DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#![allow(non_camel_case_types, non_snake_case)]

//! Code that is useful in various codegen modules.

use crate::consts::{self, const_alloc_to_llvm};
pub use crate::context::CodegenCx;
use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, OperandBundleDef, True};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;

use rustc_ast::ast::Mutability;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{Allocation, GlobalAlloc, Scalar};
use rustc_middle::ty::layout::TyAndLayout;
use rustc_span::symbol::Symbol;
use rustc_target::abi::{self, HasDataLayout, LayoutOf, Pointer, Size};

use libc::{c_char, c_uint};
use log::debug;

/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/

/// A structure representing an active landing pad for the duration of a basic
/// block.
///
/// Each `Block` may contain an instance of this, indicating whether the block
/// is part of a landing pad or not. This is used to make decision about whether
/// to emit `invoke` instructions (e.g., in a landing pad we don't continue to
/// use `invoke`) and also about various function call metadata.
///
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
/// just a bunch of `None` instances (not too interesting), but for MSVC
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
/// When inside of a landing pad, each function call in LLVM IR needs to be
/// annotated with which landing pad it's a part of. This is accomplished via
/// the `OperandBundleDef` value created for MSVC landing pads.
pub struct Funclet<'ll> {
    cleanuppad: &'ll Value,
    operand: OperandBundleDef<'ll>,
}

impl Funclet<'ll> {
    pub fn new(cleanuppad: &'ll Value) -> Self {
        Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]) }
    }

    pub fn cleanuppad(&self) -> &'ll Value {
        self.cleanuppad
    }

    pub fn bundle(&self) -> &OperandBundleDef<'ll> {
        &self.operand
    }
}

impl BackendTypes for CodegenCx<'ll, 'tcx> {
    type Value = &'ll Value;
    type Function = &'ll Value;

    type BasicBlock = &'ll BasicBlock;
    type Type = &'ll Type;
    type Funclet = Funclet<'ll>;

    type DIScope = &'ll llvm::debuginfo::DIScope;
    type DIVariable = &'ll llvm::debuginfo::DIVariable;
}

impl CodegenCx<'ll, 'tcx> {
    pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value {
        unsafe { llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint) }
    }

    pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value {
        unsafe { llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint) }
    }

    pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value {
        bytes_in_context(self.llcx, bytes)
    }

    fn const_cstr(&self, s: Symbol, null_terminated: bool) -> &'ll Value {
        unsafe {
            if let Some(&llval) = self.const_cstr_cache.borrow().get(&s) {
                return llval;
            }

            let s_str = s.as_str();
            let sc = llvm::LLVMConstStringInContext(
                self.llcx,
                s_str.as_ptr() as *const c_char,
                s_str.len() as c_uint,
                !null_terminated as Bool,
            );
            let sym = self.generate_local_symbol_name("str");
            let g = self.define_global(&sym[..], self.val_ty(sc)).unwrap_or_else(|| {
                bug!("symbol `{}` is already defined", sym);
            });
            llvm::LLVMSetInitializer(g, sc);
            llvm::LLVMSetGlobalConstant(g, True);
            llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);

            self.const_cstr_cache.borrow_mut().insert(s, g);
            g
        }
    }

    pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value {
        unsafe {
            assert_eq!(idx as c_uint as u64, idx);
            let us = &[idx as c_uint];
            let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);

            debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r);

            r
        }
    }
}

impl ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> {
    fn const_null(&self, t: &'ll Type) -> &'ll Value {
        unsafe { llvm::LLVMConstNull(t) }
    }

    fn const_undef(&self, t: &'ll Type) -> &'ll Value {
        unsafe { llvm::LLVMGetUndef(t) }
    }

    fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value {
        unsafe { llvm::LLVMConstInt(t, i as u64, True) }
    }

    fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value {
        unsafe { llvm::LLVMConstInt(t, i, False) }
    }

    fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value {
        unsafe {
            let words = [u as u64, (u >> 64) as u64];
            llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr())
        }
    }

    fn const_bool(&self, val: bool) -> &'ll Value {
        self.const_uint(self.type_i1(), val as u64)
    }

    fn const_i32(&self, i: i32) -> &'ll Value {
        self.const_int(self.type_i32(), i as i64)
    }

    fn const_u32(&self, i: u32) -> &'ll Value {
        self.const_uint(self.type_i32(), i as u64)
    }

    fn const_u64(&self, i: u64) -> &'ll Value {
        self.const_uint(self.type_i64(), i)
    }

    fn const_usize(&self, i: u64) -> &'ll Value {
        let bit_size = self.data_layout().pointer_size.bits();
        if bit_size < 64 {
            // make sure it doesn't overflow
            assert!(i < (1 << bit_size));
        }

        self.const_uint(self.isize_ty, i)
    }

    fn const_u8(&self, i: u8) -> &'ll Value {
        self.const_uint(self.type_i8(), i as u64)
    }

    fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value {
        unsafe { llvm::LLVMConstReal(t, val) }
    }

    fn const_str(&self, s: Symbol) -> (&'ll Value, &'ll Value) {
        let len = s.as_str().len();
        let cs = consts::ptrcast(
            self.const_cstr(s, false),
            self.type_ptr_to(self.layout_of(self.tcx.mk_str()).llvm_type(self)),
        );
        (cs, self.const_usize(len as u64))
    }

    fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value {
        struct_in_context(self.llcx, elts, packed)
    }

    fn const_to_opt_uint(&self, v: &'ll Value) -> Option<u64> {
        try_as_const_integral(v).map(|v| unsafe { llvm::LLVMConstIntGetZExtValue(v) })
    }

    fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
        try_as_const_integral(v).and_then(|v| unsafe {
            let (mut lo, mut hi) = (0u64, 0u64);
            let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
            success.then_some(hi_lo_to_u128(lo, hi))
        })
    }

    fn scalar_to_backend(&self, cv: Scalar, layout: &abi::Scalar, llty: &'ll Type) -> &'ll Value {
        let bitsize = if layout.is_bool() { 1 } else { layout.value.size(self).bits() };
        match cv {
            Scalar::Raw { size: 0, .. } => {
                assert_eq!(0, layout.value.size(self).bytes());
                self.const_undef(self.type_ix(0))
            }
            Scalar::Raw { data, size } => {
                assert_eq!(size as u64, layout.value.size(self).bytes());
                let llval = self.const_uint_big(self.type_ix(bitsize), data);
                if layout.value == Pointer {
                    unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
                } else {
                    self.const_bitcast(llval, llty)
                }
            }
            Scalar::Ptr(ptr) => {
                let base_addr = match self.tcx.global_alloc(ptr.alloc_id) {
                    GlobalAlloc::Memory(alloc) => {
                        let init = const_alloc_to_llvm(self, alloc);
                        let value = match alloc.mutability {
                            Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
                            _ => self.static_addr_of(init, alloc.align, None),
                        };
                        if !self.sess().fewer_names() {
                            llvm::set_value_name(value, format!("{:?}", ptr.alloc_id).as_bytes());
                        }
                        value
                    }
                    GlobalAlloc::Function(fn_instance) => self.get_fn_addr(fn_instance),
                    GlobalAlloc::Static(def_id) => {
                        assert!(self.tcx.is_static(def_id));
                        assert!(!self.tcx.is_thread_local_static(def_id));
                        self.get_static(def_id)
                    }
                };
                let llval = unsafe {
                    llvm::LLVMConstInBoundsGEP(
                        self.const_bitcast(base_addr, self.type_i8p()),
                        &self.const_usize(ptr.offset.bytes()),
                        1,
                    )
                };
                if layout.value != Pointer {
                    unsafe { llvm::LLVMConstPtrToInt(llval, llty) }
                } else {
                    self.const_bitcast(llval, llty)
                }
            }
        }
    }

    fn from_const_alloc(
        &self,
        layout: TyAndLayout<'tcx>,
        alloc: &Allocation,
        offset: Size,
    ) -> PlaceRef<'tcx, &'ll Value> {
        assert_eq!(alloc.align, layout.align.abi);
        let llty = self.type_ptr_to(layout.llvm_type(self));
        let llval = if layout.size == Size::ZERO {
            let llval = self.const_usize(alloc.align.bytes());
            unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
        } else {
            let init = const_alloc_to_llvm(self, alloc);
            let base_addr = self.static_addr_of(init, alloc.align, None);

            let llval = unsafe {
                llvm::LLVMConstInBoundsGEP(
                    self.const_bitcast(base_addr, self.type_i8p()),
                    &self.const_usize(offset.bytes()),
                    1,
                )
            };
            self.const_bitcast(llval, llty)
        };
        PlaceRef::new_sized(llval, layout)
    }

    fn const_ptrcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value {
        consts::ptrcast(val, ty)
    }
}

pub fn val_ty(v: &Value) -> &Type {
    unsafe { llvm::LLVMTypeOf(v) }
}

pub fn bytes_in_context(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value {
    unsafe {
        let ptr = bytes.as_ptr() as *const c_char;
        llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True)
    }
}

pub fn struct_in_context(llcx: &'a llvm::Context, elts: &[&'a Value], packed: bool) -> &'a Value {
    unsafe {
        llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool)
    }
}

#[inline]
fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
    ((hi as u128) << 64) | (lo as u128)
}

fn try_as_const_integral(v: &Value) -> Option<&ConstantInt> {
    unsafe { llvm::LLVMIsAConstantInt(v) }
}