DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
//! Checks that meta-variables in macro definition are correctly declared and used.
//!
//! # What is checked
//!
//! ## Meta-variables must not be bound twice
//!
//! ```
//! macro_rules! foo { ($x:tt $x:tt) => { $x }; }
//! ```
//!
//! This check is sound (no false-negative) and complete (no false-positive).
//!
//! ## Meta-variables must not be free
//!
//! ```
//! macro_rules! foo { () => { $x }; }
//! ```
//!
//! This check is also done at macro instantiation but only if the branch is taken.
//!
//! ## Meta-variables must repeat at least as many times as their binder
//!
//! ```
//! macro_rules! foo { ($($x:tt)*) => { $x }; }
//! ```
//!
//! This check is also done at macro instantiation but only if the branch is taken.
//!
//! ## Meta-variables must repeat with the same Kleene operators as their binder
//!
//! ```
//! macro_rules! foo { ($($x:tt)+) => { $($x)* }; }
//! ```
//!
//! This check is not done at macro instantiation.
//!
//! # Disclaimer
//!
//! In the presence of nested macros (a macro defined in a macro), those checks may have false
//! positives and false negatives. We try to detect those cases by recognizing potential macro
//! definitions in RHSes, but nested macros may be hidden through the use of particular values of
//! meta-variables.
//!
//! ## Examples of false positive
//!
//! False positives can come from cases where we don't recognize a nested macro, because it depends
//! on particular values of meta-variables. In the following example, we think both instances of
//! `$x` are free, which is a correct statement if `$name` is anything but `macro_rules`. But when
//! `$name` is `macro_rules`, like in the instantiation below, then `$x:tt` is actually a binder of
//! the nested macro and `$x` is bound to it.
//!
//! ```
//! macro_rules! foo { ($name:ident) => { $name! bar { ($x:tt) => { $x }; } }; }
//! foo!(macro_rules);
//! ```
//!
//! False positives can also come from cases where we think there is a nested macro while there
//! isn't. In the following example, we think `$x` is free, which is incorrect because `bar` is not
//! a nested macro since it is not evaluated as code by `stringify!`.
//!
//! ```
//! macro_rules! foo { () => { stringify!(macro_rules! bar { () => { $x }; }) }; }
//! ```
//!
//! ## Examples of false negative
//!
//! False negatives can come from cases where we don't recognize a meta-variable, because it depends
//! on particular values of meta-variables. In the following examples, we don't see that if `$d` is
//! instantiated with `$` then `$d z` becomes `$z` in the nested macro definition and is thus a free
//! meta-variable. Note however, that if `foo` is instantiated, then we would check the definition
//! of `bar` and would see the issue.
//!
//! ```
//! macro_rules! foo { ($d:tt) => { macro_rules! bar { ($y:tt) => { $d z }; } }; }
//! ```
//!
//! # How it is checked
//!
//! There are 3 main functions: `check_binders`, `check_occurrences`, and `check_nested_macro`. They
//! all need some kind of environment.
//!
//! ## Environments
//!
//! Environments are used to pass information.
//!
//! ### From LHS to RHS
//!
//! When checking a LHS with `check_binders`, we produce (and use) an environment for binders,
//! namely `Binders`. This is a mapping from binder name to information about that binder: the span
//! of the binder for error messages and the stack of Kleene operators under which it was bound in
//! the LHS.
//!
//! This environment is used by both the LHS and RHS. The LHS uses it to detect duplicate binders.
//! The RHS uses it to detect the other errors.
//!
//! ### From outer macro to inner macro
//!
//! When checking the RHS of an outer macro and we detect a nested macro definition, we push the
//! current state, namely `MacroState`, to an environment of nested macro definitions. Each state
//! stores the LHS binders when entering the macro definition as well as the stack of Kleene
//! operators under which the inner macro is defined in the RHS.
//!
//! This environment is a stack representing the nesting of macro definitions. As such, the stack of
//! Kleene operators under which a meta-variable is repeating is the concatenation of the stacks
//! stored when entering a macro definition starting from the state in which the meta-variable is
//! bound.
use crate::mbe::{KleeneToken, TokenTree};

use rustc_ast::ast::{NodeId, DUMMY_NODE_ID};
use rustc_ast::token::{DelimToken, Token, TokenKind};
use rustc_data_structures::fx::FxHashMap;
use rustc_session::lint::builtin::META_VARIABLE_MISUSE;
use rustc_session::parse::ParseSess;
use rustc_span::symbol::kw;
use rustc_span::{symbol::MacroRulesNormalizedIdent, MultiSpan, Span};

use smallvec::SmallVec;

/// Stack represented as linked list.
///
/// Those are used for environments because they grow incrementally and are not mutable.
enum Stack<'a, T> {
    /// Empty stack.
    Empty,
    /// A non-empty stack.
    Push {
        /// The top element.
        top: T,
        /// The previous elements.
        prev: &'a Stack<'a, T>,
    },
}

impl<'a, T> Stack<'a, T> {
    /// Returns whether a stack is empty.
    fn is_empty(&self) -> bool {
        match *self {
            Stack::Empty => true,
            _ => false,
        }
    }

    /// Returns a new stack with an element of top.
    fn push(&'a self, top: T) -> Stack<'a, T> {
        Stack::Push { top, prev: self }
    }
}

impl<'a, T> Iterator for &'a Stack<'a, T> {
    type Item = &'a T;

    // Iterates from top to bottom of the stack.
    fn next(&mut self) -> Option<&'a T> {
        match *self {
            Stack::Empty => None,
            Stack::Push { ref top, ref prev } => {
                *self = prev;
                Some(top)
            }
        }
    }
}

impl From<&Stack<'_, KleeneToken>> for SmallVec<[KleeneToken; 1]> {
    fn from(ops: &Stack<'_, KleeneToken>) -> SmallVec<[KleeneToken; 1]> {
        let mut ops: SmallVec<[KleeneToken; 1]> = ops.cloned().collect();
        // The stack is innermost on top. We want outermost first.
        ops.reverse();
        ops
    }
}

/// Information attached to a meta-variable binder in LHS.
struct BinderInfo {
    /// The span of the meta-variable in LHS.
    span: Span,
    /// The stack of Kleene operators (outermost first).
    ops: SmallVec<[KleeneToken; 1]>,
}

/// An environment of meta-variables to their binder information.
type Binders = FxHashMap<MacroRulesNormalizedIdent, BinderInfo>;

/// The state at which we entered a macro definition in the RHS of another macro definition.
struct MacroState<'a> {
    /// The binders of the branch where we entered the macro definition.
    binders: &'a Binders,
    /// The stack of Kleene operators (outermost first) where we entered the macro definition.
    ops: SmallVec<[KleeneToken; 1]>,
}

/// Checks that meta-variables are used correctly in a macro definition.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `span` is used when no spans are available
/// - `lhses` and `rhses` should have the same length and represent the macro definition
pub(super) fn check_meta_variables(
    sess: &ParseSess,
    node_id: NodeId,
    span: Span,
    lhses: &[TokenTree],
    rhses: &[TokenTree],
) -> bool {
    if lhses.len() != rhses.len() {
        sess.span_diagnostic.span_bug(span, "length mismatch between LHSes and RHSes")
    }
    let mut valid = true;
    for (lhs, rhs) in lhses.iter().zip(rhses.iter()) {
        let mut binders = Binders::default();
        check_binders(sess, node_id, lhs, &Stack::Empty, &mut binders, &Stack::Empty, &mut valid);
        check_occurrences(sess, node_id, rhs, &Stack::Empty, &binders, &Stack::Empty, &mut valid);
    }
    valid
}

/// Checks `lhs` as part of the LHS of a macro definition, extends `binders` with new binders, and
/// sets `valid` to false in case of errors.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `lhs` is checked as part of a LHS
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the LHS
/// - `ops` is the stack of Kleene operators from the LHS
/// - `valid` is set in case of errors
fn check_binders(
    sess: &ParseSess,
    node_id: NodeId,
    lhs: &TokenTree,
    macros: &Stack<'_, MacroState<'_>>,
    binders: &mut Binders,
    ops: &Stack<'_, KleeneToken>,
    valid: &mut bool,
) {
    match *lhs {
        TokenTree::Token(..) => {}
        // This can only happen when checking a nested macro because this LHS is then in the RHS of
        // the outer macro. See ui/macros/macro-of-higher-order.rs where $y:$fragment in the
        // LHS of the nested macro (and RHS of the outer macro) is parsed as MetaVar(y) Colon
        // MetaVar(fragment) and not as MetaVarDecl(y, fragment).
        TokenTree::MetaVar(span, name) => {
            if macros.is_empty() {
                sess.span_diagnostic.span_bug(span, "unexpected MetaVar in lhs");
            }
            let name = MacroRulesNormalizedIdent::new(name);
            // There are 3 possibilities:
            if let Some(prev_info) = binders.get(&name) {
                // 1. The meta-variable is already bound in the current LHS: This is an error.
                let mut span = MultiSpan::from_span(span);
                span.push_span_label(prev_info.span, "previous declaration".into());
                buffer_lint(sess, span, node_id, "duplicate matcher binding");
            } else if get_binder_info(macros, binders, name).is_none() {
                // 2. The meta-variable is free: This is a binder.
                binders.insert(name, BinderInfo { span, ops: ops.into() });
            } else {
                // 3. The meta-variable is bound: This is an occurrence.
                check_occurrences(sess, node_id, lhs, macros, binders, ops, valid);
            }
        }
        // Similarly, this can only happen when checking a toplevel macro.
        TokenTree::MetaVarDecl(span, name, _kind) => {
            if !macros.is_empty() {
                sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in nested lhs");
            }
            let name = MacroRulesNormalizedIdent::new(name);
            if let Some(prev_info) = get_binder_info(macros, binders, name) {
                // Duplicate binders at the top-level macro definition are errors. The lint is only
                // for nested macro definitions.
                sess.span_diagnostic
                    .struct_span_err(span, "duplicate matcher binding")
                    .span_label(span, "duplicate binding")
                    .span_label(prev_info.span, "previous binding")
                    .emit();
                *valid = false;
            } else {
                binders.insert(name, BinderInfo { span, ops: ops.into() });
            }
        }
        TokenTree::Delimited(_, ref del) => {
            for tt in &del.tts {
                check_binders(sess, node_id, tt, macros, binders, ops, valid);
            }
        }
        TokenTree::Sequence(_, ref seq) => {
            let ops = ops.push(seq.kleene);
            for tt in &seq.tts {
                check_binders(sess, node_id, tt, macros, binders, &ops, valid);
            }
        }
    }
}

/// Returns the binder information of a meta-variable.
///
/// Arguments:
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the current binders
/// - `name` is the name of the meta-variable we are looking for
fn get_binder_info<'a>(
    mut macros: &'a Stack<'a, MacroState<'a>>,
    binders: &'a Binders,
    name: MacroRulesNormalizedIdent,
) -> Option<&'a BinderInfo> {
    binders.get(&name).or_else(|| macros.find_map(|state| state.binders.get(&name)))
}

/// Checks `rhs` as part of the RHS of a macro definition and sets `valid` to false in case of
/// errors.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `rhs` is checked as part of a RHS
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the associated LHS
/// - `ops` is the stack of Kleene operators from the RHS
/// - `valid` is set in case of errors
fn check_occurrences(
    sess: &ParseSess,
    node_id: NodeId,
    rhs: &TokenTree,
    macros: &Stack<'_, MacroState<'_>>,
    binders: &Binders,
    ops: &Stack<'_, KleeneToken>,
    valid: &mut bool,
) {
    match *rhs {
        TokenTree::Token(..) => {}
        TokenTree::MetaVarDecl(span, _name, _kind) => {
            sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in rhs")
        }
        TokenTree::MetaVar(span, name) => {
            let name = MacroRulesNormalizedIdent::new(name);
            check_ops_is_prefix(sess, node_id, macros, binders, ops, span, name);
        }
        TokenTree::Delimited(_, ref del) => {
            check_nested_occurrences(sess, node_id, &del.tts, macros, binders, ops, valid);
        }
        TokenTree::Sequence(_, ref seq) => {
            let ops = ops.push(seq.kleene);
            check_nested_occurrences(sess, node_id, &seq.tts, macros, binders, &ops, valid);
        }
    }
}

/// Represents the processed prefix of a nested macro.
#[derive(Clone, Copy, PartialEq, Eq)]
enum NestedMacroState {
    /// Nothing that matches a nested macro definition was processed yet.
    Empty,
    /// The token `macro_rules` was processed.
    MacroRules,
    /// The tokens `macro_rules!` were processed.
    MacroRulesNot,
    /// The tokens `macro_rules!` followed by a name were processed. The name may be either directly
    /// an identifier or a meta-variable (that hopefully would be instantiated by an identifier).
    MacroRulesNotName,
    /// The keyword `macro` was processed.
    Macro,
    /// The keyword `macro` followed by a name was processed.
    MacroName,
    /// The keyword `macro` followed by a name and a token delimited by parentheses was processed.
    MacroNameParen,
}

/// Checks `tts` as part of the RHS of a macro definition, tries to recognize nested macro
/// definitions, and sets `valid` to false in case of errors.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `tts` is checked as part of a RHS and may contain macro definitions
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the associated LHS
/// - `ops` is the stack of Kleene operators from the RHS
/// - `valid` is set in case of errors
fn check_nested_occurrences(
    sess: &ParseSess,
    node_id: NodeId,
    tts: &[TokenTree],
    macros: &Stack<'_, MacroState<'_>>,
    binders: &Binders,
    ops: &Stack<'_, KleeneToken>,
    valid: &mut bool,
) {
    let mut state = NestedMacroState::Empty;
    let nested_macros = macros.push(MacroState { binders, ops: ops.into() });
    let mut nested_binders = Binders::default();
    for tt in tts {
        match (state, tt) {
            (
                NestedMacroState::Empty,
                &TokenTree::Token(Token { kind: TokenKind::Ident(name, false), .. }),
            ) => {
                if name == kw::MacroRules {
                    state = NestedMacroState::MacroRules;
                } else if name == kw::Macro {
                    state = NestedMacroState::Macro;
                }
            }
            (
                NestedMacroState::MacroRules,
                &TokenTree::Token(Token { kind: TokenKind::Not, .. }),
            ) => {
                state = NestedMacroState::MacroRulesNot;
            }
            (
                NestedMacroState::MacroRulesNot,
                &TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
            ) => {
                state = NestedMacroState::MacroRulesNotName;
            }
            (NestedMacroState::MacroRulesNot, &TokenTree::MetaVar(..)) => {
                state = NestedMacroState::MacroRulesNotName;
                // We check that the meta-variable is correctly used.
                check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
            }
            (NestedMacroState::MacroRulesNotName, &TokenTree::Delimited(_, ref del))
            | (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
                if del.delim == DelimToken::Brace =>
            {
                let macro_rules = state == NestedMacroState::MacroRulesNotName;
                state = NestedMacroState::Empty;
                let rest =
                    check_nested_macro(sess, node_id, macro_rules, &del.tts, &nested_macros, valid);
                // If we did not check the whole macro definition, then check the rest as if outside
                // the macro definition.
                check_nested_occurrences(
                    sess,
                    node_id,
                    &del.tts[rest..],
                    macros,
                    binders,
                    ops,
                    valid,
                );
            }
            (
                NestedMacroState::Macro,
                &TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
            ) => {
                state = NestedMacroState::MacroName;
            }
            (NestedMacroState::Macro, &TokenTree::MetaVar(..)) => {
                state = NestedMacroState::MacroName;
                // We check that the meta-variable is correctly used.
                check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
            }
            (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
                if del.delim == DelimToken::Paren =>
            {
                state = NestedMacroState::MacroNameParen;
                nested_binders = Binders::default();
                check_binders(
                    sess,
                    node_id,
                    tt,
                    &nested_macros,
                    &mut nested_binders,
                    &Stack::Empty,
                    valid,
                );
            }
            (NestedMacroState::MacroNameParen, &TokenTree::Delimited(_, ref del))
                if del.delim == DelimToken::Brace =>
            {
                state = NestedMacroState::Empty;
                check_occurrences(
                    sess,
                    node_id,
                    tt,
                    &nested_macros,
                    &nested_binders,
                    &Stack::Empty,
                    valid,
                );
            }
            (_, ref tt) => {
                state = NestedMacroState::Empty;
                check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
            }
        }
    }
}

/// Checks the body of nested macro, returns where the check stopped, and sets `valid` to false in
/// case of errors.
///
/// The token trees are checked as long as they look like a list of (LHS) => {RHS} token trees. This
/// check is a best-effort to detect a macro definition. It returns the position in `tts` where we
/// stopped checking because we detected we were not in a macro definition anymore.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `macro_rules` specifies whether the macro is `macro_rules`
/// - `tts` is checked as a list of (LHS) => {RHS}
/// - `macros` is the stack of outer macros
/// - `valid` is set in case of errors
fn check_nested_macro(
    sess: &ParseSess,
    node_id: NodeId,
    macro_rules: bool,
    tts: &[TokenTree],
    macros: &Stack<'_, MacroState<'_>>,
    valid: &mut bool,
) -> usize {
    let n = tts.len();
    let mut i = 0;
    let separator = if macro_rules { TokenKind::Semi } else { TokenKind::Comma };
    loop {
        // We expect 3 token trees: `(LHS) => {RHS}`. The separator is checked after.
        if i + 2 >= n
            || !tts[i].is_delimited()
            || !tts[i + 1].is_token(&TokenKind::FatArrow)
            || !tts[i + 2].is_delimited()
        {
            break;
        }
        let lhs = &tts[i];
        let rhs = &tts[i + 2];
        let mut binders = Binders::default();
        check_binders(sess, node_id, lhs, macros, &mut binders, &Stack::Empty, valid);
        check_occurrences(sess, node_id, rhs, macros, &binders, &Stack::Empty, valid);
        // Since the last semicolon is optional for `macro_rules` macros and decl_macro are not terminated,
        // we increment our checked position by how many token trees we already checked (the 3
        // above) before checking for the separator.
        i += 3;
        if i == n || !tts[i].is_token(&separator) {
            break;
        }
        // We increment our checked position for the semicolon.
        i += 1;
    }
    i
}

/// Checks that a meta-variable occurrence is valid.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the associated LHS
/// - `ops` is the stack of Kleene operators from the RHS
/// - `span` is the span of the meta-variable to check
/// - `name` is the name of the meta-variable to check
fn check_ops_is_prefix(
    sess: &ParseSess,
    node_id: NodeId,
    macros: &Stack<'_, MacroState<'_>>,
    binders: &Binders,
    ops: &Stack<'_, KleeneToken>,
    span: Span,
    name: MacroRulesNormalizedIdent,
) {
    let macros = macros.push(MacroState { binders, ops: ops.into() });
    // Accumulates the stacks the operators of each state until (and including when) the
    // meta-variable is found. The innermost stack is first.
    let mut acc: SmallVec<[&SmallVec<[KleeneToken; 1]>; 1]> = SmallVec::new();
    for state in &macros {
        acc.push(&state.ops);
        if let Some(binder) = state.binders.get(&name) {
            // This variable concatenates the stack of operators from the RHS of the LHS where the
            // meta-variable was defined to where it is used (in possibly nested macros). The
            // outermost operator is first.
            let mut occurrence_ops: SmallVec<[KleeneToken; 2]> = SmallVec::new();
            // We need to iterate from the end to start with outermost stack.
            for ops in acc.iter().rev() {
                occurrence_ops.extend_from_slice(ops);
            }
            ops_is_prefix(sess, node_id, span, name, &binder.ops, &occurrence_ops);
            return;
        }
    }
    buffer_lint(sess, span.into(), node_id, &format!("unknown macro variable `{}`", name));
}

/// Returns whether `binder_ops` is a prefix of `occurrence_ops`.
///
/// The stack of Kleene operators of a meta-variable occurrence just needs to have the stack of
/// Kleene operators of its binder as a prefix.
///
/// Consider $i in the following example:
///
///     ( $( $i:ident = $($j:ident),+ );* ) => { $($( $i += $j; )+)* }
///
/// It occurs under the Kleene stack ["*", "+"] and is bound under ["*"] only.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `span` is the span of the meta-variable being check
/// - `name` is the name of the meta-variable being check
/// - `binder_ops` is the stack of Kleene operators for the binder
/// - `occurrence_ops` is the stack of Kleene operators for the occurrence
fn ops_is_prefix(
    sess: &ParseSess,
    node_id: NodeId,
    span: Span,
    name: MacroRulesNormalizedIdent,
    binder_ops: &[KleeneToken],
    occurrence_ops: &[KleeneToken],
) {
    for (i, binder) in binder_ops.iter().enumerate() {
        if i >= occurrence_ops.len() {
            let mut span = MultiSpan::from_span(span);
            span.push_span_label(binder.span, "expected repetition".into());
            let message = &format!("variable '{}' is still repeating at this depth", name);
            buffer_lint(sess, span, node_id, message);
            return;
        }
        let occurrence = &occurrence_ops[i];
        if occurrence.op != binder.op {
            let mut span = MultiSpan::from_span(span);
            span.push_span_label(binder.span, "expected repetition".into());
            span.push_span_label(occurrence.span, "conflicting repetition".into());
            let message = "meta-variable repeats with different Kleene operator";
            buffer_lint(sess, span, node_id, message);
            return;
        }
    }
}

fn buffer_lint(sess: &ParseSess, span: MultiSpan, node_id: NodeId, message: &str) {
    // Macros loaded from other crates have dummy node ids.
    if node_id != DUMMY_NODE_ID {
        sess.buffer_lint(&META_VARIABLE_MISUSE, span, node_id, message);
    }
}