DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Histogram is an object that aggregates statistics, and can summarize them in
// various forms, including ASCII graphical, HTML, and numerically (as a
// vector of numbers corresponding to each of the aggregating buckets).
// See header file for details and examples.

#include "base/histogram.h"

#include <math.h>
#include <string>

#include "base/logging.h"
#include "base/pickle.h"
#include "base/string_util.h"

using base::TimeDelta;

typedef Histogram::Count Count;

// static
const int Histogram::kHexRangePrintingFlag = 0x8000;

Histogram::Histogram(const char* name, Sample minimum,
                     Sample maximum, size_t bucket_count)
  : histogram_name_(name),
    declared_min_(minimum),
    declared_max_(maximum),
    bucket_count_(bucket_count),
    flags_(0),
    ranges_(bucket_count + 1, 0),
    sample_(),
    registered_(false) {
  Initialize();
}

Histogram::Histogram(const char* name, TimeDelta minimum,
                     TimeDelta maximum, size_t bucket_count)
  : histogram_name_(name),
    declared_min_(static_cast<int> (minimum.InMilliseconds())),
    declared_max_(static_cast<int> (maximum.InMilliseconds())),
    bucket_count_(bucket_count),
    flags_(0),
    ranges_(bucket_count + 1, 0),
    sample_(),
    registered_(false) {
  Initialize();
}

Histogram::~Histogram() {
  if (registered_)
    StatisticsRecorder::UnRegister(this);
  // Just to make sure most derived class did this properly...
  DCHECK(ValidateBucketRanges());
}

void Histogram::Add(int value) {
  if (!registered_)
    registered_ = StatisticsRecorder::Register(this);
  if (value >= kSampleType_MAX)
    value = kSampleType_MAX - 1;
  if (value < 0)
    value = 0;
  size_t index = BucketIndex(value);
  DCHECK(value >= ranges(index));
  DCHECK(value < ranges(index + 1));
  Accumulate(value, 1, index);
}

void Histogram::AddSampleSet(const SampleSet& sample) {
  sample_.Add(sample);
}

// The following methods provide a graphical histogram display.
void Histogram::WriteHTMLGraph(std::string* output) const {
  // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
  output->append("<PRE>");
  WriteAscii(true, "<br>", output);
  output->append("</PRE>");
}

void Histogram::WriteAscii(bool graph_it, const std::string& newline,
                           std::string* output) const {
  // Get local (stack) copies of all effectively volatile class data so that we
  // are consistent across our output activities.
  SampleSet snapshot;
  SnapshotSample(&snapshot);
  Count sample_count = snapshot.TotalCount();

  WriteAsciiHeader(snapshot, sample_count, output);
  output->append(newline);

  // Prepare to normalize graphical rendering of bucket contents.
  double max_size = 0;
  if (graph_it)
    max_size = GetPeakBucketSize(snapshot);

  // Calculate space needed to print bucket range numbers.  Leave room to print
  // nearly the largest bucket range without sliding over the histogram.
  size_t largest_non_empty_bucket = bucket_count() - 1;
  while (0 == snapshot.counts(largest_non_empty_bucket)) {
    if (0 == largest_non_empty_bucket)
      break;  // All buckets are empty.
    --largest_non_empty_bucket;
  }

  // Calculate largest print width needed for any of our bucket range displays.
  size_t print_width = 1;
  for (size_t i = 0; i < bucket_count(); ++i) {
    if (snapshot.counts(i)) {
      size_t width = GetAsciiBucketRange(i).size() + 1;
      if (width > print_width)
        print_width = width;
    }
  }

  int64 remaining = sample_count;
  int64 past = 0;
  // Output the actual histogram graph.
  for (size_t i = 0; i < bucket_count(); ++i) {
    Count current = snapshot.counts(i);
    if (!current && !PrintEmptyBucket(i))
      continue;
    remaining -= current;
    StringAppendF(output, "%#*s ", print_width, GetAsciiBucketRange(i).c_str());
    if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) {
      while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1))
        ++i;
      output->append("... ");
      output->append(newline);
      continue;  // No reason to plot emptiness.
    }
    double current_size = GetBucketSize(current, i);
    if (graph_it)
      WriteAsciiBucketGraph(current_size, max_size, output);
    WriteAsciiBucketContext(past, current, remaining, i, output);
    output->append(newline);
    past += current;
  }
  DCHECK(past == sample_count);
}

bool Histogram::ValidateBucketRanges() const {
  // Standard assertions that all bucket ranges should satisfy.
  DCHECK(ranges_.size() == bucket_count_ + 1);
  DCHECK(0 == ranges_[0]);
  DCHECK(declared_min() == ranges_[1]);
  DCHECK(declared_max() == ranges_[bucket_count_ - 1]);
  DCHECK(kSampleType_MAX == ranges_[bucket_count_]);
  return true;
}

void Histogram::Initialize() {
  sample_.Resize(*this);
  if (declared_min_ <= 0)
    declared_min_ = 1;
  if (declared_max_ >= kSampleType_MAX)
    declared_max_ = kSampleType_MAX - 1;
  DCHECK(declared_min_ > 0);  // We provide underflow bucket.
  DCHECK(declared_min_ <= declared_max_);
  DCHECK(1 < bucket_count_);
  size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
  DCHECK(bucket_count_ <= maximal_bucket_count);
  DCHECK(0 == ranges_[0]);
  ranges_[bucket_count_] = kSampleType_MAX;
  InitializeBucketRange();
  DCHECK(ValidateBucketRanges());
  registered_ = StatisticsRecorder::Register(this);
}

// Calculate what range of values are held in each bucket.
// We have to be careful that we don't pick a ratio between starting points in
// consecutive buckets that is sooo small, that the integer bounds are the same
// (effectively making one bucket get no values).  We need to avoid:
// (ranges_[i] == ranges_[i + 1]
// To avoid that, we just do a fine-grained bucket width as far as we need to
// until we get a ratio that moves us along at least 2 units at a time.  From
// that bucket onward we do use the exponential growth of buckets.
void Histogram::InitializeBucketRange() {
  double log_max = log(static_cast<double>(declared_max()));
  double log_ratio;
  double log_next;
  size_t bucket_index = 1;
  Sample current = declared_min();
  SetBucketRange(bucket_index, current);
  while (bucket_count() > ++bucket_index) {
    double log_current;
    log_current = log(static_cast<double>(current));
    // Calculate the count'th root of the range.
    log_ratio = (log_max - log_current) / (bucket_count() - bucket_index);
    // See where the next bucket would start.
    log_next = log_current + log_ratio;
    int next;
    next = static_cast<int>(floor(exp(log_next) + 0.5));
    if (next > current)
      current = next;
    else
      ++current;  // Just do a narrow bucket, and keep trying.
    SetBucketRange(bucket_index, current);
  }

  DCHECK(bucket_count() == bucket_index);
}

size_t Histogram::BucketIndex(Sample value) const {
  // Use simple binary search.  This is very general, but there are better
  // approaches if we knew that the buckets were linearly distributed.
  DCHECK(ranges(0) <= value);
  DCHECK(ranges(bucket_count()) > value);
  size_t under = 0;
  size_t over = bucket_count();
  size_t mid;

  do {
    DCHECK(over >= under);
    mid = (over + under)/2;
    if (mid == under)
      break;
    if (ranges(mid) <= value)
      under = mid;
    else
      over = mid;
  } while (true);

  DCHECK(ranges(mid) <= value && ranges(mid+1) > value);
  return mid;
}

// Use the actual bucket widths (like a linear histogram) until the widths get
// over some transition value, and then use that transition width.  Exponentials
// get so big so fast (and we don't expect to see a lot of entries in the large
// buckets), so we need this to make it possible to see what is going on and
// not have 0-graphical-height buckets.
double Histogram::GetBucketSize(Count current, size_t i) const {
  DCHECK(ranges(i + 1) > ranges(i));
  static const double kTransitionWidth = 5;
  double denominator = ranges(i + 1) - ranges(i);
  if (denominator > kTransitionWidth)
    denominator = kTransitionWidth;  // Stop trying to normalize.
  return current/denominator;
}

//------------------------------------------------------------------------------
// The following two methods can be overridden to provide a thread safe
// version of this class.  The cost of locking is low... but an error in each
// of these methods has minimal impact.  For now, I'll leave this unlocked,
// and I don't believe I can loose more than a count or two.
// The vectors are NOT reallocated, so there is no risk of them moving around.

// Update histogram data with new sample.
void Histogram::Accumulate(Sample value, Count count, size_t index) {
  // Note locking not done in this version!!!
  sample_.Accumulate(value, count, index);
}

// Do a safe atomic snapshot of sample data.
// This implementation assumes we are on a safe single thread.
void Histogram::SnapshotSample(SampleSet* sample) const {
  // Note locking not done in this version!!!
  *sample = sample_;
}

//------------------------------------------------------------------------------
// Accessor methods

void Histogram::SetBucketRange(size_t i, Sample value) {
  DCHECK(bucket_count_ > i);
  ranges_[i] = value;
}

//------------------------------------------------------------------------------
// Private methods

double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
  double max = 0;
  for (size_t i = 0; i < bucket_count() ; ++i) {
    double current_size = GetBucketSize(snapshot.counts(i), i);
    if (current_size > max)
      max = current_size;
  }
  return max;
}

void Histogram::WriteAsciiHeader(const SampleSet& snapshot,
                                 Count sample_count,
                                 std::string* output) const {
  StringAppendF(output,
                "Histogram: %s recorded %ld samples",
                histogram_name().c_str(),
                sample_count);
  if (0 == sample_count) {
    DCHECK(0 == snapshot.sum());
  } else {
    double average = static_cast<float>(snapshot.sum()) / sample_count;
    double variance = static_cast<float>(snapshot.square_sum())/sample_count
                      - average * average;
    double standard_deviation = sqrt(variance);

    StringAppendF(output,
                  ", average = %.1f, standard deviation = %.1f",
                  average, standard_deviation);
  }
  if (flags_ & ~kHexRangePrintingFlag )
    StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag);
}

void Histogram::WriteAsciiBucketContext(const int64 past,
                                        const Count current,
                                        const int64 remaining,
                                        const size_t i,
                                        std::string* output) const {
  double scaled_sum = (past + current + remaining) / 100.0;
  WriteAsciiBucketValue(current, scaled_sum, output);
  if (0 < i) {
    double percentage = past / scaled_sum;
    StringAppendF(output, " {%3.1f%%}", percentage);
  }
}

const std::string Histogram::GetAsciiBucketRange(size_t i) const {
  std::string result;
  if (kHexRangePrintingFlag & flags_)
    StringAppendF(&result, "%#x", ranges(i));
  else
    StringAppendF(&result, "%d", ranges(i));
  return result;
}

void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum,
                                      std::string* output) const {
  StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum);
}

void Histogram::WriteAsciiBucketGraph(double current_size, double max_size,
                                      std::string* output) const {
  const int k_line_length = 72;  // Maximal horizontal width of graph.
  int x_count = static_cast<int>(k_line_length * (current_size / max_size)
                                 + 0.5);
  int x_remainder = k_line_length - x_count;

  while (0 < x_count--)
    output->append("-");
  output->append("O");
  while (0 < x_remainder--)
    output->append(" ");
}

// static
std::string Histogram::SerializeHistogramInfo(const Histogram& histogram,
                                              const SampleSet& snapshot) {
  Pickle pickle;

  pickle.WriteString(histogram.histogram_name());
  pickle.WriteInt(histogram.declared_min());
  pickle.WriteInt(histogram.declared_max());
  pickle.WriteSize(histogram.bucket_count());
  pickle.WriteInt(histogram.histogram_type());
  pickle.WriteInt(histogram.flags());

  snapshot.Serialize(&pickle);
  return std::string(static_cast<const char*>(pickle.data()), pickle.size());
}

// static
void Histogram::DeserializeHistogramList(
    const std::vector<std::string>& histograms) {
  for (std::vector<std::string>::const_iterator it = histograms.begin();
       it < histograms.end();
       ++it) {
    DeserializeHistogramInfo(*it);
  }
}

// static
bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) {
  if (histogram_info.empty()) {
      return false;
  }

  Pickle pickle(histogram_info.data(),
                static_cast<int>(histogram_info.size()));
  void* iter = NULL;
  size_t bucket_count;
  int declared_min;
  int declared_max;
  int histogram_type;
  int flags;
  std::string histogram_name;
  SampleSet sample;

  if (!pickle.ReadString(&iter, &histogram_name) ||
      !pickle.ReadInt(&iter, &declared_min) ||
      !pickle.ReadInt(&iter, &declared_max) ||
      !pickle.ReadSize(&iter, &bucket_count) ||
      !pickle.ReadInt(&iter, &histogram_type) ||
      !pickle.ReadInt(&iter, &flags) ||
      !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
    LOG(ERROR) << "Picke error decoding Histogram: " << histogram_name;
    return false;
  }

  Histogram* render_histogram =
      StatisticsRecorder::GetHistogram(histogram_name);

  if (render_histogram == NULL) {
    if (histogram_type ==  EXPONENTIAL) {
      render_histogram = new Histogram(histogram_name.c_str(),
                                       declared_min,
                                       declared_max,
                                       bucket_count);
    } else if (histogram_type == LINEAR) {
      render_histogram = reinterpret_cast<Histogram*>
        (new LinearHistogram(histogram_name.c_str(),
                             declared_min,
                             declared_max,
                             bucket_count));
    } else {
      LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: " <<
          histogram_type;
      return false;
    }
    DCHECK(!(flags & kRendererHistogramFlag));
    render_histogram->SetFlags(flags | kRendererHistogramFlag);
  }

  DCHECK(declared_min == render_histogram->declared_min());
  DCHECK(declared_max == render_histogram->declared_max());
  DCHECK(bucket_count == render_histogram->bucket_count());
  DCHECK(histogram_type == render_histogram->histogram_type());

  if (render_histogram->flags() & kRendererHistogramFlag) {
    render_histogram->AddSampleSet(sample);
  } else {
    DLOG(INFO) << "Single thread mode, histogram observed and not copied: " <<
        histogram_name;
  }

  return true;
}


//------------------------------------------------------------------------------
// Methods for the Histogram::SampleSet class
//------------------------------------------------------------------------------

Histogram::SampleSet::SampleSet()
    : counts_(),
      sum_(0),
      square_sum_(0) {
}

void Histogram::SampleSet::Resize(const Histogram& histogram) {
  counts_.resize(histogram.bucket_count(), 0);
}

void Histogram::SampleSet::CheckSize(const Histogram& histogram) const {
  DCHECK(counts_.size() == histogram.bucket_count());
}


void Histogram::SampleSet::Accumulate(Sample value,  Count count,
                                      size_t index) {
  DCHECK(count == 1 || count == -1);
  counts_[index] += count;
  sum_ += count * value;
  square_sum_ += (count * value) * static_cast<int64>(value);
  DCHECK(counts_[index] >= 0);
  DCHECK(sum_ >= 0);
  DCHECK(square_sum_ >= 0);
}

Count Histogram::SampleSet::TotalCount() const {
  Count total = 0;
  for (Counts::const_iterator it = counts_.begin();
       it != counts_.end();
       ++it) {
    total += *it;
  }
  return total;
}

void Histogram::SampleSet::Add(const SampleSet& other) {
  DCHECK(counts_.size() == other.counts_.size());
  sum_ += other.sum_;
  square_sum_ += other.square_sum_;
  for (size_t index = 0; index < counts_.size(); ++index)
    counts_[index] += other.counts_[index];
}

void Histogram::SampleSet::Subtract(const SampleSet& other) {
  DCHECK(counts_.size() == other.counts_.size());
  // Note: Race conditions in snapshotting a sum or square_sum may lead to
  // (temporary) negative values when snapshots are later combined (and deltas
  // calculated).  As a result, we don't currently CHCEK() for positive values.
  sum_ -= other.sum_;
  square_sum_ -= other.square_sum_;
  for (size_t index = 0; index < counts_.size(); ++index) {
    counts_[index] -= other.counts_[index];
    DCHECK(counts_[index] >= 0);
  }
}

bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
  pickle->WriteInt64(sum_);
  pickle->WriteInt64(square_sum_);
  pickle->WriteSize(counts_.size());

  for (size_t index = 0; index < counts_.size(); ++index) {
    pickle->WriteInt(counts_[index]);
  }

  return true;
}

bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) {
  DCHECK(counts_.size() == 0);
  DCHECK(sum_ == 0);
  DCHECK(square_sum_ == 0);

  size_t counts_size;

  if (!pickle.ReadInt64(iter, &sum_) ||
      !pickle.ReadInt64(iter, &square_sum_) ||
      !pickle.ReadSize(iter, &counts_size)) {
    return false;
  }

  if (counts_size <= 0)
    return false;

  counts_.resize(counts_size, 0);
  for (size_t index = 0; index < counts_size; ++index) {
    if (!pickle.ReadInt(iter, &counts_[index])) {
      return false;
    }
  }

  return true;
}

//------------------------------------------------------------------------------
// LinearHistogram: This histogram uses a traditional set of evenly spaced
// buckets.
//------------------------------------------------------------------------------

LinearHistogram::LinearHistogram(const char* name, Sample minimum,
    Sample maximum, size_t bucket_count)
    : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) {
  InitializeBucketRange();
  DCHECK(ValidateBucketRanges());
}

LinearHistogram::LinearHistogram(const char* name,
    TimeDelta minimum, TimeDelta maximum, size_t bucket_count)
    : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ?
                                 minimum : TimeDelta::FromMilliseconds(1),
                maximum, bucket_count) {
  // Do a "better" (different) job at init than a base classes did...
  InitializeBucketRange();
  DCHECK(ValidateBucketRanges());
}

void LinearHistogram::SetRangeDescriptions(
    const DescriptionPair descriptions[]) {
  for (int i =0; descriptions[i].description; ++i) {
    bucket_description_[descriptions[i].sample] = descriptions[i].description;
  }
}

const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
  int range = ranges(i);
  BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
  if (it == bucket_description_.end())
    return Histogram::GetAsciiBucketRange(i);
  return it->second;
}

bool LinearHistogram::PrintEmptyBucket(size_t index) const {
  return bucket_description_.find(ranges(index)) == bucket_description_.end();
}


void LinearHistogram::InitializeBucketRange() {
  DCHECK(0 < declared_min());  // 0 is the underflow bucket here.
  double min = declared_min();
  double max = declared_max();
  size_t i;
  for (i = 1; i < bucket_count(); ++i) {
    double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) /
                          (bucket_count() - 2);
    SetBucketRange(i, static_cast<int> (linear_range + 0.5));
  }
}

// Find bucket to increment for sample value.
size_t LinearHistogram::BucketIndex(Sample value) const {
  if (value < declared_min()) return 0;
  if (value >= declared_max()) return bucket_count() - 1;
  size_t index;
  index = static_cast<size_t>(((value - declared_min()) * (bucket_count() - 2))
                              / (declared_max() - declared_min()) + 1);
  DCHECK(1 <= index && bucket_count() > index);
  return index;
}

double LinearHistogram::GetBucketSize(Count current, size_t i) const {
  DCHECK(ranges(i + 1) > ranges(i));
  // Adjacent buckets with different widths would have "surprisingly" many (few)
  // samples in a histogram if we didn't normalize this way.
  double denominator = ranges(i + 1) - ranges(i);
  return current/denominator;
}

//------------------------------------------------------------------------------
// This section provides implementation for ThreadSafeHistogram.
//------------------------------------------------------------------------------

ThreadSafeHistogram::ThreadSafeHistogram(const char* name, Sample minimum,
                                         Sample maximum, size_t bucket_count)
    : Histogram(name, minimum, maximum, bucket_count),
      lock_() {
  }

void ThreadSafeHistogram::Remove(int value) {
  if (value >= kSampleType_MAX)
    value = kSampleType_MAX - 1;
  size_t index = BucketIndex(value);
  Accumulate(value, -1, index);
}

void ThreadSafeHistogram::Accumulate(Sample value, Count count, size_t index) {
  AutoLock lock(lock_);
  Histogram::Accumulate(value, count, index);
}

void ThreadSafeHistogram::SnapshotSample(SampleSet* sample) const {
  AutoLock lock(lock_);
  Histogram::SnapshotSample(sample);
};


//------------------------------------------------------------------------------
// The next section handles global (central) support for all histograms, as well
// as startup/teardown of this service.
//------------------------------------------------------------------------------

// This singleton instance should be started during the single threaded portion
// of main(), and hence it is not thread safe.  It initializes globals to
// provide support for all future calls.
StatisticsRecorder::StatisticsRecorder() {
  DCHECK(!histograms_);
  lock_ = new Lock;
  histograms_ = new HistogramMap;
}

StatisticsRecorder::~StatisticsRecorder() {
  DCHECK(histograms_);

  if (dump_on_exit_) {
    std::string output;
    WriteGraph("", &output);
    LOG(INFO) << output;
  }

  // Clean up.
  delete histograms_;
  histograms_ = NULL;
  delete lock_;
  lock_ = NULL;
}

// static
bool StatisticsRecorder::WasStarted() {
  return NULL != histograms_;
}

// static
bool StatisticsRecorder::Register(Histogram* histogram) {
  if (!histograms_)
    return false;
  const std::string name = histogram->histogram_name();
  AutoLock auto_lock(*lock_);

  DCHECK(histograms_->end() == histograms_->find(name)) << name << " is already"
      "registered as a histogram.  Check for duplicate use of the name, or a "
      "race where a static initializer could be run by several threads.";
  (*histograms_)[name] = histogram;
  return true;
}

// static
void StatisticsRecorder::UnRegister(Histogram* histogram) {
  if (!histograms_)
    return;
  const std::string name = histogram->histogram_name();
  AutoLock auto_lock(*lock_);
  DCHECK(histograms_->end() != histograms_->find(name));
  histograms_->erase(name);
  if (dump_on_exit_) {
    std::string output;
    histogram->WriteAscii(true, "\n", &output);
    LOG(INFO) << output;
  }
}

// static
void StatisticsRecorder::WriteHTMLGraph(const std::string& query,
                                        std::string* output) {
  if (!histograms_)
    return;
  output->append("<html><head><title>About Histograms");
  if (!query.empty())
    output->append(" - " + query);
  output->append("</title>"
                 // We'd like the following no-cache... but it doesn't work.
                 // "<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"
                 "</head><body>");

  Histograms snapshot;
  GetSnapshot(query, &snapshot);
  for (Histograms::iterator it = snapshot.begin();
       it != snapshot.end();
       ++it) {
    (*it)->WriteHTMLGraph(output);
    output->append("<br><hr><br>");
  }
  output->append("</body></html>");
}

// static
void StatisticsRecorder::WriteGraph(const std::string& query,
                                    std::string* output) {
  if (!histograms_)
    return;
  if (query.length())
    StringAppendF(output, "Collections of histograms for %s\n", query.c_str());
  else
    output->append("Collections of all histograms\n");

  Histograms snapshot;
  GetSnapshot(query, &snapshot);
  for (Histograms::iterator it = snapshot.begin();
       it != snapshot.end();
       ++it) {
    (*it)->WriteAscii(true, "\n", output);
    output->append("\n");
  }
}

// static
void StatisticsRecorder::GetHistograms(Histograms* output) {
  if (!histograms_)
    return;
  AutoLock auto_lock(*lock_);
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    output->push_back(it->second);
  }
}

Histogram* StatisticsRecorder::GetHistogram(const std::string& query) {
  if (!histograms_)
    return NULL;
  AutoLock auto_lock(*lock_);
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    if (it->first.find(query) != std::string::npos)
      return it->second;
  }
  return NULL;
}

// private static
void StatisticsRecorder::GetSnapshot(const std::string& query,
                                     Histograms* snapshot) {
  AutoLock auto_lock(*lock_);
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    if (it->first.find(query) != std::string::npos)
      snapshot->push_back(it->second);
  }
}

// static
StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL;
// static
Lock* StatisticsRecorder::lock_ = NULL;
// static
bool StatisticsRecorder::dump_on_exit_ = false;