DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
use rustc_data_structures::svh::Svh;
use rustc_hir as hir;
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LOCAL_CRATE};
use rustc_middle::hir::map as hir_map;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, WithConstness};
use rustc_session::CrateDisambiguator;
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use rustc_trait_selection::traits;

fn sized_constraint_for_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    adtdef: &ty::AdtDef,
    ty: Ty<'tcx>,
) -> Vec<Ty<'tcx>> {
    use ty::TyKind::*;

    let result = match ty.kind {
        Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..)
        | FnPtr(_) | Array(..) | Closure(..) | Generator(..) | Never => vec![],

        Str | Dynamic(..) | Slice(_) | Foreign(..) | Error | GeneratorWitness(..) => {
            // these are never sized - return the target type
            vec![ty]
        }

        Tuple(ref tys) => match tys.last() {
            None => vec![],
            Some(ty) => sized_constraint_for_ty(tcx, adtdef, ty.expect_ty()),
        },

        Adt(adt, substs) => {
            // recursive case
            let adt_tys = adt.sized_constraint(tcx);
            debug!("sized_constraint_for_ty({:?}) intermediate = {:?}", ty, adt_tys);
            adt_tys
                .iter()
                .map(|ty| ty.subst(tcx, substs))
                .flat_map(|ty| sized_constraint_for_ty(tcx, adtdef, ty))
                .collect()
        }

        Projection(..) | Opaque(..) => {
            // must calculate explicitly.
            // FIXME: consider special-casing always-Sized projections
            vec![ty]
        }

        Param(..) => {
            // perf hack: if there is a `T: Sized` bound, then
            // we know that `T` is Sized and do not need to check
            // it on the impl.

            let sized_trait = match tcx.lang_items().sized_trait() {
                Some(x) => x,
                _ => return vec![ty],
            };
            let sized_predicate = ty::Binder::dummy(ty::TraitRef {
                def_id: sized_trait,
                substs: tcx.mk_substs_trait(ty, &[]),
            })
            .without_const()
            .to_predicate(tcx);
            let predicates = tcx.predicates_of(adtdef.did).predicates;
            if predicates.iter().any(|(p, _)| *p == sized_predicate) { vec![] } else { vec![ty] }
        }

        Placeholder(..) | Bound(..) | Infer(..) => {
            bug!("unexpected type `{:?}` in sized_constraint_for_ty", ty)
        }
    };
    debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
    result
}

fn associated_item_from_trait_item_ref(
    tcx: TyCtxt<'_>,
    parent_def_id: LocalDefId,
    parent_vis: &hir::Visibility<'_>,
    trait_item_ref: &hir::TraitItemRef,
) -> ty::AssocItem {
    let def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
    let (kind, has_self) = match trait_item_ref.kind {
        hir::AssocItemKind::Const => (ty::AssocKind::Const, false),
        hir::AssocItemKind::Fn { has_self } => (ty::AssocKind::Fn, has_self),
        hir::AssocItemKind::Type => (ty::AssocKind::Type, false),
        hir::AssocItemKind::OpaqueTy => bug!("only impls can have opaque types"),
    };

    ty::AssocItem {
        ident: trait_item_ref.ident,
        kind,
        // Visibility of trait items is inherited from their traits.
        vis: ty::Visibility::from_hir(parent_vis, trait_item_ref.id.hir_id, tcx),
        defaultness: trait_item_ref.defaultness,
        def_id: def_id.to_def_id(),
        container: ty::TraitContainer(parent_def_id.to_def_id()),
        fn_has_self_parameter: has_self,
    }
}

fn associated_item_from_impl_item_ref(
    tcx: TyCtxt<'_>,
    parent_def_id: LocalDefId,
    impl_item_ref: &hir::ImplItemRef<'_>,
) -> ty::AssocItem {
    let def_id = tcx.hir().local_def_id(impl_item_ref.id.hir_id);
    let (kind, has_self) = match impl_item_ref.kind {
        hir::AssocItemKind::Const => (ty::AssocKind::Const, false),
        hir::AssocItemKind::Fn { has_self } => (ty::AssocKind::Fn, has_self),
        hir::AssocItemKind::Type => (ty::AssocKind::Type, false),
        hir::AssocItemKind::OpaqueTy => (ty::AssocKind::OpaqueTy, false),
    };

    ty::AssocItem {
        ident: impl_item_ref.ident,
        kind,
        // Visibility of trait impl items doesn't matter.
        vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.hir_id, tcx),
        defaultness: impl_item_ref.defaultness,
        def_id: def_id.to_def_id(),
        container: ty::ImplContainer(parent_def_id.to_def_id()),
        fn_has_self_parameter: has_self,
    }
}

fn associated_item(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssocItem {
    let id = tcx.hir().as_local_hir_id(def_id.expect_local());
    let parent_id = tcx.hir().get_parent_item(id);
    let parent_def_id = tcx.hir().local_def_id(parent_id);
    let parent_item = tcx.hir().expect_item(parent_id);
    match parent_item.kind {
        hir::ItemKind::Impl { ref items, .. } => {
            if let Some(impl_item_ref) = items.iter().find(|i| i.id.hir_id == id) {
                let assoc_item =
                    associated_item_from_impl_item_ref(tcx, parent_def_id, impl_item_ref);
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
            }
        }

        hir::ItemKind::Trait(.., ref trait_item_refs) => {
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.hir_id == id) {
                let assoc_item = associated_item_from_trait_item_ref(
                    tcx,
                    parent_def_id,
                    &parent_item.vis,
                    trait_item_ref,
                );
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
            }
        }

        _ => {}
    }

    span_bug!(
        parent_item.span,
        "unexpected parent of trait or impl item or item not found: {:?}",
        parent_item.kind
    )
}

fn impl_defaultness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Defaultness {
    let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
    let item = tcx.hir().expect_item(hir_id);
    if let hir::ItemKind::Impl { defaultness, .. } = item.kind {
        defaultness
    } else {
        bug!("`impl_defaultness` called on {:?}", item);
    }
}

/// Calculates the `Sized` constraint.
///
/// In fact, there are only a few options for the types in the constraint:
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a Error, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstraint<'_> {
    let def = tcx.adt_def(def_id);

    let result = tcx.mk_type_list(
        def.variants
            .iter()
            .flat_map(|v| v.fields.last())
            .flat_map(|f| sized_constraint_for_ty(tcx, def, tcx.type_of(f.did))),
    );

    debug!("adt_sized_constraint: {:?} => {:?}", def, result);

    ty::AdtSizedConstraint(result)
}

fn associated_item_def_ids(tcx: TyCtxt<'_>, def_id: DefId) -> &[DefId] {
    let id = tcx.hir().as_local_hir_id(def_id.expect_local());
    let item = tcx.hir().expect_item(id);
    match item.kind {
        hir::ItemKind::Trait(.., ref trait_item_refs) => tcx.arena.alloc_from_iter(
            trait_item_refs
                .iter()
                .map(|trait_item_ref| trait_item_ref.id)
                .map(|id| tcx.hir().local_def_id(id.hir_id).to_def_id()),
        ),
        hir::ItemKind::Impl { ref items, .. } => tcx.arena.alloc_from_iter(
            items
                .iter()
                .map(|impl_item_ref| impl_item_ref.id)
                .map(|id| tcx.hir().local_def_id(id.hir_id).to_def_id()),
        ),
        hir::ItemKind::TraitAlias(..) => &[],
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait"),
    }
}

fn associated_items(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AssociatedItems<'_> {
    let items = tcx.associated_item_def_ids(def_id).iter().map(|did| tcx.associated_item(*did));
    ty::AssociatedItems::new(items)
}

fn def_span(tcx: TyCtxt<'_>, def_id: DefId) -> Span {
    tcx.hir().span_if_local(def_id).unwrap()
}

/// If the given `DefId` describes an item belonging to a trait,
/// returns the `DefId` of the trait that the trait item belongs to;
/// otherwise, returns `None`.
fn trait_of_item(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id).and_then(|associated_item| match associated_item.container {
        ty::TraitContainer(def_id) => Some(def_id),
        ty::ImplContainer(_) => None,
    })
}

/// See `ParamEnv` struct definition for details.
fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
    // The param_env of an impl Trait type is its defining function's param_env
    if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent);
    }
    // Compute the bounds on Self and the type parameters.

    let ty::InstantiatedPredicates { predicates, .. } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

    let unnormalized_env = ty::ParamEnv::new(
        tcx.intern_predicates(&predicates),
        traits::Reveal::UserFacing,
        tcx.sess.opts.debugging_opts.chalk.then_some(def_id),
    );

    let body_id = def_id
        .as_local()
        .map(|def_id| tcx.hir().as_local_hir_id(def_id))
        .map_or(hir::CRATE_HIR_ID, |id| {
            tcx.hir().maybe_body_owned_by(id).map_or(id, |body| body.hir_id)
        });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}

fn crate_disambiguator(tcx: TyCtxt<'_>, crate_num: CrateNum) -> CrateDisambiguator {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

fn original_crate_name(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name
}

fn crate_hash(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Svh {
    tcx.index_hir(crate_num).crate_hash
}

fn instance_def_size_estimate<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance_def: ty::InstanceDef<'tcx>,
) -> usize {
    use ty::InstanceDef;

    match instance_def {
        InstanceDef::Item(..) | InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        }
        // Estimate the size of other compiler-generated shims to be 1.
        _ => 1,
    }
}

/// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`.
///
/// See [`ty::ImplOverlapKind::Issue33140`] for more details.
fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Ty<'_>> {
    debug!("issue33140_self_ty({:?})", def_id);

    let trait_ref = tcx
        .impl_trait_ref(def_id)
        .unwrap_or_else(|| bug!("issue33140_self_ty called on inherent impl {:?}", def_id));

    debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);

    let is_marker_like = tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive
        && tcx.associated_item_def_ids(trait_ref.def_id).is_empty();

    // Check whether these impls would be ok for a marker trait.
    if !is_marker_like {
        debug!("issue33140_self_ty - not marker-like!");
        return None;
    }

    // impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
    if trait_ref.substs.len() != 1 {
        debug!("issue33140_self_ty - impl has substs!");
        return None;
    }

    let predicates = tcx.predicates_of(def_id);
    if predicates.parent.is_some() || !predicates.predicates.is_empty() {
        debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
        return None;
    }

    let self_ty = trait_ref.self_ty();
    let self_ty_matches = match self_ty.kind {
        ty::Dynamic(ref data, ty::ReStatic) => data.principal().is_none(),
        _ => false,
    };

    if self_ty_matches {
        debug!("issue33140_self_ty - MATCHES!");
        Some(self_ty)
    } else {
        debug!("issue33140_self_ty - non-matching self type");
        None
    }
}

/// Check if a function is async.
fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync {
    let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());

    let node = tcx.hir().get(hir_id);

    let fn_like = hir_map::blocks::FnLikeNode::from_node(node).unwrap_or_else(|| {
        bug!("asyncness: expected fn-like node but got `{:?}`", def_id);
    });

    fn_like.asyncness()
}

pub fn provide(providers: &mut ty::query::Providers<'_>) {
    *providers = ty::query::Providers {
        asyncness,
        associated_item,
        associated_item_def_ids,
        associated_items,
        adt_sized_constraint,
        def_span,
        param_env,
        trait_of_item,
        crate_disambiguator,
        original_crate_name,
        crate_hash,
        instance_def_size_estimate,
        issue33140_self_ty,
        impl_defaultness,
        ..*providers
    };
}