DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5216dd412535)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is mozilla.org code.
 *
 * The Initial Developer of the Original Code is
 * Netscape Communications Corporation.
 * Portions created by the Initial Developer are Copyright (C) 1998
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either of the GNU General Public License Version 2 or later (the "GPL"),
 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#include "nsIAsyncInputStream.idl"
#include "nsIAsyncOutputStream.idl"

interface nsIMemory;

/**
 * nsIPipe represents an in-process buffer that can be read using nsIInputStream
 * and written using nsIOutputStream.  The reader and writer of a pipe do not
 * have to be on the same thread.  As a result, the pipe is an ideal mechanism
 * to bridge data exchange between two threads.  For example, a worker thread
 * might write data to a pipe from which the main thread will read.
 *
 * Each end of the pipe can be either blocking or non-blocking.  Recall that a
 * non-blocking stream will return NS_BASE_STREAM_WOULD_BLOCK if it cannot be
 * read or written to without blocking the calling thread.  For example, if you
 * try to read from an empty pipe that has not yet been closed, then if that
 * pipe's input end is non-blocking, then the read call will fail immediately
 * with NS_BASE_STREAM_WOULD_BLOCK as the error condition.  However, if that
 * pipe's input end is blocking, then the read call will not return until the
 * pipe has data or until the pipe is closed.  This example presumes that the
 * pipe is being filled asynchronously on some background thread.
 *
 * The pipe supports nsIAsyncInputStream and nsIAsyncOutputStream, which give
 * the user of a non-blocking pipe the ability to wait for the pipe to become
 * ready again.  For example, in the case of an empty non-blocking pipe, the
 * user can call AsyncWait on the input end of the pipe to be notified when 
 * the pipe has data to read (or when the pipe becomes closed).
 *
 * NS_NewPipe2 and NS_NewPipe provide convenient pipe constructors.  In most
 * cases nsIPipe is not actually used.  It is usually enough to just get
 * references to the pipe's input and output end.  In which case, the pipe is
 * automatically closed when the respective pipe ends are released.
 */
[scriptable, uuid(f4211abc-61b3-11d4-9877-00c04fa0cf4a)]
interface nsIPipe : nsISupports
{
    /**
     * initialize this pipe
     *
     * @param nonBlockingInput
     *        true specifies non-blocking input stream behavior
     * @param nonBlockingOutput
     *        true specifies non-blocking output stream behavior
     * @param segmentSize
     *        specifies the segment size in bytes (pass 0 to use default value)
     * @param segmentCount
     *        specifies the max number of segments (pass 0 to use default
     *        value).   Passing PR_UINT32_MAX here causes the pipe to have
     *        "infinite" space.  This mode can be useful in some cases, but
     *        should always be used with caution.  The default value for this
     *        parameter is a finite value.
     * @param segmentAllocator
     *        pass reference to nsIMemory to have all pipe allocations use this
     *        allocator (pass null to use the default allocator)
     */
    void init(in boolean nonBlockingInput,
              in boolean nonBlockingOutput,
              in unsigned long segmentSize,
              in unsigned long segmentCount,
              in nsIMemory segmentAllocator);

    /**
     * The pipe's input end, which also implements nsISearchableInputStream.
     */
    readonly attribute nsIAsyncInputStream inputStream;

    /**
     * The pipe's output end.
     */
    readonly attribute nsIAsyncOutputStream outputStream;
};

/**
 * XXX this interface doesn't really belong in here.  It is here because
 * currently nsPipeInputStream is the only implementation of this interface.
 */
[scriptable, uuid(8C39EF62-F7C9-11d4-98F5-001083010E9B)] 
interface nsISearchableInputStream : nsISupports
{
    /**
     * Searches for a string in the input stream. Since the stream has a notion
     * of EOF, it is possible that the string may at some time be in the 
     * buffer, but is is not currently found up to some offset. Consequently,
     * both the found and not found cases return an offset:
     *    if found, return offset where it was found
     *    if not found, return offset of the first byte not searched
     * In the case the stream is at EOF and the string is not found, the first
     * byte not searched will correspond to the length of the buffer.
     */
    void search(in string forString, 
                in boolean ignoreCase, 
                out boolean found,
                out unsigned long offsetSearchedTo);
};

%{C++

/**
 * NS_NewPipe2
 *
 * This function supersedes NS_NewPipe.  It differs from NS_NewPipe in two
 * major ways:
 *  (1) returns nsIAsyncInputStream and nsIAsyncOutputStream, so it is
 *      not necessary to QI in order to access these interfaces.
 *  (2) the size of the pipe is determined by the number of segments
 *      times the size of each segment.
 *
 * @param pipeIn
 *        resulting input end of the pipe
 * @param pipeOut
 *        resulting output end of the pipe
 * @param nonBlockingInput
 *        true specifies non-blocking input stream behavior
 * @param nonBlockingOutput
 *        true specifies non-blocking output stream behavior
 * @param segmentSize
 *        specifies the segment size in bytes (pass 0 to use default value)
 * @param segmentCount
 *        specifies the max number of segments (pass 0 to use default value)
 *        passing PR_UINT32_MAX here causes the pipe to have "infinite" space.
 *        this mode can be useful in some cases, but should always be used with
 *        caution.  the default value for this parameter is a finite value.
 * @param segmentAlloc
 *        pass reference to nsIMemory to have all pipe allocations use this
 *        allocator (pass null to use the default allocator)
 */
extern NS_COM nsresult
NS_NewPipe2(nsIAsyncInputStream **pipeIn,
            nsIAsyncOutputStream **pipeOut,
            PRBool nonBlockingInput = PR_FALSE,
            PRBool nonBlockingOutput = PR_FALSE,
            PRUint32 segmentSize = 0,
            PRUint32 segmentCount = 0,
            nsIMemory *segmentAlloc = nsnull);

/**
 * NS_NewPipe
 *
 * Preserved for backwards compatibility.  Plus, this interface is more
 * amiable in certain contexts (e.g., when you don't need the pipe's async
 * capabilities).
 *
 * @param pipeIn
 *        resulting input end of the pipe
 * @param pipeOut
 *        resulting output end of the pipe
 * @param segmentSize
 *        specifies the segment size in bytes (pass 0 to use default value)
 * @param maxSize
 *        specifies the max size of the pipe (pass 0 to use default value)
 *        number of segments is maxSize / segmentSize, and maxSize must be a
 *        multiple of segmentSize.  passing PR_UINT32_MAX here causes the
 *        pipe to have "infinite" space.  this mode can be useful in some
 *        cases, but should always be used with caution.  the default value
 *        for this parameter is a finite value.
 * @param nonBlockingInput
 *        true specifies non-blocking input stream behavior
 * @param nonBlockingOutput
 *        true specifies non-blocking output stream behavior
 * @param segmentAlloc
 *        pass reference to nsIMemory to have all pipe allocations use this
 *        allocator (pass null to use the default allocator)
 */
extern NS_COM nsresult
NS_NewPipe(nsIInputStream **pipeIn,
           nsIOutputStream **pipeOut,
           PRUint32 segmentSize = 0,
           PRUint32 maxSize = 0,
           PRBool nonBlockingInput = PR_FALSE,
           PRBool nonBlockingOutput = PR_FALSE,
           nsIMemory *segmentAlloc = nsnull);

%}