DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
//! Set and unset common attributes on LLVM values.

use std::ffi::CString;

use rustc_codegen_ssa::traits::*;
use rustc_data_structures::const_cstr;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::ty::layout::HasTyCtxt;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, TyCtxt};
use rustc_session::config::{OptLevel, Sanitizer};
use rustc_session::Session;

use crate::attributes;
use crate::llvm::AttributePlace::Function;
use crate::llvm::{self, Attribute};
use crate::llvm_util;
pub use rustc_attr::{InlineAttr, OptimizeAttr};

use crate::context::CodegenCx;
use crate::value::Value;

/// Mark LLVM function to use provided inline heuristic.
#[inline]
fn inline(cx: &CodegenCx<'ll, '_>, val: &'ll Value, inline: InlineAttr) {
    use self::InlineAttr::*;
    match inline {
        Hint => Attribute::InlineHint.apply_llfn(Function, val),
        Always => Attribute::AlwaysInline.apply_llfn(Function, val),
        Never => {
            if cx.tcx().sess.target.target.arch != "amdgpu" {
                Attribute::NoInline.apply_llfn(Function, val);
            }
        }
        None => {
            Attribute::InlineHint.unapply_llfn(Function, val);
            Attribute::AlwaysInline.unapply_llfn(Function, val);
            Attribute::NoInline.unapply_llfn(Function, val);
        }
    };
}

/// Apply LLVM sanitize attributes.
#[inline]
pub fn sanitize(cx: &CodegenCx<'ll, '_>, codegen_fn_flags: CodegenFnAttrFlags, llfn: &'ll Value) {
    if let Some(ref sanitizer) = cx.tcx.sess.opts.debugging_opts.sanitizer {
        match *sanitizer {
            Sanitizer::Address => {
                if !codegen_fn_flags.contains(CodegenFnAttrFlags::NO_SANITIZE_ADDRESS) {
                    llvm::Attribute::SanitizeAddress.apply_llfn(Function, llfn);
                }
            }
            Sanitizer::Memory => {
                if !codegen_fn_flags.contains(CodegenFnAttrFlags::NO_SANITIZE_MEMORY) {
                    llvm::Attribute::SanitizeMemory.apply_llfn(Function, llfn);
                }
            }
            Sanitizer::Thread => {
                if !codegen_fn_flags.contains(CodegenFnAttrFlags::NO_SANITIZE_THREAD) {
                    llvm::Attribute::SanitizeThread.apply_llfn(Function, llfn);
                }
            }
            Sanitizer::Leak => {}
        }
    }
}

/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
#[inline]
pub fn emit_uwtable(val: &'ll Value, emit: bool) {
    Attribute::UWTable.toggle_llfn(Function, val, emit);
}

/// Tell LLVM if this function should be 'naked', i.e., skip the epilogue and prologue.
#[inline]
fn naked(val: &'ll Value, is_naked: bool) {
    Attribute::Naked.toggle_llfn(Function, val, is_naked);
}

pub fn set_frame_pointer_elimination(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
    if cx.sess().must_not_eliminate_frame_pointers() {
        llvm::AddFunctionAttrStringValue(
            llfn,
            llvm::AttributePlace::Function,
            const_cstr!("frame-pointer"),
            const_cstr!("all"),
        );
    }
}

/// Tell LLVM what instrument function to insert.
#[inline]
fn set_instrument_function(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
    if cx.sess().instrument_mcount() {
        // Similar to `clang -pg` behavior. Handled by the
        // `post-inline-ee-instrument` LLVM pass.

        // The function name varies on platforms.
        // See test/CodeGen/mcount.c in clang.
        let mcount_name =
            CString::new(cx.sess().target.target.options.target_mcount.as_str().as_bytes())
                .unwrap();

        llvm::AddFunctionAttrStringValue(
            llfn,
            llvm::AttributePlace::Function,
            const_cstr!("instrument-function-entry-inlined"),
            &mcount_name,
        );
    }
}

fn set_probestack(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
    // Only use stack probes if the target specification indicates that we
    // should be using stack probes
    if !cx.sess().target.target.options.stack_probes {
        return;
    }

    // Currently stack probes seem somewhat incompatible with the address
    // sanitizer and thread sanitizer. With asan we're already protected from
    // stack overflow anyway so we don't really need stack probes regardless.
    match cx.sess().opts.debugging_opts.sanitizer {
        Some(Sanitizer::Address | Sanitizer::Thread) => return,
        _ => {}
    }

    // probestack doesn't play nice either with `-C profile-generate`.
    if cx.sess().opts.cg.profile_generate.enabled() {
        return;
    }

    // probestack doesn't play nice either with gcov profiling.
    if cx.sess().opts.debugging_opts.profile {
        return;
    }

    // Flag our internal `__rust_probestack` function as the stack probe symbol.
    // This is defined in the `compiler-builtins` crate for each architecture.
    llvm::AddFunctionAttrStringValue(
        llfn,
        llvm::AttributePlace::Function,
        const_cstr!("probe-stack"),
        const_cstr!("__rust_probestack"),
    );
}

fn translate_obsolete_target_features(feature: &str) -> &str {
    const LLVM9_FEATURE_CHANGES: &[(&str, &str)] =
        &[("+fp-only-sp", "-fp64"), ("-fp-only-sp", "+fp64"), ("+d16", "-d32"), ("-d16", "+d32")];
    if llvm_util::get_major_version() >= 9 {
        for &(old, new) in LLVM9_FEATURE_CHANGES {
            if feature == old {
                return new;
            }
        }
    } else {
        for &(old, new) in LLVM9_FEATURE_CHANGES {
            if feature == new {
                return old;
            }
        }
    }
    feature
}

pub fn llvm_target_features(sess: &Session) -> impl Iterator<Item = &str> {
    const RUSTC_SPECIFIC_FEATURES: &[&str] = &["crt-static"];

    let cmdline = sess
        .opts
        .cg
        .target_feature
        .split(',')
        .filter(|f| !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s)));
    sess.target
        .target
        .options
        .features
        .split(',')
        .chain(cmdline)
        .filter(|l| !l.is_empty())
        .map(translate_obsolete_target_features)
}

pub fn apply_target_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
    let target_cpu = SmallCStr::new(llvm_util::target_cpu(cx.tcx.sess));
    llvm::AddFunctionAttrStringValue(
        llfn,
        llvm::AttributePlace::Function,
        const_cstr!("target-cpu"),
        target_cpu.as_c_str(),
    );
}

/// Sets the `NonLazyBind` LLVM attribute on a given function,
/// assuming the codegen options allow skipping the PLT.
pub fn non_lazy_bind(sess: &Session, llfn: &'ll Value) {
    // Don't generate calls through PLT if it's not necessary
    if !sess.needs_plt() {
        Attribute::NonLazyBind.apply_llfn(Function, llfn);
    }
}

pub(crate) fn default_optimisation_attrs(sess: &Session, llfn: &'ll Value) {
    match sess.opts.optimize {
        OptLevel::Size => {
            llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
            llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
            llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
        }
        OptLevel::SizeMin => {
            llvm::Attribute::MinSize.apply_llfn(Function, llfn);
            llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
            llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
        }
        OptLevel::No => {
            llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
            llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn);
            llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
        }
        _ => {}
    }
}

/// Composite function which sets LLVM attributes for function depending on its AST (`#[attribute]`)
/// attributes.
pub fn from_fn_attrs(cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value, instance: ty::Instance<'tcx>) {
    let codegen_fn_attrs = cx.tcx.codegen_fn_attrs(instance.def_id());

    match codegen_fn_attrs.optimize {
        OptimizeAttr::None => {
            default_optimisation_attrs(cx.tcx.sess, llfn);
        }
        OptimizeAttr::Speed => {
            llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
            llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn);
            llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
        }
        OptimizeAttr::Size => {
            llvm::Attribute::MinSize.apply_llfn(Function, llfn);
            llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
            llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
        }
    }

    // FIXME(eddyb) consolidate these two `inline` calls (and avoid overwrites).
    if instance.def.requires_inline(cx.tcx) {
        inline(cx, llfn, attributes::InlineAttr::Hint);
    }

    inline(cx, llfn, codegen_fn_attrs.inline.clone());

    // The `uwtable` attribute according to LLVM is:
    //
    //     This attribute indicates that the ABI being targeted requires that an
    //     unwind table entry be produced for this function even if we can show
    //     that no exceptions passes by it. This is normally the case for the
    //     ELF x86-64 abi, but it can be disabled for some compilation units.
    //
    // Typically when we're compiling with `-C panic=abort` (which implies this
    // `no_landing_pads` check) we don't need `uwtable` because we can't
    // generate any exceptions! On Windows, however, exceptions include other
    // events such as illegal instructions, segfaults, etc. This means that on
    // Windows we end up still needing the `uwtable` attribute even if the `-C
    // panic=abort` flag is passed.
    //
    // You can also find more info on why Windows is whitelisted here in:
    //      https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
    if cx.sess().must_emit_unwind_tables() {
        attributes::emit_uwtable(llfn, true);
    }

    set_frame_pointer_elimination(cx, llfn);
    set_instrument_function(cx, llfn);
    set_probestack(cx, llfn);

    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::COLD) {
        Attribute::Cold.apply_llfn(Function, llfn);
    }
    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_RETURNS_TWICE) {
        Attribute::ReturnsTwice.apply_llfn(Function, llfn);
    }
    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_PURE) {
        Attribute::ReadOnly.apply_llfn(Function, llfn);
    }
    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_CONST) {
        Attribute::ReadNone.apply_llfn(Function, llfn);
    }
    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
        naked(llfn, true);
    }
    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::ALLOCATOR) {
        Attribute::NoAlias.apply_llfn(llvm::AttributePlace::ReturnValue, llfn);
    }
    sanitize(cx, codegen_fn_attrs.flags, llfn);

    // Always annotate functions with the target-cpu they are compiled for.
    // Without this, ThinLTO won't inline Rust functions into Clang generated
    // functions (because Clang annotates functions this way too).
    apply_target_cpu_attr(cx, llfn);

    let features = llvm_target_features(cx.tcx.sess)
        .map(|s| s.to_string())
        .chain(codegen_fn_attrs.target_features.iter().map(|f| {
            let feature = &f.as_str();
            format!("+{}", llvm_util::to_llvm_feature(cx.tcx.sess, feature))
        }))
        .collect::<Vec<String>>()
        .join(",");

    if !features.is_empty() {
        let val = CString::new(features).unwrap();
        llvm::AddFunctionAttrStringValue(
            llfn,
            llvm::AttributePlace::Function,
            const_cstr!("target-features"),
            &val,
        );
    }

    // Note that currently the `wasm-import-module` doesn't do anything, but
    // eventually LLVM 7 should read this and ferry the appropriate import
    // module to the output file.
    if cx.tcx.sess.target.target.arch == "wasm32" {
        if let Some(module) = wasm_import_module(cx.tcx, instance.def_id()) {
            llvm::AddFunctionAttrStringValue(
                llfn,
                llvm::AttributePlace::Function,
                const_cstr!("wasm-import-module"),
                &module,
            );

            let name =
                codegen_fn_attrs.link_name.unwrap_or_else(|| cx.tcx.item_name(instance.def_id()));
            let name = CString::new(&name.as_str()[..]).unwrap();
            llvm::AddFunctionAttrStringValue(
                llfn,
                llvm::AttributePlace::Function,
                const_cstr!("wasm-import-name"),
                &name,
            );
        }
    }
}

pub fn provide(providers: &mut Providers<'_>) {
    providers.target_features_whitelist = |tcx, cnum| {
        assert_eq!(cnum, LOCAL_CRATE);
        if tcx.sess.opts.actually_rustdoc {
            // rustdoc needs to be able to document functions that use all the features, so
            // whitelist them all
            llvm_util::all_known_features().map(|(a, b)| (a.to_string(), b)).collect()
        } else {
            llvm_util::target_feature_whitelist(tcx.sess)
                .iter()
                .map(|&(a, b)| (a.to_string(), b))
                .collect()
        }
    };

    provide_extern(providers);
}

pub fn provide_extern(providers: &mut Providers<'_>) {
    providers.wasm_import_module_map = |tcx, cnum| {
        // Build up a map from DefId to a `NativeLib` structure, where
        // `NativeLib` internally contains information about
        // `#[link(wasm_import_module = "...")]` for example.
        let native_libs = tcx.native_libraries(cnum);

        let def_id_to_native_lib = native_libs
            .iter()
            .filter_map(|lib| lib.foreign_module.map(|id| (id, lib)))
            .collect::<FxHashMap<_, _>>();

        let mut ret = FxHashMap::default();
        for lib in tcx.foreign_modules(cnum).iter() {
            let module = def_id_to_native_lib.get(&lib.def_id).and_then(|s| s.wasm_import_module);
            let module = match module {
                Some(s) => s,
                None => continue,
            };
            ret.extend(lib.foreign_items.iter().map(|id| {
                assert_eq!(id.krate, cnum);
                (*id, module.to_string())
            }));
        }

        ret
    };
}

fn wasm_import_module(tcx: TyCtxt<'_>, id: DefId) -> Option<CString> {
    tcx.wasm_import_module_map(id.krate).get(&id).map(|s| CString::new(&s[..]).unwrap())
}