DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998-2000 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* "Unsort" a sorted vector path into an ordinary vector path. */

#include "config.h"
#include "art_vpath_svp.h"

#include <stdio.h> /* for printf - debugging */
#include "art_misc.h"

#include "art_vpath.h"
#include "art_svp.h"

typedef struct _ArtVpathSVPEnd ArtVpathSVPEnd;

struct _ArtVpathSVPEnd {
  int seg_num;
  int which; /* 0 = top, 1 = bottom */
  double x, y;
};

#define EPSILON 1e-6

static int
art_vpath_svp_point_compare (double x1, double y1, double x2, double y2)
{
  if (y1 - EPSILON > y2) return 1;
  if (y1 + EPSILON < y2) return -1;
  if (x1 - EPSILON > x2) return 1;
  if (x1 + EPSILON < x2) return -1;
  return 0;
}

static int
art_vpath_svp_compare (const void *s1, const void *s2)
{
  const ArtVpathSVPEnd *e1 = s1;
  const ArtVpathSVPEnd *e2 = s2;

  return art_vpath_svp_point_compare (e1->x, e1->y, e2->x, e2->y);
}

/* Convert from sorted vector path representation into regular
   vector path representation.

   Status of this routine:

   Basic correctness: Only works with closed paths.

   Numerical stability: Not known to work when more than two segments
   meet at a point.

   Speed: Should be pretty good.

   Precision: Does not degrade precision.

*/
/**
 * art_vpath_from_svp: Convert from svp to vpath form.
 * @svp: Original #ArtSVP.
 *
 * Converts the sorted vector path @svp into standard vpath form.
 *
 * Return value: the newly allocated vpath.
 **/
ArtVpath *
art_vpath_from_svp (const ArtSVP *svp)
{
  int n_segs = svp->n_segs;
  ArtVpathSVPEnd *ends;
  ArtVpath *new;
  int *visited;
  int n_new, n_new_max;
  int i, k;
  int j = 0; /* Quiet compiler */
  int seg_num;
  int first;
  double last_x, last_y;
  int n_points;
  int pt_num;

  last_x = 0; /* to eliminate "uninitialized" warning */
  last_y = 0;

  ends = art_new (ArtVpathSVPEnd, n_segs * 2);
  for (i = 0; i < svp->n_segs; i++)
    {
      int lastpt;

      ends[i * 2].seg_num = i;
      ends[i * 2].which = 0;
      ends[i * 2].x = svp->segs[i].points[0].x;
      ends[i * 2].y = svp->segs[i].points[0].y;

      lastpt = svp->segs[i].n_points - 1;
      ends[i * 2 + 1].seg_num = i;
      ends[i * 2 + 1].which = 1;
      ends[i * 2 + 1].x = svp->segs[i].points[lastpt].x;
      ends[i * 2 + 1].y = svp->segs[i].points[lastpt].y;
    }
  qsort (ends, n_segs * 2, sizeof (ArtVpathSVPEnd), art_vpath_svp_compare);

  n_new = 0;
  n_new_max = 16; /* I suppose we _could_ estimate this from traversing
		     the svp, so we don't have to reallocate */
  new = art_new (ArtVpath, n_new_max);

  visited = art_new (int, n_segs);
  for (i = 0; i < n_segs; i++)
    visited[i] = 0;

  first = 1;
  for (i = 0; i < n_segs; i++)
    {
      if (!first)
	{
	  /* search for the continuation of the existing subpath */
	  /* This could be a binary search (which is why we sorted, above) */
	  for (j = 0; j < n_segs * 2; j++)
	    {
	      if (!visited[ends[j].seg_num] &&
		  art_vpath_svp_point_compare (last_x, last_y,
					       ends[j].x, ends[j].y) == 0)
		break;
	    }
	  if (j == n_segs * 2)
	    first = 1;
	}
      if (first)
	{
	  /* start a new subpath */
	  for (j = 0; j < n_segs * 2; j++)
	    if (!visited[ends[j].seg_num])
	      break;
	}
      if (j == n_segs * 2)
	{
	  printf ("failure\n");
	}
      seg_num = ends[j].seg_num;
      n_points = svp->segs[seg_num].n_points;
      for (k = 0; k < n_points; k++)
	{
	  pt_num = svp->segs[seg_num].dir ? k : n_points - (1 + k);
	  if (k == 0)
	    {
	      if (first)
		{
		  art_vpath_add_point (&new, &n_new, &n_new_max,
				       ART_MOVETO,
				       svp->segs[seg_num].points[pt_num].x,
				       svp->segs[seg_num].points[pt_num].y);
		}
	    }
	  else
	    {
	      art_vpath_add_point (&new, &n_new, &n_new_max,
				   ART_LINETO,
				   svp->segs[seg_num].points[pt_num].x,
				   svp->segs[seg_num].points[pt_num].y);
	      if (k == n_points - 1)
		{
		  last_x = svp->segs[seg_num].points[pt_num].x;
		  last_y = svp->segs[seg_num].points[pt_num].y;
		  /* to make more robust, check for meeting first_[xy],
		     set first if so */
		}
	    }
	  first = 0;
	}
      visited[seg_num] = 1;
    }

  art_vpath_add_point (&new, &n_new, &n_new_max,
		       ART_END, 0, 0);
  art_free (visited);
  art_free (ends);
  return new;
}