DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Git (4fb54ed484)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::llvm::{self, AttributePlace};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;

use rustc_codegen_ssa::mir::operand::OperandValue;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::MemFlags;
use rustc_middle::bug;
pub use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
use rustc_middle::ty::Ty;
use rustc_target::abi::call::ArgAbi;
pub use rustc_target::abi::call::*;
use rustc_target::abi::{self, HasDataLayout, Int, LayoutOf};
pub use rustc_target::spec::abi::Abi;

use libc::c_uint;

macro_rules! for_each_kind {
    ($flags: ident, $f: ident, $($kind: ident),+) => ({
        $(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+
    })
}

trait ArgAttributeExt {
    fn for_each_kind<F>(&self, f: F)
    where
        F: FnMut(llvm::Attribute);
}

impl ArgAttributeExt for ArgAttribute {
    fn for_each_kind<F>(&self, mut f: F)
    where
        F: FnMut(llvm::Attribute),
    {
        for_each_kind!(self, f, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg)
    }
}

pub trait ArgAttributesExt {
    fn apply_llfn(&self, idx: AttributePlace, llfn: &Value, ty: Option<&Type>);
    fn apply_callsite(&self, idx: AttributePlace, callsite: &Value, ty: Option<&Type>);
}

impl ArgAttributesExt for ArgAttributes {
    fn apply_llfn(&self, idx: AttributePlace, llfn: &Value, ty: Option<&Type>) {
        let mut regular = self.regular;
        unsafe {
            let deref = self.pointee_size.bytes();
            if deref != 0 {
                if regular.contains(ArgAttribute::NonNull) {
                    llvm::LLVMRustAddDereferenceableAttr(llfn, idx.as_uint(), deref);
                } else {
                    llvm::LLVMRustAddDereferenceableOrNullAttr(llfn, idx.as_uint(), deref);
                }
                regular -= ArgAttribute::NonNull;
            }
            if let Some(align) = self.pointee_align {
                llvm::LLVMRustAddAlignmentAttr(llfn, idx.as_uint(), align.bytes() as u32);
            }
            if regular.contains(ArgAttribute::ByVal) {
                llvm::LLVMRustAddByValAttr(llfn, idx.as_uint(), ty.unwrap());
            }
            regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn));
        }
    }

    fn apply_callsite(&self, idx: AttributePlace, callsite: &Value, ty: Option<&Type>) {
        let mut regular = self.regular;
        unsafe {
            let deref = self.pointee_size.bytes();
            if deref != 0 {
                if regular.contains(ArgAttribute::NonNull) {
                    llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite, idx.as_uint(), deref);
                } else {
                    llvm::LLVMRustAddDereferenceableOrNullCallSiteAttr(
                        callsite,
                        idx.as_uint(),
                        deref,
                    );
                }
                regular -= ArgAttribute::NonNull;
            }
            if let Some(align) = self.pointee_align {
                llvm::LLVMRustAddAlignmentCallSiteAttr(
                    callsite,
                    idx.as_uint(),
                    align.bytes() as u32,
                );
            }
            if regular.contains(ArgAttribute::ByVal) {
                llvm::LLVMRustAddByValCallSiteAttr(callsite, idx.as_uint(), ty.unwrap());
            }
            regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite));
        }
    }
}

pub trait LlvmType {
    fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type;
}

impl LlvmType for Reg {
    fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
        match self.kind {
            RegKind::Integer => cx.type_ix(self.size.bits()),
            RegKind::Float => match self.size.bits() {
                32 => cx.type_f32(),
                64 => cx.type_f64(),
                _ => bug!("unsupported float: {:?}", self),
            },
            RegKind::Vector => cx.type_vector(cx.type_i8(), self.size.bytes()),
        }
    }
}

impl LlvmType for CastTarget {
    fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
        let rest_ll_unit = self.rest.unit.llvm_type(cx);
        let (rest_count, rem_bytes) = if self.rest.unit.size.bytes() == 0 {
            (0, 0)
        } else {
            (
                self.rest.total.bytes() / self.rest.unit.size.bytes(),
                self.rest.total.bytes() % self.rest.unit.size.bytes(),
            )
        };

        if self.prefix.iter().all(|x| x.is_none()) {
            // Simplify to a single unit when there is no prefix and size <= unit size
            if self.rest.total <= self.rest.unit.size {
                return rest_ll_unit;
            }

            // Simplify to array when all chunks are the same size and type
            if rem_bytes == 0 {
                return cx.type_array(rest_ll_unit, rest_count);
            }
        }

        // Create list of fields in the main structure
        let mut args: Vec<_> = self
            .prefix
            .iter()
            .flat_map(|option_kind| {
                option_kind.map(|kind| Reg { kind, size: self.prefix_chunk }.llvm_type(cx))
            })
            .chain((0..rest_count).map(|_| rest_ll_unit))
            .collect();

        // Append final integer
        if rem_bytes != 0 {
            // Only integers can be really split further.
            assert_eq!(self.rest.unit.kind, RegKind::Integer);
            args.push(cx.type_ix(rem_bytes * 8));
        }

        cx.type_struct(&args, false)
    }
}

pub trait ArgAbiExt<'ll, 'tcx> {
    fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
    fn store(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        val: &'ll Value,
        dst: PlaceRef<'tcx, &'ll Value>,
    );
    fn store_fn_arg(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        idx: &mut usize,
        dst: PlaceRef<'tcx, &'ll Value>,
    );
}

impl ArgAbiExt<'ll, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> {
    /// Gets the LLVM type for a place of the original Rust type of
    /// this argument/return, i.e., the result of `type_of::type_of`.
    fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
        self.layout.llvm_type(cx)
    }

    /// Stores a direct/indirect value described by this ArgAbi into a
    /// place for the original Rust type of this argument/return.
    /// Can be used for both storing formal arguments into Rust variables
    /// or results of call/invoke instructions into their destinations.
    fn store(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        val: &'ll Value,
        dst: PlaceRef<'tcx, &'ll Value>,
    ) {
        if self.is_ignore() {
            return;
        }
        if self.is_sized_indirect() {
            OperandValue::Ref(val, None, self.layout.align.abi).store(bx, dst)
        } else if self.is_unsized_indirect() {
            bug!("unsized `ArgAbi` must be handled through `store_fn_arg`");
        } else if let PassMode::Cast(cast) = self.mode {
            // FIXME(eddyb): Figure out when the simpler Store is safe, clang
            // uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
            let can_store_through_cast_ptr = false;
            if can_store_through_cast_ptr {
                let cast_ptr_llty = bx.type_ptr_to(cast.llvm_type(bx));
                let cast_dst = bx.pointercast(dst.llval, cast_ptr_llty);
                bx.store(val, cast_dst, self.layout.align.abi);
            } else {
                // The actual return type is a struct, but the ABI
                // adaptation code has cast it into some scalar type.  The
                // code that follows is the only reliable way I have
                // found to do a transform like i64 -> {i32,i32}.
                // Basically we dump the data onto the stack then memcpy it.
                //
                // Other approaches I tried:
                // - Casting rust ret pointer to the foreign type and using Store
                //   is (a) unsafe if size of foreign type > size of rust type and
                //   (b) runs afoul of strict aliasing rules, yielding invalid
                //   assembly under -O (specifically, the store gets removed).
                // - Truncating foreign type to correct integral type and then
                //   bitcasting to the struct type yields invalid cast errors.

                // We instead thus allocate some scratch space...
                let scratch_size = cast.size(bx);
                let scratch_align = cast.align(bx);
                let llscratch = bx.alloca(cast.llvm_type(bx), scratch_align);
                bx.lifetime_start(llscratch, scratch_size);

                // ... where we first store the value...
                bx.store(val, llscratch, scratch_align);

                // ... and then memcpy it to the intended destination.
                bx.memcpy(
                    dst.llval,
                    self.layout.align.abi,
                    llscratch,
                    scratch_align,
                    bx.const_usize(self.layout.size.bytes()),
                    MemFlags::empty(),
                );

                bx.lifetime_end(llscratch, scratch_size);
            }
        } else {
            OperandValue::Immediate(val).store(bx, dst);
        }
    }

    fn store_fn_arg(
        &self,
        bx: &mut Builder<'a, 'll, 'tcx>,
        idx: &mut usize,
        dst: PlaceRef<'tcx, &'ll Value>,
    ) {
        let mut next = || {
            let val = llvm::get_param(bx.llfn(), *idx as c_uint);
            *idx += 1;
            val
        };
        match self.mode {
            PassMode::Ignore => {}
            PassMode::Pair(..) => {
                OperandValue::Pair(next(), next()).store(bx, dst);
            }
            PassMode::Indirect(_, Some(_)) => {
                OperandValue::Ref(next(), Some(next()), self.layout.align.abi).store(bx, dst);
            }
            PassMode::Direct(_) | PassMode::Indirect(_, None) | PassMode::Cast(_) => {
                let next_arg = next();
                self.store(bx, next_arg, dst);
            }
        }
    }
}

impl ArgAbiMethods<'tcx> for Builder<'a, 'll, 'tcx> {
    fn store_fn_arg(
        &mut self,
        arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        idx: &mut usize,
        dst: PlaceRef<'tcx, Self::Value>,
    ) {
        arg_abi.store_fn_arg(self, idx, dst)
    }
    fn store_arg(
        &mut self,
        arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        val: &'ll Value,
        dst: PlaceRef<'tcx, &'ll Value>,
    ) {
        arg_abi.store(self, val, dst)
    }
    fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> &'ll Type {
        arg_abi.memory_ty(self)
    }
}

pub trait FnAbiLlvmExt<'tcx> {
    fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
    fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
    fn llvm_cconv(&self) -> llvm::CallConv;
    fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value);
    fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value);
}

impl<'tcx> FnAbiLlvmExt<'tcx> for FnAbi<'tcx, Ty<'tcx>> {
    fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
        let args_capacity: usize = self.args.iter().map(|arg|
            if arg.pad.is_some() { 1 } else { 0 } +
            if let PassMode::Pair(_, _) = arg.mode { 2 } else { 1 }
        ).sum();
        let mut llargument_tys = Vec::with_capacity(
            if let PassMode::Indirect(..) = self.ret.mode { 1 } else { 0 } + args_capacity,
        );

        let llreturn_ty = match self.ret.mode {
            PassMode::Ignore => cx.type_void(),
            PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_llvm_type(cx),
            PassMode::Cast(cast) => cast.llvm_type(cx),
            PassMode::Indirect(..) => {
                llargument_tys.push(cx.type_ptr_to(self.ret.memory_ty(cx)));
                cx.type_void()
            }
        };

        for arg in &self.args {
            // add padding
            if let Some(ty) = arg.pad {
                llargument_tys.push(ty.llvm_type(cx));
            }

            let llarg_ty = match arg.mode {
                PassMode::Ignore => continue,
                PassMode::Direct(_) => arg.layout.immediate_llvm_type(cx),
                PassMode::Pair(..) => {
                    llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true));
                    llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true));
                    continue;
                }
                PassMode::Indirect(_, Some(_)) => {
                    let ptr_ty = cx.tcx.mk_mut_ptr(arg.layout.ty);
                    let ptr_layout = cx.layout_of(ptr_ty);
                    llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 0, true));
                    llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 1, true));
                    continue;
                }
                PassMode::Cast(cast) => cast.llvm_type(cx),
                PassMode::Indirect(_, None) => cx.type_ptr_to(arg.memory_ty(cx)),
            };
            llargument_tys.push(llarg_ty);
        }

        if self.c_variadic {
            cx.type_variadic_func(&llargument_tys, llreturn_ty)
        } else {
            cx.type_func(&llargument_tys, llreturn_ty)
        }
    }

    fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
        unsafe {
            llvm::LLVMPointerType(
                self.llvm_type(cx),
                cx.data_layout().instruction_address_space as c_uint,
            )
        }
    }

    fn llvm_cconv(&self) -> llvm::CallConv {
        match self.conv {
            Conv::C | Conv::Rust => llvm::CCallConv,
            Conv::AmdGpuKernel => llvm::AmdGpuKernel,
            Conv::AvrInterrupt => llvm::AvrInterrupt,
            Conv::AvrNonBlockingInterrupt => llvm::AvrNonBlockingInterrupt,
            Conv::ArmAapcs => llvm::ArmAapcsCallConv,
            Conv::Msp430Intr => llvm::Msp430Intr,
            Conv::PtxKernel => llvm::PtxKernel,
            Conv::X86Fastcall => llvm::X86FastcallCallConv,
            Conv::X86Intr => llvm::X86_Intr,
            Conv::X86Stdcall => llvm::X86StdcallCallConv,
            Conv::X86ThisCall => llvm::X86_ThisCall,
            Conv::X86VectorCall => llvm::X86_VectorCall,
            Conv::X86_64SysV => llvm::X86_64_SysV,
            Conv::X86_64Win64 => llvm::X86_64_Win64,
        }
    }

    fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value) {
        // FIXME(eddyb) can this also be applied to callsites?
        if self.ret.layout.abi.is_uninhabited() {
            llvm::Attribute::NoReturn.apply_llfn(llvm::AttributePlace::Function, llfn);
        }

        // FIXME(eddyb, wesleywiser): apply this to callsites as well?
        if !self.can_unwind {
            llvm::Attribute::NoUnwind.apply_llfn(llvm::AttributePlace::Function, llfn);
        }

        let mut i = 0;
        let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| {
            attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn, ty);
            i += 1;
        };
        match self.ret.mode {
            PassMode::Direct(ref attrs) => {
                attrs.apply_llfn(llvm::AttributePlace::ReturnValue, llfn, None);
            }
            PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.llvm_type(cx))),
            _ => {}
        }
        for arg in &self.args {
            if arg.pad.is_some() {
                apply(&ArgAttributes::new(), None);
            }
            match arg.mode {
                PassMode::Ignore => {}
                PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => {
                    apply(attrs, Some(arg.layout.llvm_type(cx)))
                }
                PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => {
                    apply(attrs, None);
                    apply(extra_attrs, None);
                }
                PassMode::Pair(ref a, ref b) => {
                    apply(a, None);
                    apply(b, None);
                }
                PassMode::Cast(_) => apply(&ArgAttributes::new(), None),
            }
        }
    }

    fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value) {
        // FIXME(wesleywiser, eddyb): We should apply `nounwind` and `noreturn` as appropriate to this callsite.

        let mut i = 0;
        let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| {
            attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite, ty);
            i += 1;
        };
        match self.ret.mode {
            PassMode::Direct(ref attrs) => {
                attrs.apply_callsite(llvm::AttributePlace::ReturnValue, callsite, None);
            }
            PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.llvm_type(bx))),
            _ => {}
        }
        if let abi::Abi::Scalar(ref scalar) = self.ret.layout.abi {
            // If the value is a boolean, the range is 0..2 and that ultimately
            // become 0..0 when the type becomes i1, which would be rejected
            // by the LLVM verifier.
            if let Int(..) = scalar.value {
                if !scalar.is_bool() {
                    let range = scalar.valid_range_exclusive(bx);
                    if range.start != range.end {
                        bx.range_metadata(callsite, range);
                    }
                }
            }
        }
        for arg in &self.args {
            if arg.pad.is_some() {
                apply(&ArgAttributes::new(), None);
            }
            match arg.mode {
                PassMode::Ignore => {}
                PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => {
                    apply(attrs, Some(arg.layout.llvm_type(bx)))
                }
                PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => {
                    apply(attrs, None);
                    apply(extra_attrs, None);
                }
                PassMode::Pair(ref a, ref b) => {
                    apply(a, None);
                    apply(b, None);
                }
                PassMode::Cast(_) => apply(&ArgAttributes::new(), None),
            }
        }

        let cconv = self.llvm_cconv();
        if cconv != llvm::CCallConv {
            llvm::SetInstructionCallConv(callsite, cconv);
        }
    }
}

impl AbiBuilderMethods<'tcx> for Builder<'a, 'll, 'tcx> {
    fn apply_attrs_callsite(&mut self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, callsite: Self::Value) {
        fn_abi.apply_attrs_callsite(self, callsite)
    }

    fn get_param(&self, index: usize) -> Self::Value {
        llvm::get_param(self.llfn(), index as c_uint)
    }
}