DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b66b287a2650)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This file/namespace contains utility functions for enumerating, ending and
// computing statistics of processes.

#ifndef BASE_PROCESS_UTIL_H_
#define BASE_PROCESS_UTIL_H_

#include "base/basictypes.h"

#if defined(OS_WIN)
#include <windows.h>
#include <tlhelp32.h>
#elif defined(OS_LINUX)
#include <dirent.h>
#include <limits.h>
#include <sys/types.h>
#endif

#include <map>
#include <string>
#include <vector>

#include "base/command_line.h"
#include "base/process.h"

#if defined(OS_WIN)
typedef PROCESSENTRY32 ProcessEntry;
typedef IO_COUNTERS IoCounters;
#elif defined(OS_POSIX)
// TODO(port): we should not rely on a Win32 structure.
struct ProcessEntry {
  int pid;
  int ppid;
  char szExeFile[NAME_MAX + 1];
};

struct IoCounters {
  unsigned long long ReadOperationCount;
  unsigned long long WriteOperationCount;
  unsigned long long OtherOperationCount;
  unsigned long long ReadTransferCount;
  unsigned long long WriteTransferCount;
  unsigned long long OtherTransferCount;
};

#include "base/file_descriptor_shuffle.h"
#endif

#if defined(OS_MACOSX)
struct kinfo_proc;
#endif

namespace base {

// A minimalistic but hopefully cross-platform set of exit codes.
// Do not change the enumeration values or you will break third-party
// installers.
enum {
  PROCESS_END_NORMAL_TERMINATON = 0,
  PROCESS_END_KILLED_BY_USER    = 1,
  PROCESS_END_PROCESS_WAS_HUNG  = 2
};

// Returns the id of the current process.
ProcessId GetCurrentProcId();

// Returns the ProcessHandle of the current process.
ProcessHandle GetCurrentProcessHandle();

// Converts a PID to a process handle. This handle must be closed by
// CloseProcessHandle when you are done with it. Returns true on success.
bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle);

// Converts a PID to a process handle. On Windows the handle is opened
// with more access rights and must only be used by trusted code.
// You have to close returned handle using CloseProcessHandle. Returns true
// on success.
bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle);

// Closes the process handle opened by OpenProcessHandle.
void CloseProcessHandle(ProcessHandle process);

// Returns the unique ID for the specified process. This is functionally the
// same as Windows' GetProcessId(), but works on versions of Windows before
// Win XP SP1 as well.
ProcessId GetProcId(ProcessHandle process);

#if defined(OS_POSIX)
// Sets all file descriptors to close on exec except for stdin, stdout
// and stderr.
// TODO(agl): remove this function
// WARNING: do not use. It's inherently race-prone in the face of
// multi-threading.
void SetAllFDsToCloseOnExec();
// Close all file descriptors, expect those which are a destination in the
// given multimap. Only call this function in a child process where you know
// that there aren't any other threads.
void CloseSuperfluousFds(const base::InjectiveMultimap& saved_map);
#endif

#if defined(OS_WIN)
// Runs the given application name with the given command line. Normally, the
// first command line argument should be the path to the process, and don't
// forget to quote it.
//
// If wait is true, it will block and wait for the other process to finish,
// otherwise, it will just continue asynchronously.
//
// Example (including literal quotes)
//  cmdline = "c:\windows\explorer.exe" -foo "c:\bar\"
//
// If process_handle is non-NULL, the process handle of the launched app will be
// stored there on a successful launch.
// NOTE: In this case, the caller is responsible for closing the handle so
//       that it doesn't leak!
bool LaunchApp(const std::wstring& cmdline,
               bool wait, bool start_hidden, ProcessHandle* process_handle);
#elif defined(OS_POSIX)
// Runs the application specified in argv[0] with the command line argv.
// Before launching all FDs open in the parent process will be marked as
// close-on-exec.  |fds_to_remap| defines a mapping of src fd->dest fd to
// propagate FDs into the child process.
//
// As above, if wait is true, execute synchronously. The pid will be stored
// in process_handle if that pointer is non-null.
//
// Note that the first argument in argv must point to the filename,
// and must be fully specified.
typedef std::vector<std::pair<int, int> > file_handle_mapping_vector;
bool LaunchApp(const std::vector<std::string>& argv,
               const file_handle_mapping_vector& fds_to_remap,
               bool wait, ProcessHandle* process_handle);

#if defined(CHROMIUM_MOZILLA_BUILD) && defined(OS_LINUX)
typedef std::map<std::string, std::string> environment_map;
bool LaunchApp(const std::vector<std::string>& argv,
               const file_handle_mapping_vector& fds_to_remap,
               const environment_map& env_vars_to_set,
               bool wait, ProcessHandle* process_handle);
#endif
#endif

// Executes the application specified by cl. This function delegates to one
// of the above two platform-specific functions.
bool LaunchApp(const CommandLine& cl,
               bool wait, bool start_hidden, ProcessHandle* process_handle);

#if defined(OS_WIN)
// Executes the application specified by |cmd_line| and copies the contents
// printed to the standard output to |output|, which should be non NULL.
// Blocks until the started process terminates.
// Returns true if the application was run successfully, false otherwise.
bool GetAppOutput(const std::wstring& cmd_line, std::string* output);
#elif defined(OS_POSIX)
// Executes the application specified by |cl| and wait for it to exit. Stores
// the output (stdout) in |output|. Redirects stderr to /dev/null. Returns true
// on success (application launched and exited cleanly, with exit code
// indicating success). |output| is modified only when the function finished
// successfully.
bool GetAppOutput(const CommandLine& cl, std::string* output);
#endif

// Used to filter processes by process ID.
class ProcessFilter {
 public:
  // Returns true to indicate set-inclusion and false otherwise.  This method
  // should not have side-effects and should be idempotent.
  virtual bool Includes(ProcessId pid, ProcessId parent_pid) const = 0;
  virtual ~ProcessFilter() { }
};

// Returns the number of processes on the machine that are running from the
// given executable name.  If filter is non-null, then only processes selected
// by the filter will be counted.
int GetProcessCount(const std::wstring& executable_name,
                    const ProcessFilter* filter);

// Attempts to kill all the processes on the current machine that were launched
// from the given executable name, ending them with the given exit code.  If
// filter is non-null, then only processes selected by the filter are killed.
// Returns false if all processes were able to be killed off, false if at least
// one couldn't be killed.
bool KillProcesses(const std::wstring& executable_name, int exit_code,
                   const ProcessFilter* filter);

// Attempts to kill the process identified by the given process
// entry structure, giving it the specified exit code. If |wait| is true, wait
// for the process to be actually terminated before returning.
// Returns true if this is successful, false otherwise.
bool KillProcess(ProcessHandle process, int exit_code, bool wait);
#if defined(OS_WIN)
bool KillProcessById(ProcessId process_id, int exit_code, bool wait);
#endif

// Get the termination status (exit code) of the process and return true if the
// status indicates the process crashed. |child_exited| is set to true iff the
// child process has terminated. (|child_exited| may be NULL.)
//
// On Windows, it is an error to call this if the process hasn't terminated
// yet. On POSIX, |child_exited| is set correctly since we detect terminate in
// a different manner on POSIX.
bool DidProcessCrash(bool* child_exited, ProcessHandle handle);

// Waits for process to exit. In POSIX systems, if the process hasn't been
// signaled then puts the exit code in |exit_code|; otherwise it's considered
// a failure. On Windows |exit_code| is always filled. Returns true on success,
// and closes |handle| in any case.
bool WaitForExitCode(ProcessHandle handle, int* exit_code);

// Wait for all the processes based on the named executable to exit.  If filter
// is non-null, then only processes selected by the filter are waited on.
// Returns after all processes have exited or wait_milliseconds have expired.
// Returns true if all the processes exited, false otherwise.
bool WaitForProcessesToExit(const std::wstring& executable_name,
                            int wait_milliseconds,
                            const ProcessFilter* filter);

// Wait for a single process to exit. Return true if it exited cleanly within
// the given time limit.
bool WaitForSingleProcess(ProcessHandle handle,
                          int wait_milliseconds);

// Returns true when |wait_milliseconds| have elapsed and the process
// is still running.
bool CrashAwareSleep(ProcessHandle handle, int wait_milliseconds);

// Waits a certain amount of time (can be 0) for all the processes with a given
// executable name to exit, then kills off any of them that are still around.
// If filter is non-null, then only processes selected by the filter are waited
// on.  Killed processes are ended with the given exit code.  Returns false if
// any processes needed to be killed, true if they all exited cleanly within
// the wait_milliseconds delay.
bool CleanupProcesses(const std::wstring& executable_name,
                      int wait_milliseconds,
                      int exit_code,
                      const ProcessFilter* filter);

// This class provides a way to iterate through the list of processes
// on the current machine that were started from the given executable
// name.  To use, create an instance and then call NextProcessEntry()
// until it returns false.
class NamedProcessIterator {
 public:
  NamedProcessIterator(const std::wstring& executable_name,
                       const ProcessFilter* filter);
  ~NamedProcessIterator();

  // If there's another process that matches the given executable name,
  // returns a const pointer to the corresponding PROCESSENTRY32.
  // If there are no more matching processes, returns NULL.
  // The returned pointer will remain valid until NextProcessEntry()
  // is called again or this NamedProcessIterator goes out of scope.
  const ProcessEntry* NextProcessEntry();

 private:
  // Determines whether there's another process (regardless of executable)
  // left in the list of all processes.  Returns true and sets entry_ to
  // that process's info if there is one, false otherwise.
  bool CheckForNextProcess();

  bool IncludeEntry();

  // Initializes a PROCESSENTRY32 data structure so that it's ready for
  // use with Process32First/Process32Next.
  void InitProcessEntry(ProcessEntry* entry);

  std::wstring executable_name_;

#if defined(OS_WIN)
  HANDLE snapshot_;
  bool started_iteration_;
#elif defined(OS_LINUX)
  DIR *procfs_dir_;
#elif defined(OS_MACOSX)
  std::vector<kinfo_proc> kinfo_procs_;
  size_t index_of_kinfo_proc_;
#endif
  ProcessEntry entry_;
  const ProcessFilter* filter_;

  DISALLOW_EVIL_CONSTRUCTORS(NamedProcessIterator);
};

// Working Set (resident) memory usage broken down by
// priv (private): These pages (kbytes) cannot be shared with any other process.
// shareable:      These pages (kbytes) can be shared with other processes under
//                 the right circumstances.
// shared :        These pages (kbytes) are currently shared with at least one
//                 other process.
struct WorkingSetKBytes {
  size_t priv;
  size_t shareable;
  size_t shared;
};

// Committed (resident + paged) memory usage broken down by
// private: These pages cannot be shared with any other process.
// mapped:  These pages are mapped into the view of a section (backed by
//          pagefile.sys)
// image:   These pages are mapped into the view of an image section (backed by
//          file system)
struct CommittedKBytes {
  size_t priv;
  size_t mapped;
  size_t image;
};

// Free memory (Megabytes marked as free) in the 2G process address space.
// total : total amount in megabytes marked as free. Maximum value is 2048.
// largest : size of the largest contiguous amount of memory found. It is
//   always smaller or equal to FreeMBytes::total.
// largest_ptr: starting address of the largest memory block.
struct FreeMBytes {
  size_t total;
  size_t largest;
  void* largest_ptr;
};

// Provides performance metrics for a specified process (CPU usage, memory and
// IO counters). To use it, invoke CreateProcessMetrics() to get an instance
// for a specific process, then access the information with the different get
// methods.
class ProcessMetrics {
 public:
  // Creates a ProcessMetrics for the specified process.
  // The caller owns the returned object.
  static ProcessMetrics* CreateProcessMetrics(ProcessHandle process);

  ~ProcessMetrics();

  // Returns the current space allocated for the pagefile, in bytes (these pages
  // may or may not be in memory).
  size_t GetPagefileUsage() const;
  // Returns the peak space allocated for the pagefile, in bytes.
  size_t GetPeakPagefileUsage() const;
  // Returns the current working set size, in bytes.
  size_t GetWorkingSetSize() const;
  // Returns private usage, in bytes. Private bytes is the amount
  // of memory currently allocated to a process that cannot be shared.
  // Note: returns 0 on unsupported OSes: prior to XP SP2.
  size_t GetPrivateBytes() const;
  // Fills a CommittedKBytes with both resident and paged
  // memory usage as per definition of CommittedBytes.
  void GetCommittedKBytes(CommittedKBytes* usage) const;
  // Fills a WorkingSetKBytes containing resident private and shared memory
  // usage in bytes, as per definition of WorkingSetBytes.
  bool GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const;

  // Computes the current process available memory for allocation.
  // It does a linear scan of the address space querying each memory region
  // for its free (unallocated) status. It is useful for estimating the memory
  // load and fragmentation.
  bool CalculateFreeMemory(FreeMBytes* free) const;

  // Returns the CPU usage in percent since the last time this method was
  // called. The first time this method is called it returns 0 and will return
  // the actual CPU info on subsequent calls.
  // Note that on multi-processor machines, the CPU usage value is for all
  // CPUs. So if you have 2 CPUs and your process is using all the cycles
  // of 1 CPU and not the other CPU, this method returns 50.
  int GetCPUUsage();

  // Retrieves accounting information for all I/O operations performed by the
  // process.
  // If IO information is retrieved successfully, the function returns true
  // and fills in the IO_COUNTERS passed in. The function returns false
  // otherwise.
  bool GetIOCounters(IoCounters* io_counters) const;

 private:
  explicit ProcessMetrics(ProcessHandle process);

  ProcessHandle process_;

  int processor_count_;

  // Used to store the previous times so we can compute the CPU usage.
  int64 last_time_;
  int64 last_system_time_;

  DISALLOW_EVIL_CONSTRUCTORS(ProcessMetrics);
};

// Enables low fragmentation heap (LFH) for every heaps of this process. This
// won't have any effect on heaps created after this function call. It will not
// modify data allocated in the heaps before calling this function. So it is
// better to call this function early in initialization and again before
// entering the main loop.
// Note: Returns true on Windows 2000 without doing anything.
bool EnableLowFragmentationHeap();

// Enable 'terminate on heap corruption' flag. Helps protect against heap
// overflow. Has no effect if the OS doesn't provide the necessary facility.
void EnableTerminationOnHeapCorruption();

// If supported on the platform, and the user has sufficent rights, increase
// the current process's scheduling priority to a high priority.
void RaiseProcessToHighPriority();

}  // namespace base

#endif  // BASE_PROCESS_UTIL_H_