash for cryptographic purproses.  Furthermore, this hashing algorithm was
//! not designed to prevent any attacks for determining collisions which could be used to
//! potentially cause quadratic behavior in `HashMap`s.  So it is not recommended to expose
//! this hash in places where collissions or DDOS attacks may be a concern.

use std::collections::{HashMap, HashSet};
use std::default::Default;
use std::hash::{Hasher, Hash, BuildHasherDefault};
use std::ops::BitXor;

extern crate byteorder;
use byteorder::{ByteOrder, NativeEndian};

/// A builder for default Fx hashers.
pub type FxBuildHasher = BuildHasherDefault<FxHasher>;

/// A `HashMap` using a default Fx hasher.
pub type FxHashMap<K, V> = HashMap<K, V, FxBuildHasher>;

/// A `HashSet` using a default Fx hasher.
pub type FxHashSet<V> = HashSet<V, FxBuildHasher>;

const ROTATE: u32 = 5;
const SEED64: u64 = 0x517cc1b727220a95;
const SEED32: u32 = (SEED64 & 0xFFFF_FFFF) as u32;

#[cfg(target_pointer_width = "32")]
const SEED: usize = SEED32 as usize;
#[cfg(target_pointer_width = "64")]
const SEED: usize = SEED64 as usize;

trait HashWord {
    fn hash_word(&mut self, Self);
}

macro_rules! impl_hash_word {
    ($($ty:ty = $key:ident),* $(,)*) => (
        $(
            impl HashWord for $ty {
                #[inline]
                fn hash_word(&mut self, word: Self) {
                    *self = self.rotate_left(ROTATE).bitxor(word).wrapping_mul($key);
                }
            }
        )*
    )
}

impl_hash_word!(usize = SEED, u32 = SEED32, u64 = SEED64);

#[inline]
fn write32(mut hash: u32, mut bytes: &[u8]) -> u32 {
    while bytes.len() >= 4 {
        let n = NativeEndian::read_u32(bytes);
        hash.hash_word(n);
        bytes = bytes.split_at(4).1;
    }

    for byte in bytes {
        hash.hash_word(*byte as u32);
    }
    hash
}

#[inline]
fn write64(mut hash: u64, mut bytes: &[u8]) -> u64 {
    while bytes.len() >= 8 {
        let n = NativeEndian::read_u64(bytes);
        hash.hash_word(n);
        bytes = bytes.split_at(8).1;
    }

    if bytes.len() >= 4 {
        let n = NativeEndian::read_u32(bytes);
        hash.hash_word(n as u64);
        bytes = bytes.split_at(4).1;
    }

    for byte in bytes {
        hash.hash_word(*byte as u64);
    }
    hash
}

#[inline]
#[cfg(target_pointer_width = "32")]
fn write(hash: usize, bytes: &[u8]) -> usize {
    write32(hash as u32, bytes) as usize
}

#[inline]
#[cfg(target_pointer_width = "64")]
fn write(hash: usize, bytes: &[u8]) -> usize {
    write64(hash as u64, bytes) as usize
}

/// This hashing algorithm was extracted from the Rustc compiler.
/// This is the same hashing algoirthm used for some internal operations in FireFox.
/// The strength of this algorithm is in hashing 8 bytes at a time on 64-bit platforms,
/// where the FNV algorithm works on one byte at a time.
///
/// This hashing algorithm should not be used for cryptographic, or in scenarios where
/// DOS attacks are a concern.
#[derive(Debug, Clone)]
pub struct FxHasher {
    hash: usize,
}

impl Default for FxHasher {
    #[inline]
    fn default() -> FxHasher {
        FxHasher { hash: 0 }
    }
}

impl Hasher for FxHasher {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.hash = write(self.hash, bytes);
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    #[cfg(target_pointer_width = "32")]
    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i as usize);
        self.hash.hash_word((i >> 32) as usize);
    }

    #[inline]
    #[cfg(target_pointer_width = "64")]
    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.hash.hash_word(i);
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hash as u64
    }
}

/// This hashing algorithm was extracted from the Rustc compiler.
/// This is the same hashing algoirthm used for some internal operations in FireFox.
/// The strength of this algorithm is in hashing 8 bytes at a time on any platform,
/// where the FNV algorithm works on one byte at a time.
///
/// This hashing algorithm should not be used for cryptographic, or in scenarios where
/// DOS attacks are a concern.
#[derive(Debug, Clone)]
pub struct FxHasher64 {
    hash: u64,
}

impl Default for FxHasher64 {
    #[inline]
    fn default() -> FxHasher64 {
        FxHasher64 { hash: 0 }
    }
}

impl Hasher for FxHasher64 {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.hash = write64(self.hash, bytes);
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.hash.hash_word(i as u64);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.hash.hash_word(i as u64);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.hash.hash_word(i as u64);
    }

    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.hash.hash_word(i as u64);
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hash
    }
}

/// This hashing algorithm was extracted from the Rustc compiler.
/// This is the same hashing algoirthm used for some internal operations in FireFox.
/// The strength of this algorithm is in hashing 4 bytes at a time on any platform,
/// where the FNV algorithm works on one byte at a time.
///
/// This hashing algorithm should not be used for cryptographic, or in scenarios where
/// DOS attacks are a concern.
#[derive(Debug, Clone)]
pub struct FxHasher32 {
    hash: u32,
}

impl Default for FxHasher32 {
    #[inline]
    fn default() -> FxHasher32 {
        FxHasher32 { hash: 0 }
    }
}

impl Hasher for FxHasher32 {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.hash = write32(self.hash, bytes);
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.hash.hash_word(i as u32);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.hash.hash_word(i as u32);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.hash.hash_word(i);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i as u32);
        self.hash.hash_word((i >> 32) as u32);
    }

    #[inline]
    #[cfg(target_pointer_width = "32")]
    fn write_usize(&mut self, i: usize) {
        self.write_u32(i as u32);
    }

    #[inline]
    #[cfg(target_pointer_width = "64")]
    fn write_usize(&mut self, i: usize) {
        self.write_u64(i as u64);
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hash as u64
    }
}

/// A convenience function for when you need a quick 64-bit hash.
#[inline]
pub fn hash64<T: Hash + ?Sized>(v: &T) -> u64 {
    let mut state = FxHasher64::default();
    v.hash(&mut state);
    state.finish()
}

/// A convenience function for when you need a quick 32-bit hash.
#[inline]
pub fn hash32<T: Hash + ?Sized>(v: &T) -> u32 {
    let mut state = FxHasher32::default();
    v.hash(&mut state);
    state.finish() as u32
}

/// A convenience function for when you need a quick usize hash.
#[inline]
pub fn hash<T: Hash + ?Sized>(v: &T) -> usize {
    let mut state = FxHasher::default();
    v.hash(&mut state);
    state.finish() as usize
}