DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
use crate::base::ExtCtxt;
use crate::mbe;
use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq, NamedMatch};

use rustc_ast::ast::MacCall;
use rustc_ast::mut_visit::{self, MutVisitor};
use rustc_ast::token::{self, NtTT, Token};
use rustc_ast::tokenstream::{DelimSpan, TokenStream, TokenTree, TreeAndJoint};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_errors::{pluralize, PResult};
use rustc_span::hygiene::{ExpnId, Transparency};
use rustc_span::symbol::MacroRulesNormalizedIdent;
use rustc_span::Span;

use smallvec::{smallvec, SmallVec};
use std::mem;

// A Marker adds the given mark to the syntax context.
struct Marker(ExpnId, Transparency);

impl MutVisitor for Marker {
    fn visit_span(&mut self, span: &mut Span) {
        *span = span.apply_mark(self.0, self.1)
    }

    fn visit_mac(&mut self, mac: &mut MacCall) {
        mut_visit::noop_visit_mac(mac, self)
    }
}

/// An iterator over the token trees in a delimited token tree (`{ ... }`) or a sequence (`$(...)`).
enum Frame {
    Delimited { forest: Lrc<mbe::Delimited>, idx: usize, span: DelimSpan },
    Sequence { forest: Lrc<mbe::SequenceRepetition>, idx: usize, sep: Option<Token> },
}

impl Frame {
    /// Construct a new frame around the delimited set of tokens.
    fn new(tts: Vec<mbe::TokenTree>) -> Frame {
        let forest = Lrc::new(mbe::Delimited { delim: token::NoDelim, tts });
        Frame::Delimited { forest, idx: 0, span: DelimSpan::dummy() }
    }
}

impl Iterator for Frame {
    type Item = mbe::TokenTree;

    fn next(&mut self) -> Option<mbe::TokenTree> {
        match *self {
            Frame::Delimited { ref forest, ref mut idx, .. } => {
                *idx += 1;
                forest.tts.get(*idx - 1).cloned()
            }
            Frame::Sequence { ref forest, ref mut idx, .. } => {
                *idx += 1;
                forest.tts.get(*idx - 1).cloned()
            }
        }
    }
}

/// This can do Macro-By-Example transcription.
/// - `interp` is a map of meta-variables to the tokens (non-terminals) they matched in the
///   invocation. We are assuming we already know there is a match.
/// - `src` is the RHS of the MBE, that is, the "example" we are filling in.
///
/// For example,
///
/// ```rust
/// macro_rules! foo {
///     ($id:ident) => { println!("{}", stringify!($id)); }
/// }
///
/// foo!(bar);
/// ```
///
/// `interp` would contain `$id => bar` and `src` would contain `println!("{}", stringify!($id));`.
///
/// `transcribe` would return a `TokenStream` containing `println!("{}", stringify!(bar));`.
///
/// Along the way, we do some additional error checking.
pub(super) fn transcribe<'a>(
    cx: &ExtCtxt<'a>,
    interp: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
    src: Vec<mbe::TokenTree>,
    transparency: Transparency,
) -> PResult<'a, TokenStream> {
    // Nothing for us to transcribe...
    if src.is_empty() {
        return Ok(TokenStream::default());
    }

    // We descend into the RHS (`src`), expanding things as we go. This stack contains the things
    // we have yet to expand/are still expanding. We start the stack off with the whole RHS.
    let mut stack: SmallVec<[Frame; 1]> = smallvec![Frame::new(src)];

    // As we descend in the RHS, we will need to be able to match nested sequences of matchers.
    // `repeats` keeps track of where we are in matching at each level, with the last element being
    // the most deeply nested sequence. This is used as a stack.
    let mut repeats = Vec::new();

    // `result` contains resulting token stream from the TokenTree we just finished processing. At
    // the end, this will contain the full result of transcription, but at arbitrary points during
    // `transcribe`, `result` will contain subsets of the final result.
    //
    // Specifically, as we descend into each TokenTree, we will push the existing results onto the
    // `result_stack` and clear `results`. We will then produce the results of transcribing the
    // TokenTree into `results`. Then, as we unwind back out of the `TokenTree`, we will pop the
    // `result_stack` and append `results` too it to produce the new `results` up to that point.
    //
    // Thus, if we try to pop the `result_stack` and it is empty, we have reached the top-level
    // again, and we are done transcribing.
    let mut result: Vec<TreeAndJoint> = Vec::new();
    let mut result_stack = Vec::new();
    let mut marker = Marker(cx.current_expansion.id, transparency);

    loop {
        // Look at the last frame on the stack.
        let tree = if let Some(tree) = stack.last_mut().unwrap().next() {
            // If it still has a TokenTree we have not looked at yet, use that tree.
            tree
        } else {
            // This else-case never produces a value for `tree` (it `continue`s or `return`s).

            // Otherwise, if we have just reached the end of a sequence and we can keep repeating,
            // go back to the beginning of the sequence.
            if let Frame::Sequence { idx, sep, .. } = stack.last_mut().unwrap() {
                let (repeat_idx, repeat_len) = repeats.last_mut().unwrap();
                *repeat_idx += 1;
                if repeat_idx < repeat_len {
                    *idx = 0;
                    if let Some(sep) = sep {
                        result.push(TokenTree::Token(sep.clone()).into());
                    }
                    continue;
                }
            }

            // We are done with the top of the stack. Pop it. Depending on what it was, we do
            // different things. Note that the outermost item must be the delimited, wrapped RHS
            // that was passed in originally to `transcribe`.
            match stack.pop().unwrap() {
                // Done with a sequence. Pop from repeats.
                Frame::Sequence { .. } => {
                    repeats.pop();
                }

                // We are done processing a Delimited. If this is the top-level delimited, we are
                // done. Otherwise, we unwind the result_stack to append what we have produced to
                // any previous results.
                Frame::Delimited { forest, span, .. } => {
                    if result_stack.is_empty() {
                        // No results left to compute! We are back at the top-level.
                        return Ok(TokenStream::new(result));
                    }

                    // Step back into the parent Delimited.
                    let tree = TokenTree::Delimited(span, forest.delim, TokenStream::new(result));
                    result = result_stack.pop().unwrap();
                    result.push(tree.into());
                }
            }
            continue;
        };

        // At this point, we know we are in the middle of a TokenTree (the last one on `stack`).
        // `tree` contains the next `TokenTree` to be processed.
        match tree {
            // We are descending into a sequence. We first make sure that the matchers in the RHS
            // and the matches in `interp` have the same shape. Otherwise, either the caller or the
            // macro writer has made a mistake.
            seq @ mbe::TokenTree::Sequence(..) => {
                match lockstep_iter_size(&seq, interp, &repeats) {
                    LockstepIterSize::Unconstrained => {
                        return Err(cx.struct_span_err(
                            seq.span(), /* blame macro writer */
                            "attempted to repeat an expression containing no syntax variables \
                             matched as repeating at this depth",
                        ));
                    }

                    LockstepIterSize::Contradiction(ref msg) => {
                        // FIXME: this really ought to be caught at macro definition time... It
                        // happens when two meta-variables are used in the same repetition in a
                        // sequence, but they come from different sequence matchers and repeat
                        // different amounts.
                        return Err(cx.struct_span_err(seq.span(), &msg[..]));
                    }

                    LockstepIterSize::Constraint(len, _) => {
                        // We do this to avoid an extra clone above. We know that this is a
                        // sequence already.
                        let (sp, seq) = if let mbe::TokenTree::Sequence(sp, seq) = seq {
                            (sp, seq)
                        } else {
                            unreachable!()
                        };

                        // Is the repetition empty?
                        if len == 0 {
                            if seq.kleene.op == mbe::KleeneOp::OneOrMore {
                                // FIXME: this really ought to be caught at macro definition
                                // time... It happens when the Kleene operator in the matcher and
                                // the body for the same meta-variable do not match.
                                return Err(cx.struct_span_err(
                                    sp.entire(),
                                    "this must repeat at least once",
                                ));
                            }
                        } else {
                            // 0 is the initial counter (we have done 0 repretitions so far). `len`
                            // is the total number of reptitions we should generate.
                            repeats.push((0, len));

                            // The first time we encounter the sequence we push it to the stack. It
                            // then gets reused (see the beginning of the loop) until we are done
                            // repeating.
                            stack.push(Frame::Sequence {
                                idx: 0,
                                sep: seq.separator.clone(),
                                forest: seq,
                            });
                        }
                    }
                }
            }

            // Replace the meta-var with the matched token tree from the invocation.
            mbe::TokenTree::MetaVar(mut sp, mut orignal_ident) => {
                // Find the matched nonterminal from the macro invocation, and use it to replace
                // the meta-var.
                let ident = MacroRulesNormalizedIdent::new(orignal_ident);
                if let Some(cur_matched) = lookup_cur_matched(ident, interp, &repeats) {
                    if let MatchedNonterminal(ref nt) = cur_matched {
                        // FIXME #2887: why do we apply a mark when matching a token tree meta-var
                        // (e.g. `$x:tt`), but not when we are matching any other type of token
                        // tree?
                        if let NtTT(ref tt) = **nt {
                            result.push(tt.clone().into());
                        } else {
                            marker.visit_span(&mut sp);
                            let token = TokenTree::token(token::Interpolated(nt.clone()), sp);
                            result.push(token.into());
                        }
                    } else {
                        // We were unable to descend far enough. This is an error.
                        return Err(cx.struct_span_err(
                            sp, /* blame the macro writer */
                            &format!("variable '{}' is still repeating at this depth", ident),
                        ));
                    }
                } else {
                    // If we aren't able to match the meta-var, we push it back into the result but
                    // with modified syntax context. (I believe this supports nested macros).
                    marker.visit_span(&mut sp);
                    marker.visit_ident(&mut orignal_ident);
                    result.push(TokenTree::token(token::Dollar, sp).into());
                    result.push(TokenTree::Token(Token::from_ast_ident(orignal_ident)).into());
                }
            }

            // If we are entering a new delimiter, we push its contents to the `stack` to be
            // processed, and we push all of the currently produced results to the `result_stack`.
            // We will produce all of the results of the inside of the `Delimited` and then we will
            // jump back out of the Delimited, pop the result_stack and add the new results back to
            // the previous results (from outside the Delimited).
            mbe::TokenTree::Delimited(mut span, delimited) => {
                mut_visit::visit_delim_span(&mut span, &mut marker);
                stack.push(Frame::Delimited { forest: delimited, idx: 0, span });
                result_stack.push(mem::take(&mut result));
            }

            // Nothing much to do here. Just push the token to the result, being careful to
            // preserve syntax context.
            mbe::TokenTree::Token(token) => {
                let mut tt = TokenTree::Token(token);
                marker.visit_tt(&mut tt);
                result.push(tt.into());
            }

            // There should be no meta-var declarations in the invocation of a macro.
            mbe::TokenTree::MetaVarDecl(..) => panic!("unexpected `TokenTree::MetaVarDecl"),
        }
    }
}

/// Lookup the meta-var named `ident` and return the matched token tree from the invocation using
/// the set of matches `interpolations`.
///
/// See the definition of `repeats` in the `transcribe` function. `repeats` is used to descend
/// into the right place in nested matchers. If we attempt to descend too far, the macro writer has
/// made a mistake, and we return `None`.
fn lookup_cur_matched<'a>(
    ident: MacroRulesNormalizedIdent,
    interpolations: &'a FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
    repeats: &[(usize, usize)],
) -> Option<&'a NamedMatch> {
    interpolations.get(&ident).map(|matched| {
        let mut matched = matched;
        for &(idx, _) in repeats {
            match matched {
                MatchedNonterminal(_) => break,
                MatchedSeq(ref ads) => matched = ads.get(idx).unwrap(),
            }
        }

        matched
    })
}

/// An accumulator over a TokenTree to be used with `fold`. During transcription, we need to make
/// sure that the size of each sequence and all of its nested sequences are the same as the sizes
/// of all the matched (nested) sequences in the macro invocation. If they don't match, somebody
/// has made a mistake (either the macro writer or caller).
#[derive(Clone)]
enum LockstepIterSize {
    /// No constraints on length of matcher. This is true for any TokenTree variants except a
    /// `MetaVar` with an actual `MatchedSeq` (as opposed to a `MatchedNonterminal`).
    Unconstrained,

    /// A `MetaVar` with an actual `MatchedSeq`. The length of the match and the name of the
    /// meta-var are returned.
    Constraint(usize, MacroRulesNormalizedIdent),

    /// Two `Constraint`s on the same sequence had different lengths. This is an error.
    Contradiction(String),
}

impl LockstepIterSize {
    /// Find incompatibilities in matcher/invocation sizes.
    /// - `Unconstrained` is compatible with everything.
    /// - `Contradiction` is incompatible with everything.
    /// - `Constraint(len)` is only compatible with other constraints of the same length.
    fn with(self, other: LockstepIterSize) -> LockstepIterSize {
        match self {
            LockstepIterSize::Unconstrained => other,
            LockstepIterSize::Contradiction(_) => self,
            LockstepIterSize::Constraint(l_len, ref l_id) => match other {
                LockstepIterSize::Unconstrained => self,
                LockstepIterSize::Contradiction(_) => other,
                LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self,
                LockstepIterSize::Constraint(r_len, r_id) => {
                    let msg = format!(
                        "meta-variable `{}` repeats {} time{}, but `{}` repeats {} time{}",
                        l_id,
                        l_len,
                        pluralize!(l_len),
                        r_id,
                        r_len,
                        pluralize!(r_len),
                    );
                    LockstepIterSize::Contradiction(msg)
                }
            },
        }
    }
}

/// Given a `tree`, make sure that all sequences have the same length as the matches for the
/// appropriate meta-vars in `interpolations`.
///
/// Note that if `repeats` does not match the exact correct depth of a meta-var,
/// `lookup_cur_matched` will return `None`, which is why this still works even in the presnece of
/// multiple nested matcher sequences.
fn lockstep_iter_size(
    tree: &mbe::TokenTree,
    interpolations: &FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
    repeats: &[(usize, usize)],
) -> LockstepIterSize {
    use mbe::TokenTree;
    match *tree {
        TokenTree::Delimited(_, ref delimed) => {
            delimed.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
                size.with(lockstep_iter_size(tt, interpolations, repeats))
            })
        }
        TokenTree::Sequence(_, ref seq) => {
            seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
                size.with(lockstep_iter_size(tt, interpolations, repeats))
            })
        }
        TokenTree::MetaVar(_, name) | TokenTree::MetaVarDecl(_, name, _) => {
            let name = MacroRulesNormalizedIdent::new(name);
            match lookup_cur_matched(name, interpolations, repeats) {
                Some(matched) => match matched {
                    MatchedNonterminal(_) => LockstepIterSize::Unconstrained,
                    MatchedSeq(ref ads) => LockstepIterSize::Constraint(ads.len(), name),
                },
                _ => LockstepIterSize::Unconstrained,
            }
        }
        TokenTree::Token(..) => LockstepIterSize::Unconstrained,
    }
}