DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (920bcf17a9e1)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*-
 * Copyright (c) 1990, 1993, 1994
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Margo Seltzer.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. ***REMOVED*** - see 
 *    ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#if defined(unix)
#define MY_LSEEK lseek
#else
#define MY_LSEEK new_lseek
extern long new_lseek(int fd, long pos, int start);
#endif

#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
#endif /* LIBC_SCCS and not lint */

/*
 * PACKAGE:  hashing
 *
 * DESCRIPTION:
 *	Page manipulation for hashing package.
 *
 * ROUTINES:
 *
 * External
 *	__get_page
 *	__add_ovflpage
 * Internal
 *	overflow_page
 *	open_temp
 */
#ifndef macintosh
#include <sys/types.h>
#endif

#if defined(macintosh)
#include <unistd.h>
#endif

#include <errno.h>
#include <fcntl.h>
#if defined(_WIN32) || defined(_WINDOWS) 
#include <io.h>
#endif
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
#include <unistd.h>
#endif

#include <assert.h>

#include "mcom_db.h"
#include "hash.h"
#include "page.h"
/* #include "extern.h" */

extern int mkstempflags(char *path, int extraFlags);

static uint32	*fetch_bitmap __P((HTAB *, uint32));
static uint32	 first_free __P((uint32));
static int	 open_temp __P((HTAB *));
static uint16	 overflow_page __P((HTAB *));
static void	 squeeze_key __P((uint16 *, const DBT *, const DBT *));
static int	 ugly_split
		    __P((HTAB *, uint32, BUFHEAD *, BUFHEAD *, int, int));

#define	PAGE_INIT(P) { \
	((uint16 *)(P))[0] = 0; \
	((uint16 *)(P))[1] = hashp->BSIZE - 3 * sizeof(uint16); \
	((uint16 *)(P))[2] = hashp->BSIZE; \
}

/* implement a new lseek using lseek that
 * writes zero's when extending a file
 * beyond the end.
 */
long new_lseek(int fd, long offset, int origin)
{
 	long cur_pos=0;
	long end_pos=0;
	long seek_pos=0;

	if(origin == SEEK_CUR)
      {	
      	if(offset < 1)							  
	    	return(lseek(fd, offset, SEEK_CUR));

		cur_pos = lseek(fd, 0, SEEK_CUR);

		if(cur_pos < 0)
			return(cur_pos);
	  }
										 
	end_pos = lseek(fd, 0, SEEK_END);
	if(end_pos < 0)
		return(end_pos);

	if(origin == SEEK_SET)
		seek_pos = offset;
	else if(origin == SEEK_CUR)
		seek_pos = cur_pos + offset;
	else if(origin == SEEK_END)
		seek_pos = end_pos + offset;
 	else
	  {
	  	assert(0);
		return(-1);
	  }

 	/* the seek position desired is before the
	 * end of the file.  We don't need
	 * to do anything special except the seek.
	 */
 	if(seek_pos <= end_pos)
 		return(lseek(fd, seek_pos, SEEK_SET));
 		
 	  /* the seek position is beyond the end of the
 	   * file.  Write zero's to the end.
 	   *
	   * we are already at the end of the file so
	   * we just need to "write()" zeros for the
	   * difference between seek_pos-end_pos and
	   * then seek to the position to finish
	   * the call
 	   */
 	  { 
 	 	char buffer[1024];
	   	long len = seek_pos-end_pos;
	   	memset(&buffer, 0, 1024);
	   	while(len > 0)
	      {
	        write(fd, (char*)&buffer, (size_t)(1024 > len ? len : 1024));
		    len -= 1024;
		  }
		return(lseek(fd, seek_pos, SEEK_SET));
	  }		

}

/*
 * This is called AFTER we have verified that there is room on the page for
 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
 * stuff on.
 */
static void
putpair(char *p, const DBT *key, DBT * val)
{
	register uint16 *bp, n, off;

	bp = (uint16 *)p;

	/* Enter the key first. */
	n = bp[0];

	off = OFFSET(bp) - key->size;
	memmove(p + off, key->data, key->size);
	bp[++n] = off;

	/* Now the data. */
	off -= val->size;
	memmove(p + off, val->data, val->size);
	bp[++n] = off;

	/* Adjust page info. */
	bp[0] = n;
	bp[n + 1] = off - ((n + 3) * sizeof(uint16));
	bp[n + 2] = off;
}

/*
 * Returns:
 *	 0 OK
 *	-1 error
 */
extern int
__delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
{
	register uint16 *bp, newoff;
	register int n;
	uint16 pairlen;

	bp = (uint16 *)bufp->page;
	n = bp[0];

	if (bp[ndx + 1] < REAL_KEY)
		return (__big_delete(hashp, bufp));
	if (ndx != 1)
		newoff = bp[ndx - 1];
	else
		newoff = hashp->BSIZE;
	pairlen = newoff - bp[ndx + 1];

	if (ndx != (n - 1)) {
		/* Hard Case -- need to shuffle keys */
		register int i;
		register char *src = bufp->page + (int)OFFSET(bp);
		uint32 dst_offset = (uint32)OFFSET(bp) + (uint32)pairlen;
		register char *dst = bufp->page + dst_offset;
		uint32 length = bp[ndx + 1] - OFFSET(bp);

		/*
		 * +-----------+XXX+---------+XXX+---------+---------> +infinity
		 * |           |             |             |
		 * 0           src_offset    dst_offset    BSIZE
		 *
		 * Dst_offset is > src_offset, so if src_offset were bad, dst_offset
		 * would be too, therefore we check only dst_offset.
		 *
		 * If dst_offset is >= BSIZE, either OFFSET(bp), or pairlen, or both
		 * is corrupted.
		 *
		 * Once we know dst_offset is < BSIZE, we can subtract it from BSIZE
		 * to get an upper bound on length.
		 */
		if(dst_offset > (uint32)hashp->BSIZE)
			return(DATABASE_CORRUPTED_ERROR);

		if(length > (uint32)(hashp->BSIZE - dst_offset))
			return(DATABASE_CORRUPTED_ERROR);

		memmove(dst, src, length);

		/* Now adjust the pointers */
		for (i = ndx + 2; i <= n; i += 2) {
			if (bp[i + 1] == OVFLPAGE) {
				bp[i - 2] = bp[i];
				bp[i - 1] = bp[i + 1];
			} else {
				bp[i - 2] = bp[i] + pairlen;
				bp[i - 1] = bp[i + 1] + pairlen;
			}
		}
	}
	/* Finally adjust the page data */
	bp[n] = OFFSET(bp) + pairlen;
	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(uint16);
	bp[0] = n - 2;
	hashp->NKEYS--;

	bufp->flags |= BUF_MOD;
	return (0);
}
/*
 * Returns:
 *	 0 ==> OK
 *	-1 ==> Error
 */
extern int
__split_page(HTAB *hashp, uint32 obucket, uint32 nbucket)
{
	register BUFHEAD *new_bufp, *old_bufp;
	register uint16 *ino;
	register uint16 *tmp_uint16_array;
	register char *np;
	DBT key, val;
    uint16 n, ndx;
	int retval;
	uint16 copyto, diff, moved;
	size_t off;
	char *op;

	copyto = (uint16)hashp->BSIZE;
	off = (uint16)hashp->BSIZE;
	old_bufp = __get_buf(hashp, obucket, NULL, 0);
	if (old_bufp == NULL)
		return (-1);
	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
	if (new_bufp == NULL)
		return (-1);

	old_bufp->flags |= (BUF_MOD | BUF_PIN);
	new_bufp->flags |= (BUF_MOD | BUF_PIN);

	ino = (uint16 *)(op = old_bufp->page);
	np = new_bufp->page;

	moved = 0;

	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
		if (ino[n + 1] < REAL_KEY) {
			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
			    (int)copyto, (int)moved);
			old_bufp->flags &= ~BUF_PIN;
			new_bufp->flags &= ~BUF_PIN;
			return (retval);

		}
		key.data = (uint8 *)op + ino[n];

		/* check here for ino[n] being greater than
		 * off.  If it is then the database has
		 * been corrupted.
		 */
		if(ino[n] > off)
			return(DATABASE_CORRUPTED_ERROR);

		key.size = off - ino[n];

#ifdef DEBUG
		/* make sure the size is positive */
		assert(((int)key.size) > -1);
#endif

		if (__call_hash(hashp, (char *)key.data, key.size) == obucket) {
			/* Don't switch page */
			diff = copyto - off;
			if (diff) {
				copyto = ino[n + 1] + diff;
				memmove(op + copyto, op + ino[n + 1],
				    off - ino[n + 1]);
				ino[ndx] = copyto + ino[n] - ino[n + 1];
				ino[ndx + 1] = copyto;
			} else
				copyto = ino[n + 1];
			ndx += 2;
		} else {
			/* Switch page */
			val.data = (uint8 *)op + ino[n + 1];
			val.size = ino[n] - ino[n + 1];

			/* if the pair doesn't fit something is horribly
			 * wrong.  LJM
			 */
			tmp_uint16_array = (uint16*)np;
			if(!PAIRFITS(tmp_uint16_array, &key, &val))
				return(DATABASE_CORRUPTED_ERROR);

			putpair(np, &key, &val);
			moved += 2;
		}

		off = ino[n + 1];
	}

	/* Now clean up the page */
	ino[0] -= moved;
	FREESPACE(ino) = copyto - sizeof(uint16) * (ino[0] + 3);
	OFFSET(ino) = copyto;

#ifdef DEBUG3
	(void)fprintf(stderr, "split %d/%d\n",
	    ((uint16 *)np)[0] / 2,
	    ((uint16 *)op)[0] / 2);
#endif
	/* unpin both pages */
	old_bufp->flags &= ~BUF_PIN;
	new_bufp->flags &= ~BUF_PIN;
	return (0);
}

/*
 * Called when we encounter an overflow or big key/data page during split
 * handling.  This is special cased since we have to begin checking whether
 * the key/data pairs fit on their respective pages and because we may need
 * overflow pages for both the old and new pages.
 *
 * The first page might be a page with regular key/data pairs in which case
 * we have a regular overflow condition and just need to go on to the next
 * page or it might be a big key/data pair in which case we need to fix the
 * big key/data pair.
 *
 * Returns:
 *	 0 ==> success
 *	-1 ==> failure
 */

/* the maximum number of loops we will allow UGLY split to chew
 * on before we assume the database is corrupted and throw it
 * away.
 */
#define MAX_UGLY_SPLIT_LOOPS 10000

static int
ugly_split(HTAB *hashp, uint32 obucket, BUFHEAD *old_bufp,
 BUFHEAD *new_bufp,/* Same as __split_page. */ int copyto, int moved)
	/* int copyto;	 First byte on page which contains key/data values. */
	/* int moved;	 Number of pairs moved to new page. */
{
	register BUFHEAD *bufp;	/* Buffer header for ino */
	register uint16 *ino;	/* Page keys come off of */
	register uint16 *np;	/* New page */
	register uint16 *op;	/* Page keys go on to if they aren't moving */
    uint32 loop_detection=0;

	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
	DBT key, val;
	SPLIT_RETURN ret;
	uint16 n, off, ov_addr, scopyto;
	char *cino;		/* Character value of ino */
	int status;

	bufp = old_bufp;
	ino = (uint16 *)old_bufp->page;
	np = (uint16 *)new_bufp->page;
	op = (uint16 *)old_bufp->page;
	last_bfp = NULL;
	scopyto = (uint16)copyto;	/* ANSI */

	n = ino[0] - 1;
	while (n < ino[0]) {


        /* this function goes nuts sometimes and never returns. 
         * I havent found the problem yet but I need a solution
         * so if we loop too often we assume a database curruption error
         * :LJM
         */
        loop_detection++;

        if(loop_detection > MAX_UGLY_SPLIT_LOOPS)
            return DATABASE_CORRUPTED_ERROR;

		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
			if ((status = __big_split(hashp, old_bufp,
			    new_bufp, bufp, bufp->addr, obucket, &ret)))
				return (status);
			old_bufp = ret.oldp;
			if (!old_bufp)
				return (-1);
			op = (uint16 *)old_bufp->page;
			new_bufp = ret.newp;
			if (!new_bufp)
				return (-1);
			np = (uint16 *)new_bufp->page;
			bufp = ret.nextp;
			if (!bufp)
				return (0);
			cino = (char *)bufp->page;
			ino = (uint16 *)cino;
			last_bfp = ret.nextp;
		} else if (ino[n + 1] == OVFLPAGE) {
			ov_addr = ino[n];
			/*
			 * Fix up the old page -- the extra 2 are the fields
			 * which contained the overflow information.
			 */
			ino[0] -= (moved + 2);
			FREESPACE(ino) =
			    scopyto - sizeof(uint16) * (ino[0] + 3);
			OFFSET(ino) = scopyto;

			bufp = __get_buf(hashp, ov_addr, bufp, 0);
			if (!bufp)
				return (-1);

			ino = (uint16 *)bufp->page;
			n = 1;
			scopyto = hashp->BSIZE;
			moved = 0;

			if (last_bfp)
				__free_ovflpage(hashp, last_bfp);
			last_bfp = bufp;
		}
		/* Move regular sized pairs of there are any */
		off = hashp->BSIZE;
		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
			cino = (char *)ino;
			key.data = (uint8 *)cino + ino[n];
			key.size = off - ino[n];
			val.data = (uint8 *)cino + ino[n + 1];
			val.size = ino[n] - ino[n + 1];
			off = ino[n + 1];

			if (__call_hash(hashp, (char*)key.data, key.size) == obucket) {
				/* Keep on old page */
				if (PAIRFITS(op, (&key), (&val)))
					putpair((char *)op, &key, &val);
				else {
					old_bufp =
					    __add_ovflpage(hashp, old_bufp);
					if (!old_bufp)
						return (-1);
					op = (uint16 *)old_bufp->page;
					putpair((char *)op, &key, &val);
				}
				old_bufp->flags |= BUF_MOD;
			} else {
				/* Move to new page */
				if (PAIRFITS(np, (&key), (&val)))
					putpair((char *)np, &key, &val);
				else {
					new_bufp =
					    __add_ovflpage(hashp, new_bufp);
					if (!new_bufp)
						return (-1);
					np = (uint16 *)new_bufp->page;
					putpair((char *)np, &key, &val);
				}
				new_bufp->flags |= BUF_MOD;
			}
		}
	}
	if (last_bfp)
		__free_ovflpage(hashp, last_bfp);
	return (0);
}

/*
 * Add the given pair to the page
 *
 * Returns:
 *	0 ==> OK
 *	1 ==> failure
 */
extern int
__addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT * val)
{
	register uint16 *bp, *sop;
	int do_expand;

	bp = (uint16 *)bufp->page;
	do_expand = 0;
	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
		/* Exception case */
		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
			/* This is the last page of a big key/data pair
			   and we need to add another page */
			break;
		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
			if (!bufp)
			  {
#ifdef DEBUG
				assert(0);
#endif
				return (-1);
			  }
			bp = (uint16 *)bufp->page;
		} else
			/* Try to squeeze key on this page */
			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
			  {
				squeeze_key(bp, key, val);

				/* LJM: I added this because I think it was
				 * left out on accident.
				 * if this isn't incremented nkeys will not
				 * be the actual number of keys in the db.
				 */
				hashp->NKEYS++;
				return (0);
			  }
			} else {
				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
				if (!bufp)
			      {
#ifdef DEBUG
				    assert(0);
#endif
					return (-1);
				  }
				bp = (uint16 *)bufp->page;
			}

	if (PAIRFITS(bp, key, val))
		putpair(bufp->page, key, (DBT *)val);
	else {
		do_expand = 1;
		bufp = __add_ovflpage(hashp, bufp);
		if (!bufp)
	      {
#ifdef DEBUG
		    assert(0);
#endif
			return (-1);
		  }
		sop = (uint16 *)bufp->page;

		if (PAIRFITS(sop, key, val))
			putpair((char *)sop, key, (DBT *)val);
		else
			if (__big_insert(hashp, bufp, key, val))
	          {
#ifdef DEBUG
		        assert(0);
#endif
			    return (-1);
		      }
	}
	bufp->flags |= BUF_MOD;
	/*
	 * If the average number of keys per bucket exceeds the fill factor,
	 * expand the table.
	 */
	hashp->NKEYS++;
	if (do_expand ||
	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
		return (__expand_table(hashp));
	return (0);
}

/*
 *
 * Returns:
 *	pointer on success
 *	NULL on error
 */
extern BUFHEAD *
__add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
{
	register uint16 *sp;
	uint16 ndx, ovfl_num;
#ifdef DEBUG1
	int tmp1, tmp2;
#endif
	sp = (uint16 *)bufp->page;

	/* Check if we are dynamically determining the fill factor */
	if (hashp->FFACTOR == DEF_FFACTOR) {
		hashp->FFACTOR = sp[0] >> 1;
		if (hashp->FFACTOR < MIN_FFACTOR)
			hashp->FFACTOR = MIN_FFACTOR;
	}
	bufp->flags |= BUF_MOD;
	ovfl_num = overflow_page(hashp);
#ifdef DEBUG1
	tmp1 = bufp->addr;
	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
#endif
	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
		return (NULL);
	bufp->ovfl->flags |= BUF_MOD;
#ifdef DEBUG1
	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
	    tmp1, tmp2, bufp->ovfl->addr);
#endif
	ndx = sp[0];
	/*
	 * Since a pair is allocated on a page only if there's room to add
	 * an overflow page, we know that the OVFL information will fit on
	 * the page.
	 */
	sp[ndx + 4] = OFFSET(sp);
	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
	sp[ndx + 1] = ovfl_num;
	sp[ndx + 2] = OVFLPAGE;
	sp[0] = ndx + 2;
#ifdef HASH_STATISTICS
	hash_overflows++;
#endif
	return (bufp->ovfl);
}

/*
 * Returns:
 *	 0 indicates SUCCESS
 *	-1 indicates FAILURE
 */
extern int
__get_page(HTAB *hashp,
	char * p,
	uint32 bucket, 
	int is_bucket, 
	int is_disk, 
	int is_bitmap)
{
	register int fd, page;
	size_t size;
	int rsize;
	uint16 *bp;

	fd = hashp->fp;
	size = hashp->BSIZE;

	if ((fd == -1) || !is_disk) {
		PAGE_INIT(p);
		return (0);
	}
	if (is_bucket)
		page = BUCKET_TO_PAGE(bucket);
	else
		page = OADDR_TO_PAGE(bucket);
	if ((MY_LSEEK(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
	    ((rsize = read(fd, p, size)) == -1))
		return (-1);

	bp = (uint16 *)p;
	if (!rsize)
		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
	else
		if ((unsigned)rsize != size) {
			errno = EFTYPE;
			return (-1);
		}

	if (!is_bitmap && !bp[0]) {
		PAGE_INIT(p);
	} else {

#ifdef DEBUG
		if(BYTE_ORDER == LITTLE_ENDIAN)
		  {
			int is_little_endian;
			is_little_endian = BYTE_ORDER;
		  }
		else if(BYTE_ORDER == BIG_ENDIAN)
		  {
			int is_big_endian;
			is_big_endian = BYTE_ORDER;
		  }
		else
		  {
			assert(0);
		  }
#endif

		if (hashp->LORDER != BYTE_ORDER) {
			register int i, max;

			if (is_bitmap) {
				max = hashp->BSIZE >> 2; /* divide by 4 */
				for (i = 0; i < max; i++)
					M_32_SWAP(((int *)p)[i]);
			} else {
				M_16_SWAP(bp[0]);
				max = bp[0] + 2;

	    		/* bound the size of max by
	     		 * the maximum number of entries
	     		 * in the array
	     		 */
				if((unsigned)max > (size / sizeof(uint16)))
					return(DATABASE_CORRUPTED_ERROR);

				/* do the byte order swap
				 */
				for (i = 1; i <= max; i++)
					M_16_SWAP(bp[i]);
			}
		}

		/* check the validity of the page here
		 * (after doing byte order swaping if necessary)
		 */
		if(!is_bitmap && bp[0] != 0)
		  {
			uint16 num_keys = bp[0];
			uint16 offset;
			uint16 i;

			/* bp[0] is supposed to be the number of
			 * entries currently in the page.  If
			 * bp[0] is too large (larger than the whole
			 * page) then the page is corrupted
			 */
			if(bp[0] > (size / sizeof(uint16)))
				return(DATABASE_CORRUPTED_ERROR);
			
			/* bound free space */
			if(FREESPACE(bp) > size)
				return(DATABASE_CORRUPTED_ERROR);
		
			/* check each key and data offset to make
 			 * sure they are all within bounds they
 			 * should all be less than the previous
 			 * offset as well.
 			 */
			offset = size;
			for(i=1 ; i <= num_keys; i+=2)
  			  {
				/* ignore overflow pages etc. */
				if(bp[i+1] >= REAL_KEY)
	  			  {
						
					if(bp[i] > offset || bp[i+1] > bp[i])			
						return(DATABASE_CORRUPTED_ERROR);
			
					offset = bp[i+1];
	  			  }
				else
	  			  {
					/* there are no other valid keys after
		 			 * seeing a non REAL_KEY
		 			 */
					break;
	  			  }
  			  }
		}
	}
	return (0);
}

/*
 * Write page p to disk
 *
 * Returns:
 *	 0 ==> OK
 *	-1 ==>failure
 */
extern int
__put_page(HTAB *hashp, char *p, uint32 bucket, int is_bucket, int is_bitmap)
{
	register int fd, page;
	size_t size;
	int wsize;
	off_t offset;

	size = hashp->BSIZE;
	if ((hashp->fp == -1) && open_temp(hashp))
		return (-1);
	fd = hashp->fp;

	if (hashp->LORDER != BYTE_ORDER) {
		register int i;
		register int max;

		if (is_bitmap) {
			max = hashp->BSIZE >> 2;	/* divide by 4 */
			for (i = 0; i < max; i++)
				M_32_SWAP(((int *)p)[i]);
		} else {
			max = ((uint16 *)p)[0] + 2;

            /* bound the size of max by
             * the maximum number of entries
             * in the array
             */
            if((unsigned)max > (size / sizeof(uint16)))
                return(DATABASE_CORRUPTED_ERROR);

			for (i = 0; i <= max; i++)
				M_16_SWAP(((uint16 *)p)[i]);

		}
	}

	if (is_bucket)
		page = BUCKET_TO_PAGE(bucket);
	else
		page = OADDR_TO_PAGE(bucket);
	offset = (off_t)page << hashp->BSHIFT;
	if ((MY_LSEEK(fd, offset, SEEK_SET) == -1) ||
	    ((wsize = write(fd, p, size)) == -1))
		/* Errno is set */
		return (-1);
	if ((unsigned)wsize != size) {
		errno = EFTYPE;
		return (-1);
	}
#if defined(_WIN32) || defined(_WINDOWS) 
	if (offset + size > hashp->file_size) {
		hashp->updateEOF = 1;
	}
#endif
	/* put the page back the way it was so that it isn't byteswapped
	 * if it remains in memory - LJM
	 */
	if (hashp->LORDER != BYTE_ORDER) {
		register int i;
		register int max;

		if (is_bitmap) {
			max = hashp->BSIZE >> 2;	/* divide by 4 */
			for (i = 0; i < max; i++)
				M_32_SWAP(((int *)p)[i]);
		} else {
    		uint16 *bp = (uint16 *)p;

			M_16_SWAP(bp[0]);
			max = bp[0] + 2;

			/* no need to bound the size if max again
			 * since it was done already above
			 */

			/* do the byte order re-swap
			 */
			for (i = 1; i <= max; i++)
				M_16_SWAP(bp[i]);
		}
	}

	return (0);
}

#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
/*
 * Initialize a new bitmap page.  Bitmap pages are left in memory
 * once they are read in.
 */
extern int
__ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
{
	uint32 *ip;
	size_t clearbytes, clearints;

	if ((ip = (uint32 *)malloc((size_t)hashp->BSIZE)) == NULL)
		return (1);
	hashp->nmaps++;
	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
	clearbytes = clearints << INT_TO_BYTE;
	(void)memset((char *)ip, 0, clearbytes);
	(void)memset(((char *)ip) + clearbytes, 0xFF,
	    hashp->BSIZE - clearbytes);
	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
	SETBIT(ip, 0);
	hashp->BITMAPS[ndx] = (uint16)pnum;
	hashp->mapp[ndx] = ip;
	return (0);
}

static uint32
first_free(uint32 map)
{
	register uint32 i, mask;

	mask = 0x1;
	for (i = 0; i < BITS_PER_MAP; i++) {
		if (!(mask & map))
			return (i);
		mask = mask << 1;
	}
	return (i);
}

static uint16
overflow_page(HTAB *hashp)
{
	register uint32 *freep=NULL;
	register int max_free, offset, splitnum;
	uint16 addr;
	uint32 i;
	int bit, first_page, free_bit, free_page, in_use_bits, j;
#ifdef DEBUG2
	int tmp1, tmp2;
#endif
	splitnum = hashp->OVFL_POINT;
	max_free = hashp->SPARES[splitnum];

	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);

	/* Look through all the free maps to find the first free block */
	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
	for ( i = first_page; i <= (unsigned)free_page; i++ ) {
		if (!(freep = (uint32 *)hashp->mapp[i]) &&
		    !(freep = fetch_bitmap(hashp, i)))
			return (0);
		if (i == (unsigned)free_page)
			in_use_bits = free_bit;
		else
			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
		
		if (i == (unsigned)first_page) {
			bit = hashp->LAST_FREED &
			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
			j = bit / BITS_PER_MAP;
			bit = bit & ~(BITS_PER_MAP - 1);
		} else {
			bit = 0;
			j = 0;
		}
		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
			if (freep[j] != ALL_SET)
				goto found;
	}

	/* No Free Page Found */
	hashp->LAST_FREED = hashp->SPARES[splitnum];
	hashp->SPARES[splitnum]++;
	offset = hashp->SPARES[splitnum] -
	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);

#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
	if (offset > SPLITMASK) {
		if (++splitnum >= NCACHED) {
#ifndef macintosh
			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
#endif
			return (0);
		}
		hashp->OVFL_POINT = splitnum;
		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
		hashp->SPARES[splitnum-1]--;
		offset = 1;
	}

	/* Check if we need to allocate a new bitmap page */
	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
		free_page++;
		if (free_page >= NCACHED) {
#ifndef macintosh
			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
#endif
			return (0);
		}
		/*
		 * This is tricky.  The 1 indicates that you want the new page
		 * allocated with 1 clear bit.  Actually, you are going to
		 * allocate 2 pages from this map.  The first is going to be
		 * the map page, the second is the overflow page we were
		 * looking for.  The init_bitmap routine automatically, sets
		 * the first bit of itself to indicate that the bitmap itself
		 * is in use.  We would explicitly set the second bit, but
		 * don't have to if we tell init_bitmap not to leave it clear
		 * in the first place.
		 */
		if (__ibitmap(hashp,
		    (int)OADDR_OF(splitnum, offset), 1, free_page))
			return (0);
		hashp->SPARES[splitnum]++;
#ifdef DEBUG2
		free_bit = 2;
#endif
		offset++;
		if (offset > SPLITMASK) {
			if (++splitnum >= NCACHED) {
#ifndef macintosh
				(void)write(STDERR_FILENO, OVMSG,
				    sizeof(OVMSG) - 1);
#endif
				return (0);
			}
			hashp->OVFL_POINT = splitnum;
			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
			hashp->SPARES[splitnum-1]--;
			offset = 0;
		}
	} else {
		/*
		 * Free_bit addresses the last used bit.  Bump it to address
		 * the first available bit.
		 */
		free_bit++;
		SETBIT(freep, free_bit);
	}

	/* Calculate address of the new overflow page */
	addr = OADDR_OF(splitnum, offset);
#ifdef DEBUG2
	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
	    addr, free_bit, free_page);
#endif
	return (addr);

found:
	bit = bit + first_free(freep[j]);
	SETBIT(freep, bit);
#ifdef DEBUG2
	tmp1 = bit;
	tmp2 = i;
#endif
	/*
	 * Bits are addressed starting with 0, but overflow pages are addressed
	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
	 * it to convert it to a page number.
	 */
	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
	if (bit >= hashp->LAST_FREED)
		hashp->LAST_FREED = bit - 1;

	/* Calculate the split number for this page */
	for (i = 0; (i < (unsigned)splitnum) && (bit > hashp->SPARES[i]); i++) {}
	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
	if (offset >= SPLITMASK)
		return (0);	/* Out of overflow pages */
	addr = OADDR_OF(i, offset);
#ifdef DEBUG2
	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
	    addr, tmp1, tmp2);
#endif

	/* Allocate and return the overflow page */
	return (addr);
}

/*
 * Mark this overflow page as free.
 */
extern void
__free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
{
	uint16 addr;
	uint32 *freep;
	uint32 bit_address, free_page, free_bit;
	uint16 ndx;

	if(!obufp || !obufp->addr)
	    return;

	addr = obufp->addr;
#ifdef DEBUG1
	(void)fprintf(stderr, "Freeing %d\n", addr);
#endif
	ndx = (((uint16)addr) >> SPLITSHIFT);
	bit_address =
	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
	if (bit_address < (uint32)hashp->LAST_FREED)
		hashp->LAST_FREED = bit_address;
	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);

	if (!(freep = hashp->mapp[free_page])) 
		freep = fetch_bitmap(hashp, free_page);

#ifdef DEBUG
	/*
	 * This had better never happen.  It means we tried to read a bitmap
	 * that has already had overflow pages allocated off it, and we
	 * failed to read it from the file.
	 */
	if (!freep)
	  {
		assert(0);
		return;
	  }
#endif
	CLRBIT(freep, free_bit);
#ifdef DEBUG2
	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
	    obufp->addr, free_bit, free_page);
#endif
	__reclaim_buf(hashp, obufp);
}

/*
 * Returns:
 *	 0 success
 *	-1 failure
 */
static int
open_temp(HTAB *hashp)
{
#ifdef XP_OS2
 	hashp->fp = mkstemp(NULL);
#else
#if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
	sigset_t set, oset;
#endif
#if !defined(macintosh)
	char * tmpdir;
	size_t len;
	char last;
#endif
	static const char namestr[] = "/_hashXXXXXX";
	char filename[1024];

#if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
	/* Block signals; make sure file goes away at process exit. */
	(void)sigfillset(&set);
	(void)sigprocmask(SIG_BLOCK, &set, &oset);
#endif

	filename[0] = 0;
#if defined(macintosh)
	strcat(filename, namestr + 1);
#else
	tmpdir = getenv("TMP");
	if (!tmpdir)
		tmpdir = getenv("TMPDIR");
	if (!tmpdir)
		tmpdir = getenv("TEMP");
	if (!tmpdir)
		tmpdir = ".";
	len = strlen(tmpdir);
	if (len && len < (sizeof filename - sizeof namestr)) {
		strcpy(filename, tmpdir);
	}
	len = strlen(filename);
	last = tmpdir[len - 1];
	strcat(filename, (last == '/' || last == '\\') ? namestr + 1 : namestr);
#endif

#if defined(_WIN32) || defined(_WINDOWS)
	if ((hashp->fp = mkstempflags(filename, _O_BINARY|_O_TEMPORARY)) != -1) {
		if (hashp->filename) {
			free(hashp->filename);
		}
		hashp->filename = strdup(filename);
		hashp->is_temp = 1;
	}
#else
	if ((hashp->fp = mkstemp(filename)) != -1) {
		(void)unlink(filename);
#if !defined(macintosh)
		(void)fcntl(hashp->fp, F_SETFD, 1);
#endif									  
	}
#endif

#if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
#endif
#endif  /* !OS2 */
	return (hashp->fp != -1 ? 0 : -1);
}

/*
 * We have to know that the key will fit, but the last entry on the page is
 * an overflow pair, so we need to shift things.
 */
static void
squeeze_key(uint16 *sp, const DBT * key, const DBT * val)
{
	register char *p;
	uint16 free_space, n, off, pageno;

	p = (char *)sp;
	n = sp[0];
	free_space = FREESPACE(sp);
	off = OFFSET(sp);

	pageno = sp[n - 1];
	off -= key->size;
	sp[n - 1] = off;
	memmove(p + off, key->data, key->size);
	off -= val->size;
	sp[n] = off;
	memmove(p + off, val->data, val->size);
	sp[0] = n + 2;
	sp[n + 1] = pageno;
	sp[n + 2] = OVFLPAGE;
	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
	OFFSET(sp) = off;
}

static uint32 *
fetch_bitmap(HTAB *hashp, uint32 ndx)
{
	if (ndx >= (unsigned)hashp->nmaps)
		return (NULL);
	if ((hashp->mapp[ndx] = (uint32 *)malloc((size_t)hashp->BSIZE)) == NULL)
		return (NULL);
	if (__get_page(hashp,
	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
		free(hashp->mapp[ndx]);
		hashp->mapp[ndx] = NULL; /* NEW: 9-11-95 */
		return (NULL);
	}                 
	return (hashp->mapp[ndx]);
}

#ifdef DEBUG4
int
print_chain(int addr)
{
	BUFHEAD *bufp;
	short *bp, oaddr;

	(void)fprintf(stderr, "%d ", addr);
	bufp = __get_buf(hashp, addr, NULL, 0);
	bp = (short *)bufp->page;
	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
		((bp[0] > 2) && bp[2] < REAL_KEY))) {
		oaddr = bp[bp[0] - 1];
		(void)fprintf(stderr, "%d ", (int)oaddr);
		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
		bp = (short *)bufp->page;
	}
	(void)fprintf(stderr, "\n");
}
#endif