DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
use crate::abi::FnAbi;
use crate::common::*;
use crate::type_::Type;
use log::debug;
use rustc_codegen_ssa::traits::*;
use rustc_middle::bug;
use rustc_middle::ty::layout::{FnAbiExt, TyAndLayout};
use rustc_middle::ty::print::obsolete::DefPathBasedNames;
use rustc_middle::ty::{self, Ty, TypeFoldable};
use rustc_target::abi::{Abi, Align, FieldsShape};
use rustc_target::abi::{Int, Pointer, F32, F64};
use rustc_target::abi::{LayoutOf, PointeeInfo, Scalar, Size, TyAndLayoutMethods, Variants};

use std::fmt::Write;

fn uncached_llvm_type<'a, 'tcx>(
    cx: &CodegenCx<'a, 'tcx>,
    layout: TyAndLayout<'tcx>,
    defer: &mut Option<(&'a Type, TyAndLayout<'tcx>)>,
) -> &'a Type {
    match layout.abi {
        Abi::Scalar(_) => bug!("handled elsewhere"),
        Abi::Vector { ref element, count } => {
            // LLVM has a separate type for 64-bit SIMD vectors on X86 called
            // `x86_mmx` which is needed for some SIMD operations. As a bit of a
            // hack (all SIMD definitions are super unstable anyway) we
            // recognize any one-element SIMD vector as "this should be an
            // x86_mmx" type. In general there shouldn't be a need for other
            // one-element SIMD vectors, so it's assumed this won't clash with
            // much else.
            let use_x86_mmx = count == 1
                && layout.size.bits() == 64
                && (cx.sess().target.target.arch == "x86"
                    || cx.sess().target.target.arch == "x86_64");
            if use_x86_mmx {
                return cx.type_x86_mmx();
            } else {
                let element = layout.scalar_llvm_type_at(cx, element, Size::ZERO);
                return cx.type_vector(element, count);
            }
        }
        Abi::ScalarPair(..) => {
            return cx.type_struct(
                &[
                    layout.scalar_pair_element_llvm_type(cx, 0, false),
                    layout.scalar_pair_element_llvm_type(cx, 1, false),
                ],
                false,
            );
        }
        Abi::Uninhabited | Abi::Aggregate { .. } => {}
    }

    let name = match layout.ty.kind {
        ty::Closure(..) |
        ty::Generator(..) |
        ty::Adt(..) |
        // FIXME(eddyb) producing readable type names for trait objects can result
        // in problematically distinct types due to HRTB and subtyping (see #47638).
        // ty::Dynamic(..) |
        ty::Foreign(..) |
        ty::Str => {
            let mut name = String::with_capacity(32);
            let printer = DefPathBasedNames::new(cx.tcx, true, true);
            printer.push_type_name(layout.ty, &mut name, false);
            if let (&ty::Adt(def, _), &Variants::Single { index })
                 = (&layout.ty.kind, &layout.variants)
            {
                if def.is_enum() && !def.variants.is_empty() {
                    write!(&mut name, "::{}", def.variants[index].ident).unwrap();
                }
            }
            if let (&ty::Generator(_, substs, _), &Variants::Single { index })
                 = (&layout.ty.kind, &layout.variants)
            {
                write!(&mut name, "::{}", substs.as_generator().variant_name(index)).unwrap();
            }
            Some(name)
        }
        _ => None
    };

    match layout.fields {
        FieldsShape::Primitive | FieldsShape::Union(_) => {
            let fill = cx.type_padding_filler(layout.size, layout.align.abi);
            let packed = false;
            match name {
                None => cx.type_struct(&[fill], packed),
                Some(ref name) => {
                    let llty = cx.type_named_struct(name);
                    cx.set_struct_body(llty, &[fill], packed);
                    llty
                }
            }
        }
        FieldsShape::Array { count, .. } => cx.type_array(layout.field(cx, 0).llvm_type(cx), count),
        FieldsShape::Arbitrary { .. } => match name {
            None => {
                let (llfields, packed) = struct_llfields(cx, layout);
                cx.type_struct(&llfields, packed)
            }
            Some(ref name) => {
                let llty = cx.type_named_struct(name);
                *defer = Some((llty, layout));
                llty
            }
        },
    }
}

fn struct_llfields<'a, 'tcx>(
    cx: &CodegenCx<'a, 'tcx>,
    layout: TyAndLayout<'tcx>,
) -> (Vec<&'a Type>, bool) {
    debug!("struct_llfields: {:#?}", layout);
    let field_count = layout.fields.count();

    let mut packed = false;
    let mut offset = Size::ZERO;
    let mut prev_effective_align = layout.align.abi;
    let mut result: Vec<_> = Vec::with_capacity(1 + field_count * 2);
    for i in layout.fields.index_by_increasing_offset() {
        let target_offset = layout.fields.offset(i as usize);
        let field = layout.field(cx, i);
        let effective_field_align =
            layout.align.abi.min(field.align.abi).restrict_for_offset(target_offset);
        packed |= effective_field_align < field.align.abi;

        debug!(
            "struct_llfields: {}: {:?} offset: {:?} target_offset: {:?} \
                effective_field_align: {}",
            i,
            field,
            offset,
            target_offset,
            effective_field_align.bytes()
        );
        assert!(target_offset >= offset);
        let padding = target_offset - offset;
        let padding_align = prev_effective_align.min(effective_field_align);
        assert_eq!(offset.align_to(padding_align) + padding, target_offset);
        result.push(cx.type_padding_filler(padding, padding_align));
        debug!("    padding before: {:?}", padding);

        result.push(field.llvm_type(cx));
        offset = target_offset + field.size;
        prev_effective_align = effective_field_align;
    }
    if !layout.is_unsized() && field_count > 0 {
        if offset > layout.size {
            bug!("layout: {:#?} stride: {:?} offset: {:?}", layout, layout.size, offset);
        }
        let padding = layout.size - offset;
        let padding_align = prev_effective_align;
        assert_eq!(offset.align_to(padding_align) + padding, layout.size);
        debug!(
            "struct_llfields: pad_bytes: {:?} offset: {:?} stride: {:?}",
            padding, offset, layout.size
        );
        result.push(cx.type_padding_filler(padding, padding_align));
        assert_eq!(result.len(), 1 + field_count * 2);
    } else {
        debug!("struct_llfields: offset: {:?} stride: {:?}", offset, layout.size);
    }

    (result, packed)
}

impl<'a, 'tcx> CodegenCx<'a, 'tcx> {
    pub fn align_of(&self, ty: Ty<'tcx>) -> Align {
        self.layout_of(ty).align.abi
    }

    pub fn size_of(&self, ty: Ty<'tcx>) -> Size {
        self.layout_of(ty).size
    }

    pub fn size_and_align_of(&self, ty: Ty<'tcx>) -> (Size, Align) {
        let layout = self.layout_of(ty);
        (layout.size, layout.align.abi)
    }
}

pub trait LayoutLlvmExt<'tcx> {
    fn is_llvm_immediate(&self) -> bool;
    fn is_llvm_scalar_pair(&self) -> bool;
    fn llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type;
    fn immediate_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type;
    fn scalar_llvm_type_at<'a>(
        &self,
        cx: &CodegenCx<'a, 'tcx>,
        scalar: &Scalar,
        offset: Size,
    ) -> &'a Type;
    fn scalar_pair_element_llvm_type<'a>(
        &self,
        cx: &CodegenCx<'a, 'tcx>,
        index: usize,
        immediate: bool,
    ) -> &'a Type;
    fn llvm_field_index(&self, index: usize) -> u64;
    fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size) -> Option<PointeeInfo>;
}

impl<'tcx> LayoutLlvmExt<'tcx> for TyAndLayout<'tcx> {
    fn is_llvm_immediate(&self) -> bool {
        match self.abi {
            Abi::Scalar(_) | Abi::Vector { .. } => true,
            Abi::ScalarPair(..) => false,
            Abi::Uninhabited | Abi::Aggregate { .. } => self.is_zst(),
        }
    }

    fn is_llvm_scalar_pair(&self) -> bool {
        match self.abi {
            Abi::ScalarPair(..) => true,
            Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } | Abi::Aggregate { .. } => false,
        }
    }

    /// Gets the LLVM type corresponding to a Rust type, i.e., `rustc_middle::ty::Ty`.
    /// The pointee type of the pointer in `PlaceRef` is always this type.
    /// For sized types, it is also the right LLVM type for an `alloca`
    /// containing a value of that type, and most immediates (except `bool`).
    /// Unsized types, however, are represented by a "minimal unit", e.g.
    /// `[T]` becomes `T`, while `str` and `Trait` turn into `i8` - this
    /// is useful for indexing slices, as `&[T]`'s data pointer is `T*`.
    /// If the type is an unsized struct, the regular layout is generated,
    /// with the inner-most trailing unsized field using the "minimal unit"
    /// of that field's type - this is useful for taking the address of
    /// that field and ensuring the struct has the right alignment.
    fn llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type {
        if let Abi::Scalar(ref scalar) = self.abi {
            // Use a different cache for scalars because pointers to DSTs
            // can be either fat or thin (data pointers of fat pointers).
            if let Some(&llty) = cx.scalar_lltypes.borrow().get(&self.ty) {
                return llty;
            }
            let llty = match self.ty.kind {
                ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
                    cx.type_ptr_to(cx.layout_of(ty).llvm_type(cx))
                }
                ty::Adt(def, _) if def.is_box() => {
                    cx.type_ptr_to(cx.layout_of(self.ty.boxed_ty()).llvm_type(cx))
                }
                ty::FnPtr(sig) => cx.fn_ptr_backend_type(&FnAbi::of_fn_ptr(cx, sig, &[])),
                _ => self.scalar_llvm_type_at(cx, scalar, Size::ZERO),
            };
            cx.scalar_lltypes.borrow_mut().insert(self.ty, llty);
            return llty;
        }

        // Check the cache.
        let variant_index = match self.variants {
            Variants::Single { index } => Some(index),
            _ => None,
        };
        if let Some(&llty) = cx.lltypes.borrow().get(&(self.ty, variant_index)) {
            return llty;
        }

        debug!("llvm_type({:#?})", self);

        assert!(!self.ty.has_escaping_bound_vars(), "{:?} has escaping bound vars", self.ty);

        // Make sure lifetimes are erased, to avoid generating distinct LLVM
        // types for Rust types that only differ in the choice of lifetimes.
        let normal_ty = cx.tcx.erase_regions(&self.ty);

        let mut defer = None;
        let llty = if self.ty != normal_ty {
            let mut layout = cx.layout_of(normal_ty);
            if let Some(v) = variant_index {
                layout = layout.for_variant(cx, v);
            }
            layout.llvm_type(cx)
        } else {
            uncached_llvm_type(cx, *self, &mut defer)
        };
        debug!("--> mapped {:#?} to llty={:?}", self, llty);

        cx.lltypes.borrow_mut().insert((self.ty, variant_index), llty);

        if let Some((llty, layout)) = defer {
            let (llfields, packed) = struct_llfields(cx, layout);
            cx.set_struct_body(llty, &llfields, packed)
        }

        llty
    }

    fn immediate_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type {
        if let Abi::Scalar(ref scalar) = self.abi {
            if scalar.is_bool() {
                return cx.type_i1();
            }
        }
        self.llvm_type(cx)
    }

    fn scalar_llvm_type_at<'a>(
        &self,
        cx: &CodegenCx<'a, 'tcx>,
        scalar: &Scalar,
        offset: Size,
    ) -> &'a Type {
        match scalar.value {
            Int(i, _) => cx.type_from_integer(i),
            F32 => cx.type_f32(),
            F64 => cx.type_f64(),
            Pointer => {
                // If we know the alignment, pick something better than i8.
                let pointee = if let Some(pointee) = self.pointee_info_at(cx, offset) {
                    cx.type_pointee_for_align(pointee.align)
                } else {
                    cx.type_i8()
                };
                cx.type_ptr_to(pointee)
            }
        }
    }

    fn scalar_pair_element_llvm_type<'a>(
        &self,
        cx: &CodegenCx<'a, 'tcx>,
        index: usize,
        immediate: bool,
    ) -> &'a Type {
        // HACK(eddyb) special-case fat pointers until LLVM removes
        // pointee types, to avoid bitcasting every `OperandRef::deref`.
        match self.ty.kind {
            ty::Ref(..) | ty::RawPtr(_) => {
                return self.field(cx, index).llvm_type(cx);
            }
            ty::Adt(def, _) if def.is_box() => {
                let ptr_ty = cx.tcx.mk_mut_ptr(self.ty.boxed_ty());
                return cx.layout_of(ptr_ty).scalar_pair_element_llvm_type(cx, index, immediate);
            }
            _ => {}
        }

        let (a, b) = match self.abi {
            Abi::ScalarPair(ref a, ref b) => (a, b),
            _ => bug!("TyAndLayout::scalar_pair_element_llty({:?}): not applicable", self),
        };
        let scalar = [a, b][index];

        // Make sure to return the same type `immediate_llvm_type` would when
        // dealing with an immediate pair.  This means that `(bool, bool)` is
        // effectively represented as `{i8, i8}` in memory and two `i1`s as an
        // immediate, just like `bool` is typically `i8` in memory and only `i1`
        // when immediate.  We need to load/store `bool` as `i8` to avoid
        // crippling LLVM optimizations or triggering other LLVM bugs with `i1`.
        if immediate && scalar.is_bool() {
            return cx.type_i1();
        }

        let offset =
            if index == 0 { Size::ZERO } else { a.value.size(cx).align_to(b.value.align(cx).abi) };
        self.scalar_llvm_type_at(cx, scalar, offset)
    }

    fn llvm_field_index(&self, index: usize) -> u64 {
        match self.abi {
            Abi::Scalar(_) | Abi::ScalarPair(..) => {
                bug!("TyAndLayout::llvm_field_index({:?}): not applicable", self)
            }
            _ => {}
        }
        match self.fields {
            FieldsShape::Primitive | FieldsShape::Union(_) => {
                bug!("TyAndLayout::llvm_field_index({:?}): not applicable", self)
            }

            FieldsShape::Array { .. } => index as u64,

            FieldsShape::Arbitrary { .. } => 1 + (self.fields.memory_index(index) as u64) * 2,
        }
    }

    fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size) -> Option<PointeeInfo> {
        if let Some(&pointee) = cx.pointee_infos.borrow().get(&(self.ty, offset)) {
            return pointee;
        }

        let result = Ty::pointee_info_at(*self, cx, offset);

        cx.pointee_infos.borrow_mut().insert((self.ty, offset), result);
        result
    }
}