DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998-2000 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* Primitive intersection and winding number operations on sorted
   vector paths.

   These routines are internal to libart, used to construct operations
   like intersection, union, and difference. */

#include "config.h"
#include "art_svp_wind.h"

#include <stdio.h> /* for printf of debugging info */
#include <string.h> /* for memcpy */
#include <math.h>
#include "art_misc.h"

#include "art_rect.h"
#include "art_svp.h"

#define noVERBOSE

#define PT_EQ(p1,p2) ((p1).x == (p2).x && (p1).y == (p2).y)

#define PT_CLOSE(p1,p2) (fabs ((p1).x - (p2).x) < 1e-6 && fabs ((p1).y - (p2).y) < 1e-6)

/* return nonzero and set *p to the intersection point if the lines
   z0-z1 and z2-z3 intersect each other. */
static int
intersect_lines (ArtPoint z0, ArtPoint z1, ArtPoint z2, ArtPoint z3,
		 ArtPoint *p)
{
  double a01, b01, c01;
  double a23, b23, c23;
  double d0, d1, d2, d3;
  double det;

  /* if the vectors share an endpoint, they don't intersect */
  if (PT_EQ (z0, z2) || PT_EQ (z0, z3) || PT_EQ (z1, z2) || PT_EQ (z1, z3))
    return 0;

#if 0
  if (PT_CLOSE (z0, z2) || PT_CLOSE (z0, z3) || PT_CLOSE (z1, z2) || PT_CLOSE (z1, z3))
    return 0;
#endif

  /* find line equations ax + by + c = 0 */
  a01 = z0.y - z1.y;
  b01 = z1.x - z0.x;
  c01 = -(z0.x * a01 + z0.y * b01);
  /* = -((z0.y - z1.y) * z0.x + (z1.x - z0.x) * z0.y) 
     = (z1.x * z0.y - z1.y * z0.x) */

  d2 = a01 * z2.x + b01 * z2.y + c01;
  d3 = a01 * z3.x + b01 * z3.y + c01;
  if ((d2 > 0) == (d3 > 0))
    return 0;

  a23 = z2.y - z3.y;
  b23 = z3.x - z2.x;
  c23 = -(z2.x * a23 + z2.y * b23);

  d0 = a23 * z0.x + b23 * z0.y + c23;
  d1 = a23 * z1.x + b23 * z1.y + c23;
  if ((d0 > 0) == (d1 > 0))
    return 0;

  /* now we definitely know that the lines intersect */
  /* solve the two linear equations ax + by + c = 0 */
  det = 1.0 / (a01 * b23 - a23 * b01);
  p->x = det * (c23 * b01 - c01 * b23);
  p->y = det * (c01 * a23 - c23 * a01);

  return 1;
}

#define EPSILON 1e-6

static double
trap_epsilon (double v)
{
  const double epsilon = EPSILON;

  if (v < epsilon && v > -epsilon) return 0;
  else return v;
}

/* Determine the order of line segments z0-z1 and z2-z3.
   Return +1 if z2-z3 lies entirely to the right of z0-z1,
   -1 if entirely to the left,
   or 0 if overlap.

   The case analysis in this function is quite ugly. The fact that it's
   almost 200 lines long is ridiculous.

   Ok, so here's the plan to cut it down:

   First, do a bounding line comparison on the x coordinates. This is pretty
   much the common case, and should go quickly. It also takes care of the
   case where both lines are horizontal.

   Then, do d0 and d1 computation, but only if a23 is nonzero.

   Finally, do d2 and d3 computation, but only if a01 is nonzero.

   Fall through to returning 0 (this will happen when both lines are
   horizontal and they overlap).
   */
static int
x_order (ArtPoint z0, ArtPoint z1, ArtPoint z2, ArtPoint z3)
{
  double a01, b01, c01;
  double a23, b23, c23;
  double d0, d1, d2, d3;

  if (z0.y == z1.y)
    {
      if (z2.y == z3.y)
	{
	  double x01min, x01max;
	  double x23min, x23max;

	  if (z0.x > z1.x)
	    {
	      x01min = z1.x;
	      x01max = z0.x;
	    }
	  else
	    {
	      x01min = z0.x;
	      x01max = z1.x;
	    }

	  if (z2.x > z3.x)
	    {
	      x23min = z3.x;
	      x23max = z2.x;
	    }
	  else
	    {
	      x23min = z2.x;
	      x23max = z3.x;
	    }

	  if (x23min >= x01max) return 1;
	  else if (x01min >= x23max) return -1;
	  else return 0;
	}
      else
	{
	  /* z0-z1 is horizontal, z2-z3 isn't */
	  a23 = z2.y - z3.y;
	  b23 = z3.x - z2.x;
	  c23 = -(z2.x * a23 + z2.y * b23);

	  if (z3.y < z2.y)
	    {
	      a23 = -a23;
	      b23 = -b23;
	      c23 = -c23;
	    }
	  
	  d0 = trap_epsilon (a23 * z0.x + b23 * z0.y + c23);
	  d1 = trap_epsilon (a23 * z1.x + b23 * z1.y + c23);

	  if (d0 > 0)
	    {
	      if (d1 >= 0) return 1;
	      else return 0;
	    }
	  else if (d0 == 0)
	    {
	      if (d1 > 0) return 1;
	      else if (d1 < 0) return -1;
	      else printf ("case 1 degenerate\n");
	      return 0;
	    }
	  else /* d0 < 0 */
	    {
	      if (d1 <= 0) return -1;
	      else return 0;
	    }
	}
    }
  else if (z2.y == z3.y)
    {
      /* z2-z3 is horizontal, z0-z1 isn't */
      a01 = z0.y - z1.y;
      b01 = z1.x - z0.x;
      c01 = -(z0.x * a01 + z0.y * b01);
      /* = -((z0.y - z1.y) * z0.x + (z1.x - z0.x) * z0.y) 
	 = (z1.x * z0.y - z1.y * z0.x) */

      if (z1.y < z0.y)
	{
	  a01 = -a01;
	  b01 = -b01;
	  c01 = -c01;
	}

      d2 = trap_epsilon (a01 * z2.x + b01 * z2.y + c01);
      d3 = trap_epsilon (a01 * z3.x + b01 * z3.y + c01);

      if (d2 > 0)
	{
	  if (d3 >= 0) return -1;
	  else return 0;
	}
      else if (d2 == 0)
	{
	  if (d3 > 0) return -1;
	  else if (d3 < 0) return 1;
	  else printf ("case 2 degenerate\n");
	  return 0;
	}
      else /* d2 < 0 */
	{
	  if (d3 <= 0) return 1;
	  else return 0;
	}
    }

  /* find line equations ax + by + c = 0 */
  a01 = z0.y - z1.y;
  b01 = z1.x - z0.x;
  c01 = -(z0.x * a01 + z0.y * b01);
  /* = -((z0.y - z1.y) * z0.x + (z1.x - z0.x) * z0.y) 
     = -(z1.x * z0.y - z1.y * z0.x) */

  if (a01 > 0)
    {
      a01 = -a01;
      b01 = -b01;
      c01 = -c01;
    }
  /* so now, (a01, b01) points to the left, thus a01 * x + b01 * y + c01
     is negative if the point lies to the right of the line */

  d2 = trap_epsilon (a01 * z2.x + b01 * z2.y + c01);
  d3 = trap_epsilon (a01 * z3.x + b01 * z3.y + c01);
  if (d2 > 0)
    {
      if (d3 >= 0) return -1;
    }
  else if (d2 == 0)
    {
      if (d3 > 0) return -1;
      else if (d3 < 0) return 1;
      else
	fprintf (stderr, "colinear!\n");
    }
  else /* d2 < 0 */
    {
      if (d3 <= 0) return 1;
    }

  a23 = z2.y - z3.y;
  b23 = z3.x - z2.x;
  c23 = -(z2.x * a23 + z2.y * b23);

  if (a23 > 0)
    {
      a23 = -a23;
      b23 = -b23;
      c23 = -c23;
    }
  d0 = trap_epsilon (a23 * z0.x + b23 * z0.y + c23);
  d1 = trap_epsilon (a23 * z1.x + b23 * z1.y + c23);
  if (d0 > 0)
    {
      if (d1 >= 0) return 1;
    }
  else if (d0 == 0)
    {
      if (d1 > 0) return 1;
      else if (d1 < 0) return -1;
      else
	fprintf (stderr, "colinear!\n");
    }
  else /* d0 < 0 */
    {
      if (d1 <= 0) return -1;
    }

  return 0;
}

/* similar to x_order, but to determine whether point z0 + epsilon lies to
   the left of the line z2-z3 or to the right */
static int
x_order_2 (ArtPoint z0, ArtPoint z1, ArtPoint z2, ArtPoint z3)
{
  double a23, b23, c23;
  double d0, d1;

  a23 = z2.y - z3.y;
  b23 = z3.x - z2.x;
  c23 = -(z2.x * a23 + z2.y * b23);

  if (a23 > 0)
    {
      a23 = -a23;
      b23 = -b23;
      c23 = -c23;
    }

  d0 = a23 * z0.x + b23 * z0.y + c23;

  if (d0 > EPSILON)
    return -1;
  else if (d0 < -EPSILON)
    return 1;

  d1 = a23 * z1.x + b23 * z1.y + c23;
  if (d1 > EPSILON)
    return -1;
  else if (d1 < -EPSILON)
    return 1;

  if (z0.x <= z2.x && z1.x <= z2.x && z0.x <= z3.x && z1.x <= z3.x)
    return -1;
  if (z0.x >= z2.x && z1.x >= z2.x && z0.x >= z3.x && z1.x >= z3.x)
    return 1;
  
  fprintf (stderr, "x_order_2: colinear!\n");
  return 0;
}

#ifdef DEAD_CODE
/* Traverse the vector path, keeping it in x-sorted order.

   This routine doesn't actually do anything - it's just here for
   explanatory purposes. */
void
traverse (ArtSVP *vp)
{
  int *active_segs;
  int n_active_segs;
  int *cursor;
  int seg_idx;
  double y;
  int tmp1, tmp2;
  int asi;
  int i, j;

  active_segs = art_new (int, vp->n_segs);
  cursor = art_new (int, vp->n_segs);

  n_active_segs = 0;
  seg_idx = 0;
  y = vp->segs[0].points[0].y;
  while (seg_idx < vp->n_segs || n_active_segs > 0)
    {
      printf ("y = %g\n", y);
      /* delete segments ending at y from active list */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  if (vp->segs[asi].n_points - 1 == cursor[asi] &&
	      vp->segs[asi].points[cursor[asi]].y == y)
	    {
	      printf ("deleting %d\n", asi);
	      n_active_segs--;
	      for (j = i; j < n_active_segs; j++)
		active_segs[j] = active_segs[j + 1];
	      i--;
	    }
	}

      /* insert new segments into the active list */
      while (seg_idx < vp->n_segs && y == vp->segs[seg_idx].points[0].y)
	{
	  cursor[seg_idx] = 0;
	  printf ("inserting %d\n", seg_idx);
	  for (i = 0; i < n_active_segs; i++)
	    {
	      asi = active_segs[i];
	      if (x_order (vp->segs[asi].points[cursor[asi]],
			   vp->segs[asi].points[cursor[asi] + 1],
			   vp->segs[seg_idx].points[0],
			   vp->segs[seg_idx].points[1]) == -1)
	      break;
	    }
	  tmp1 = seg_idx;
	  for (j = i; j < n_active_segs; j++)
	    {
	      tmp2 = active_segs[j];
	      active_segs[j] = tmp1;
	      tmp1 = tmp2;
	    }
	  active_segs[n_active_segs] = tmp1;
	  n_active_segs++;
	  seg_idx++;
	}

      /* all active segs cross the y scanline (considering segs to be
       closed on top and open on bottom) */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  printf ("%d (%g, %g) - (%g, %g) %s\n", asi,
		  vp->segs[asi].points[cursor[asi]].x,
		  vp->segs[asi].points[cursor[asi]].y,
		  vp->segs[asi].points[cursor[asi] + 1].x,
		  vp->segs[asi].points[cursor[asi] + 1].y,
		  vp->segs[asi].dir ? "v" : "^");
	}

      /* advance y to the next event */
      if (n_active_segs == 0)
	{
	  if (seg_idx < vp->n_segs)
	    y = vp->segs[seg_idx].points[0].y;
	  /* else we're done */
	}
      else
	{
	  asi = active_segs[0];
	  y = vp->segs[asi].points[cursor[asi] + 1].y;
	  for (i = 1; i < n_active_segs; i++)
	    {
	      asi = active_segs[i];
	      if (y > vp->segs[asi].points[cursor[asi] + 1].y)
		y = vp->segs[asi].points[cursor[asi] + 1].y;
	    }
	  if (seg_idx < vp->n_segs && y > vp->segs[seg_idx].points[0].y)
	    y = vp->segs[seg_idx].points[0].y;
	}

      /* advance cursors to reach new y */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  while (cursor[asi] < vp->segs[asi].n_points - 1 &&
		 y >= vp->segs[asi].points[cursor[asi] + 1].y)
	    cursor[asi]++;
	}
      printf ("\n");
    }
  art_free (cursor);
  art_free (active_segs);
}
#endif

/* I believe that the loop will always break with i=1.

   I think I'll want to change this from a simple sorted list to a
   modified stack. ips[*][0] will get its own data structure, and
   ips[*] will in general only be allocated if there is an intersection.
   Finally, the segment can be traced through the initial point
   (formerly ips[*][0]), backwards through the stack, and finally
   to cursor + 1.

   This change should cut down on allocation bandwidth, and also
   eliminate the iteration through n_ipl below.

*/
static void
insert_ip (int seg_i, int *n_ips, int *n_ips_max, ArtPoint **ips, ArtPoint ip)
{
  int i;
  ArtPoint tmp1, tmp2;
  int n_ipl;
  ArtPoint *ipl;

  n_ipl = n_ips[seg_i]++;
  if (n_ipl == n_ips_max[seg_i])
      art_expand (ips[seg_i], ArtPoint, n_ips_max[seg_i]);
  ipl = ips[seg_i];
  for (i = 1; i < n_ipl; i++)
    if (ipl[i].y > ip.y)
      break;
  tmp1 = ip;
  for (; i <= n_ipl; i++)
    {
      tmp2 = ipl[i];
      ipl[i] = tmp1;
      tmp1 = tmp2;
    }
}

/* test active segment (i - 1) against i for intersection, if
   so, add intersection point to both ips lists. */
static void
intersect_neighbors (int i, int *active_segs,
		     int *n_ips, int *n_ips_max, ArtPoint **ips,
		     int *cursor, ArtSVP *vp)
{
  ArtPoint z0, z1, z2, z3;
  int asi01, asi23;
  ArtPoint ip;

  asi01 = active_segs[i - 1];

  z0 = ips[asi01][0];
  if (n_ips[asi01] == 1)
    z1 = vp->segs[asi01].points[cursor[asi01] + 1];
  else
    z1 = ips[asi01][1];

  asi23 = active_segs[i];

  z2 = ips[asi23][0];
  if (n_ips[asi23] == 1)
    z3 = vp->segs[asi23].points[cursor[asi23] + 1];
  else
    z3 = ips[asi23][1];

  if (intersect_lines (z0, z1, z2, z3, &ip))
    {
#ifdef VERBOSE
      printf ("new intersection point: (%g, %g)\n", ip.x, ip.y);
#endif
      insert_ip (asi01, n_ips, n_ips_max, ips, ip);
      insert_ip (asi23, n_ips, n_ips_max, ips, ip);
    }
}

/* Add a new point to a segment in the svp.

   Here, we also check to make sure that the segments satisfy nocross.
   However, this is only valuable for debugging, and could possibly be
   removed.
*/
static void
svp_add_point (ArtSVP *svp, int *n_points_max,
	       ArtPoint p, int *seg_map, int *active_segs, int n_active_segs,
	       int i)
{
  int asi, asi_left, asi_right;
  int n_points, n_points_left, n_points_right;
  ArtSVPSeg *seg;

  asi = seg_map[active_segs[i]];
  seg = &svp->segs[asi];
  n_points = seg->n_points;
  /* find out whether neighboring segments share a point */
  if (i > 0)
    {
      asi_left = seg_map[active_segs[i - 1]];
      n_points_left = svp->segs[asi_left].n_points;
      if (n_points_left > 1 && 
	  PT_EQ (svp->segs[asi_left].points[n_points_left - 2],
		 svp->segs[asi].points[n_points - 1]))
	{
	  /* ok, new vector shares a top point with segment to the left -
	     now, check that it satisfies ordering invariant */
	  if (x_order (svp->segs[asi_left].points[n_points_left - 2],
		       svp->segs[asi_left].points[n_points_left - 1],
		       svp->segs[asi].points[n_points - 1],
		       p) < 1)

	    {
#ifdef VERBOSE
	      printf ("svp_add_point: cross on left!\n");
#endif
	    }
	}
    }

  if (i + 1 < n_active_segs)
    {
      asi_right = seg_map[active_segs[i + 1]];
      n_points_right = svp->segs[asi_right].n_points;
      if (n_points_right > 1 && 
	  PT_EQ (svp->segs[asi_right].points[n_points_right - 2],
		 svp->segs[asi].points[n_points - 1]))
	{
	  /* ok, new vector shares a top point with segment to the right -
	     now, check that it satisfies ordering invariant */
	  if (x_order (svp->segs[asi_right].points[n_points_right - 2],
		       svp->segs[asi_right].points[n_points_right - 1],
		       svp->segs[asi].points[n_points - 1],
		       p) > -1)
	    {
#ifdef VERBOSE
	      printf ("svp_add_point: cross on right!\n");
#endif
	    }
	}
    }
  if (n_points_max[asi] == n_points)
    art_expand (seg->points, ArtPoint, n_points_max[asi]);
  seg->points[n_points] = p;
  if (p.x < seg->bbox.x0)
    seg->bbox.x0 = p.x;
  else if (p.x > seg->bbox.x1)
    seg->bbox.x1 = p.x;
  seg->bbox.y1 = p.y;
  seg->n_points++;
}

#if 0
/* find where the segment (currently at i) is supposed to go, and return
   the target index - if equal to i, then there is no crossing problem.

   "Where it is supposed to go" is defined as following:

   Delete element i, re-insert at position target (bumping everything
   target and greater to the right).
   */
static int
find_crossing (int i, int *active_segs, int n_active_segs,
	       int *cursor, ArtPoint **ips, int *n_ips, ArtSVP *vp)
{
  int asi, asi_left, asi_right;
  ArtPoint p0, p1;
  ArtPoint p0l, p1l;
  ArtPoint p0r, p1r;
  int target;

  asi = active_segs[i];
  p0 = ips[asi][0];
  if (n_ips[asi] == 1)
    p1 = vp->segs[asi].points[cursor[asi] + 1];
  else
    p1 = ips[asi][1];

  for (target = i; target > 0; target--)
    {
      asi_left = active_segs[target - 1];
      p0l = ips[asi_left][0];
      if (n_ips[asi_left] == 1)
	p1l = vp->segs[asi_left].points[cursor[asi_left] + 1];
      else
	p1l = ips[asi_left][1];
      if (!PT_EQ (p0, p0l))
	break;

#ifdef VERBOSE
      printf ("point matches on left (%g, %g) - (%g, %g) x (%g, %g) - (%g, %g)!\n",
	      p0l.x, p0l.y, p1l.x, p1l.y, p0.x, p0.y, p1.x, p1.y);
#endif
      if (x_order (p0l, p1l, p0, p1) == 1)
	break;

#ifdef VERBOSE
      printf ("scanning to the left (i=%d, target=%d)\n", i, target);
#endif
    }

  if (target < i) return target;

  for (; target < n_active_segs - 1; target++)
    {
      asi_right = active_segs[target + 1];
      p0r = ips[asi_right][0];
      if (n_ips[asi_right] == 1)
	p1r = vp->segs[asi_right].points[cursor[asi_right] + 1];
      else
	p1r = ips[asi_right][1];
      if (!PT_EQ (p0, p0r))
	break;

#ifdef VERBOSE
      printf ("point matches on left (%g, %g) - (%g, %g) x (%g, %g) - (%g, %g)!\n",
	      p0.x, p0.y, p1.x, p1.y, p0r.x, p0r.y, p1r.x, p1r.y);
#endif
      if (x_order (p0r, p1r, p0, p1) == 1)
	break;

#ifdef VERBOSE
      printf ("scanning to the right (i=%d, target=%d)\n", i, target);
#endif
    }

  return target;
}
#endif

/* This routine handles the case where the segment changes its position
   in the active segment list. Generally, this will happen when the
   segment (defined by i and cursor) shares a top point with a neighbor,
   but breaks the ordering invariant.

   Essentially, this routine sorts the lines [start..end), all of which
   share a top point. This is implemented as your basic insertion sort.

   This routine takes care of intersecting the appropriate neighbors,
   as well.

   A first argument of -1 immediately returns, which helps reduce special
   casing in the main unwind routine.
*/
static void
fix_crossing (int start, int end, int *active_segs, int n_active_segs,
	      int *cursor, ArtPoint **ips, int *n_ips, int *n_ips_max,
	      ArtSVP *vp, int *seg_map,
	      ArtSVP **p_new_vp, int *pn_segs_max,
	      int **pn_points_max)
{
  int i, j;
  int target;
  int asi, asj;
  ArtPoint p0i, p1i;
  ArtPoint p0j, p1j;
  int swap = 0;
#ifdef VERBOSE
  int k;
#endif
  ArtPoint *pts;

#ifdef VERBOSE
  printf ("fix_crossing: [%d..%d)", start, end);
  for (k = 0; k < n_active_segs; k++)
    printf (" %d", active_segs[k]);
  printf ("\n");
#endif

  if (start == -1)
    return;

  for (i = start + 1; i < end; i++)
    {

      asi = active_segs[i];
      if (cursor[asi] < vp->segs[asi].n_points - 1) {
	p0i = ips[asi][0];
	if (n_ips[asi] == 1)
	  p1i = vp->segs[asi].points[cursor[asi] + 1];
	else
	  p1i = ips[asi][1];

	for (j = i - 1; j >= start; j--)
	  {
	    asj = active_segs[j];
	    if (cursor[asj] < vp->segs[asj].n_points - 1)
	      {
		p0j = ips[asj][0];
		if (n_ips[asj] == 1)
		  p1j = vp->segs[asj].points[cursor[asj] + 1];
		else
		  p1j = ips[asj][1];

		/* we _hope_ p0i = p0j */
		if (x_order_2 (p0j, p1j, p0i, p1i) == -1)
		  break;
	      }
	  }

	target = j + 1;
	/* target is where active_seg[i] _should_ be in active_segs */
      
	if (target != i)
	  {
	    swap = 1;

#ifdef VERBOSE
	    printf ("fix_crossing: at %i should be %i\n", i, target);
#endif

	    /* let's close off all relevant segments */
	    for (j = i; j >= target; j--)
	      {
		asi = active_segs[j];
		/* First conjunct: this isn't the last point in the original
		   segment.

		   Second conjunct: this isn't the first point in the new
		   segment (i.e. already broken).
		*/
		if (cursor[asi] < vp->segs[asi].n_points - 1 &&
		    (*p_new_vp)->segs[seg_map[asi]].n_points != 1)
		  {
		    int seg_num;
		    /* so break here */
#ifdef VERBOSE
		    printf ("closing off %d\n", j);
#endif

		    pts = art_new (ArtPoint, 16);
		    pts[0] = ips[asi][0];
		    seg_num = art_svp_add_segment (p_new_vp, pn_segs_max,
						   pn_points_max,
						   1, vp->segs[asi].dir,
						   pts,
						   NULL);
		    (*pn_points_max)[seg_num] = 16;
		    seg_map[asi] = seg_num;
		  }
	      }

	    /* now fix the ordering in active_segs */
	    asi = active_segs[i];
	    for (j = i; j > target; j--)
	      active_segs[j] = active_segs[j - 1];
	    active_segs[j] = asi;
	  }
      }
    }
  if (swap && start > 0)
    {
      int as_start;

      as_start = active_segs[start];
      if (cursor[as_start] < vp->segs[as_start].n_points)
	{
#ifdef VERBOSE
	  printf ("checking intersection of %d, %d\n", start - 1, start);
#endif
	  intersect_neighbors (start, active_segs,
			       n_ips, n_ips_max, ips,
			       cursor, vp);
	}
    }

  if (swap && end < n_active_segs)
    {
      int as_end;

      as_end = active_segs[end - 1];
      if (cursor[as_end] < vp->segs[as_end].n_points)
	{
#ifdef VERBOSE
	  printf ("checking intersection of %d, %d\n", end - 1, end);
#endif
	  intersect_neighbors (end, active_segs,
			       n_ips, n_ips_max, ips,
			       cursor, vp);
	}
    }
  if (swap)
    {
#ifdef VERBOSE
      printf ("fix_crossing return: [%d..%d)", start, end);
      for (k = 0; k < n_active_segs; k++)
	printf (" %d", active_segs[k]);
      printf ("\n");
#endif
    }
}

/* Return a new sorted vector that covers the same area as the
   argument, but which satisfies the nocross invariant.

   Basically, this routine works by finding the intersection points,
   and cutting the segments at those points.

   Status of this routine:

   Basic correctness: Seems ok.

   Numerical stability: known problems in the case of points falling
   on lines, and colinear lines. For actual use, randomly perturbing
   the vertices is currently recommended.

   Speed: pretty good, although a more efficient priority queue, as
   well as bbox culling of potential intersections, are two
   optimizations that could help.

   Precision: pretty good, although the numerical stability problems
   make this routine unsuitable for precise calculations of
   differences.

*/

/* Here is a more detailed description of the algorithm. It follows
   roughly the structure of traverse (above), but is obviously quite
   a bit more complex.

   Here are a few important data structures:

   A new sorted vector path (new_svp).

   For each (active) segment in the original, a list of intersection
   points.

   Of course, the original being traversed.

   The following invariants hold (in addition to the invariants
   of the traverse procedure).

   The new sorted vector path lies entirely above the y scan line.

   The new sorted vector path keeps the nocross invariant.

   For each active segment, the y scan line crosses the line from the
   first to the second of the intersection points (where the second
   point is cursor + 1 if there is only one intersection point).

   The list of intersection points + the (cursor + 1) point is kept
   in nondecreasing y order.

   Of the active segments, none of the lines from first to second
   intersection point cross the 1st ip..2nd ip line of the left or
   right neighbor. (However, such a line may cross further
   intersection points of the neighbors, or segments past the
   immediate neighbors).

   Of the active segments, all lines from 1st ip..2nd ip are in
   strictly increasing x_order (this is very similar to the invariant
   of the traverse procedure, but is explicitly stated here in terms
   of ips). (this basically says that nocross holds on the active
   segments)

   The combination of the new sorted vector path, the path through all
   the intersection points to cursor + 1, and [cursor + 1, n_points)
   covers the same area as the argument.

   Another important data structure is mapping from original segment
   number to new segment number.

   The algorithm is perhaps best understood as advancing the cursors
   while maintaining these invariants. Here's roughly how it's done.

   When deleting segments from the active list, those segments are added
   to the new sorted vector path. In addition, the neighbors may intersect
   each other, so they are intersection tested (see below).

   When inserting new segments, they are intersection tested against
   their neighbors. The top point of the segment becomes the first
   intersection point.

   Advancing the cursor is just a bit different from the traverse
   routine, as the cursor may advance through the intersection points
   as well. Only when there is a single intersection point in the list
   does the cursor advance in the original segment. In either case,
   the new vector is intersection tested against both neighbors. It
   also causes the vector over which the cursor is advancing to be
   added to the new svp.

   Two steps need further clarification:

   Intersection testing: the 1st ip..2nd ip lines of the neighbors
   are tested to see if they cross (using intersect_lines). If so,
   then the intersection point is added to the ip list of both
   segments, maintaining the invariant that the list of intersection
   points is nondecreasing in y).

   Adding vector to new svp: if the new vector shares a top x
   coordinate with another vector, then it is checked to see whether
   it is in order. If not, then both segments are "broken," and then
   restarted. Note: in the case when both segments are in the same
   order, they may simply be swapped without breaking.

   For the time being, I'm going to put some of these operations into
   subroutines. If it turns out to be a performance problem, I could
   try to reorganize the traverse procedure so that each is only
   called once, and inline them. But if it's not a performance
   problem, I'll just keep it this way, because it will probably help
   to make the code clearer, and I believe this code could use all the
   clarity it can get. */
/**
 * art_svp_uncross: Resolve self-intersections of an svp.
 * @vp: The original svp.
 *
 * Finds all the intersections within @vp, and constructs a new svp
 * with new points added at these intersections.
 *
 * This routine needs to be redone from scratch with numerical robustness
 * in mind. I'm working on it.
 *
 * Return value: The new svp.
 **/
ArtSVP *
art_svp_uncross (ArtSVP *vp)
{
  int *active_segs;
  int n_active_segs;
  int *cursor;
  int seg_idx;
  double y;
  int tmp1, tmp2;
  int asi;
  int i, j;
  /* new data structures */
  /* intersection points; invariant: *ips[i] is only allocated if
     i is active */
  int *n_ips, *n_ips_max;
  ArtPoint **ips;
  /* new sorted vector path */
  int n_segs_max, seg_num;
  ArtSVP *new_vp;
  int *n_points_max;
  /* mapping from argument to new segment numbers - again, only valid
   if active */
  int *seg_map;
  double y_curs;
  ArtPoint p_curs;
  int first_share;
  double share_x;
  ArtPoint *pts;

  n_segs_max = 16;
  new_vp = (ArtSVP *)art_alloc (sizeof(ArtSVP) +
				(n_segs_max - 1) * sizeof(ArtSVPSeg));
  new_vp->n_segs = 0;

  if (vp->n_segs == 0)
    return new_vp;

  active_segs = art_new (int, vp->n_segs);
  cursor = art_new (int, vp->n_segs);

  seg_map = art_new (int, vp->n_segs);
  n_ips = art_new (int, vp->n_segs);
  n_ips_max = art_new (int, vp->n_segs);
  ips = art_new (ArtPoint *, vp->n_segs);

  n_points_max = art_new (int, n_segs_max);

  n_active_segs = 0;
  seg_idx = 0;
  y = vp->segs[0].points[0].y;
  while (seg_idx < vp->n_segs || n_active_segs > 0)
    {
#ifdef VERBOSE
      printf ("y = %g\n", y);
#endif

      /* maybe move deletions to end of loop (to avoid so much special
	 casing on the end of a segment)? */

      /* delete segments ending at y from active list */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  if (vp->segs[asi].n_points - 1 == cursor[asi] &&
	      vp->segs[asi].points[cursor[asi]].y == y)
	    {
	      do
		{
#ifdef VERBOSE
		  printf ("deleting %d\n", asi);
#endif
		  art_free (ips[asi]);
		  n_active_segs--;
		  for (j = i; j < n_active_segs; j++)
		    active_segs[j] = active_segs[j + 1];
		  if (i < n_active_segs)
		    asi = active_segs[i];
		  else
		    break;
		}
	      while (vp->segs[asi].n_points - 1 == cursor[asi] &&
		     vp->segs[asi].points[cursor[asi]].y == y);

	      /* test intersection of neighbors */
	      if (i > 0 && i < n_active_segs)
		intersect_neighbors (i, active_segs,
				     n_ips, n_ips_max, ips,
				     cursor, vp);

	      i--;
	    }	      
	}

      /* insert new segments into the active list */
      while (seg_idx < vp->n_segs && y == vp->segs[seg_idx].points[0].y)
	{
#ifdef VERBOSE
	  printf ("inserting %d\n", seg_idx);
#endif
	  cursor[seg_idx] = 0;
	  for (i = 0; i < n_active_segs; i++)
	    {
	      asi = active_segs[i];
	      if (x_order_2 (vp->segs[seg_idx].points[0],
			     vp->segs[seg_idx].points[1],
			     vp->segs[asi].points[cursor[asi]],
			     vp->segs[asi].points[cursor[asi] + 1]) == -1)
		break;
	    }

	  /* Create and initialize the intersection points data structure */
	  n_ips[seg_idx] = 1;
	  n_ips_max[seg_idx] = 2;
	  ips[seg_idx] = art_new (ArtPoint, n_ips_max[seg_idx]);
	  ips[seg_idx][0] = vp->segs[seg_idx].points[0];

	  /* Start a new segment in the new vector path */
	  pts = art_new (ArtPoint, 16);
	  pts[0] = vp->segs[seg_idx].points[0];
	  seg_num = art_svp_add_segment (&new_vp, &n_segs_max,
					 &n_points_max,
					 1, vp->segs[seg_idx].dir,
					 pts,
					 NULL);
	  n_points_max[seg_num] = 16;
	  seg_map[seg_idx] = seg_num;

	  tmp1 = seg_idx;
	  for (j = i; j < n_active_segs; j++)
	    {
	      tmp2 = active_segs[j];
	      active_segs[j] = tmp1;
	      tmp1 = tmp2;
	    }
	  active_segs[n_active_segs] = tmp1;
	  n_active_segs++;

	  if (i > 0)
	    intersect_neighbors (i, active_segs,
				 n_ips, n_ips_max, ips,
				 cursor, vp);

	  if (i + 1 < n_active_segs)
	    intersect_neighbors (i + 1, active_segs,
				 n_ips, n_ips_max, ips,
				 cursor, vp);

	  seg_idx++;
	}

      /* all active segs cross the y scanline (considering segs to be
       closed on top and open on bottom) */
#ifdef VERBOSE
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  printf ("%d ", asi);
	  for (j = 0; j < n_ips[asi]; j++)
	    printf ("(%g, %g) - ",
		    ips[asi][j].x,
		    ips[asi][j].y);
	  printf ("(%g, %g) %s\n",
		  vp->segs[asi].points[cursor[asi] + 1].x,
		  vp->segs[asi].points[cursor[asi] + 1].y,
		  vp->segs[asi].dir ? "v" : "^");
	}
#endif

      /* advance y to the next event 
       Note: this is quadratic. We'd probably get decent constant
       factor speed improvement by caching the y_curs values. */
      if (n_active_segs == 0)
	{
	  if (seg_idx < vp->n_segs)
	    y = vp->segs[seg_idx].points[0].y;
	  /* else we're done */
	}
      else
	{
	  asi = active_segs[0];
	  if (n_ips[asi] == 1)
	    y = vp->segs[asi].points[cursor[asi] + 1].y;
	  else
	    y = ips[asi][1].y;
	  for (i = 1; i < n_active_segs; i++)
	    {
	      asi = active_segs[i];
	      if (n_ips[asi] == 1)
		y_curs = vp->segs[asi].points[cursor[asi] + 1].y;
	      else
		y_curs = ips[asi][1].y;
	      if (y > y_curs)
		y = y_curs;
	    }
	  if (seg_idx < vp->n_segs && y > vp->segs[seg_idx].points[0].y)
	    y = vp->segs[seg_idx].points[0].y;
	}

      first_share = -1;
      share_x = 0; /* to avoid gcc warning, although share_x is never
		      used when first_share is -1 */
      /* advance cursors to reach new y */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  if (n_ips[asi] == 1)
	    p_curs = vp->segs[asi].points[cursor[asi] + 1];
	  else
	    p_curs = ips[asi][1];
	  if (p_curs.y == y)
	    {
	      svp_add_point (new_vp, n_points_max,
			     p_curs, seg_map, active_segs, n_active_segs, i);

	      n_ips[asi]--;
	      for (j = 0; j < n_ips[asi]; j++)
		ips[asi][j] = ips[asi][j + 1];

	      if (n_ips[asi] == 0)
		{
		  ips[asi][0] = p_curs;
		  n_ips[asi] = 1;
		  cursor[asi]++;
		}

	      if (first_share < 0 || p_curs.x != share_x)
		{
		  /* this is where crossings are detected, and if
		     found, the active segments switched around. */
		      
		  fix_crossing (first_share, i,
				active_segs, n_active_segs,
				cursor, ips, n_ips, n_ips_max, vp, seg_map,
				&new_vp,
				&n_segs_max, &n_points_max);

		  first_share = i;
		  share_x = p_curs.x;
		}

	      if (cursor[asi] < vp->segs[asi].n_points - 1)
		{

		  if (i > 0)
		    intersect_neighbors (i, active_segs,
					 n_ips, n_ips_max, ips,
					 cursor, vp);
		  
		  if (i + 1 < n_active_segs)
		    intersect_neighbors (i + 1, active_segs,
					 n_ips, n_ips_max, ips,
					 cursor, vp);
		}
	    }
	  else
	    {
	      /* not on a cursor point */
	      fix_crossing (first_share, i,
			    active_segs, n_active_segs,
			    cursor, ips, n_ips, n_ips_max, vp, seg_map,
			    &new_vp,
			    &n_segs_max, &n_points_max);
	      first_share = -1;
	    }
	}

      /* fix crossing on last shared group */
      fix_crossing (first_share, i,
		    active_segs, n_active_segs,
		    cursor, ips, n_ips, n_ips_max, vp, seg_map,
		    &new_vp,
		    &n_segs_max, &n_points_max);

#ifdef VERBOSE
      printf ("\n");
#endif
    }

  /* not necessary to sort, new segments only get added at y, which
     increases monotonically */
#if 0
  qsort (&new_vp->segs, new_vp->n_segs, sizeof (svp_seg), svp_seg_compare);
  {
    int k;
    for (k = 0; k < new_vp->n_segs - 1; k++)
      {
	printf ("(%g, %g) - (%g, %g) %s (%g, %g) - (%g, %g)\n",
		new_vp->segs[k].points[0].x,
		new_vp->segs[k].points[0].y,
		new_vp->segs[k].points[1].x,
		new_vp->segs[k].points[1].y,
		svp_seg_compare (&new_vp->segs[k], &new_vp->segs[k + 1]) > 1 ? ">": "<",
		new_vp->segs[k + 1].points[0].x,
		new_vp->segs[k + 1].points[0].y,
		new_vp->segs[k + 1].points[1].x,
		new_vp->segs[k + 1].points[1].y);
      }
  }
#endif

  art_free (n_points_max);
  art_free (seg_map);
  art_free (n_ips_max);
  art_free (n_ips);
  art_free (ips);
  art_free (cursor);
  art_free (active_segs);

  return new_vp;
}

#define noVERBOSE

/* Rewind a svp satisfying the nocross invariant.

   The winding number of a segment is defined as the winding number of
   the points to the left while travelling in the direction of the
   segment. Therefore it preincrements and postdecrements as a scan
   line is traversed from left to right.

   Status of this routine:

   Basic correctness: Was ok in gfonted. However, this code does not
   yet compute bboxes for the resulting svp segs.

   Numerical stability: known problems in the case of horizontal
   segments in polygons with any complexity. For actual use, randomly
   perturbing the vertices is recommended.

   Speed: good.

   Precision: good, except that no attempt is made to remove "hair".
   Doing random perturbation just makes matters worse.

*/
/**
 * art_svp_rewind_uncrossed: Rewind an svp satisfying the nocross invariant.
 * @vp: The original svp.
 * @rule: The winding rule.
 *
 * Creates a new svp with winding number of 0 or 1 everywhere. The @rule
 * argument specifies a rule for how winding numbers in the original
 * @vp map to the winding numbers in the result.
 *
 * With @rule == ART_WIND_RULE_NONZERO, the resulting svp has a
 * winding number of 1 where @vp has a nonzero winding number.
 *
 * With @rule == ART_WIND_RULE_INTERSECT, the resulting svp has a
 * winding number of 1 where @vp has a winding number greater than
 * 1. It is useful for computing intersections.
 *
 * With @rule == ART_WIND_RULE_ODDEVEN, the resulting svp has a
 * winding number of 1 where @vp has an odd winding number. It is
 * useful for implementing the even-odd winding rule of the
 * PostScript imaging model.
 *
 * With @rule == ART_WIND_RULE_POSITIVE, the resulting svp has a
 * winding number of 1 where @vp has a positive winding number. It is
 * useful for implementing asymmetric difference.
 *
 * This routine needs to be redone from scratch with numerical robustness
 * in mind. I'm working on it.
 *
 * Return value: The new svp.
 **/
ArtSVP *
art_svp_rewind_uncrossed (ArtSVP *vp, ArtWindRule rule)
{
  int *active_segs;
  int n_active_segs;
  int *cursor;
  int seg_idx;
  double y;
  int tmp1, tmp2;
  int asi;
  int i, j;

  ArtSVP *new_vp;
  int n_segs_max;
  int *winding;
  int left_wind;
  int wind;
  int keep, invert;

#ifdef VERBOSE
  print_svp (vp);
#endif
  n_segs_max = 16;
  new_vp = (ArtSVP *)art_alloc (sizeof(ArtSVP) +
				(n_segs_max - 1) * sizeof(ArtSVPSeg));
  new_vp->n_segs = 0;

  if (vp->n_segs == 0)
    return new_vp;

  winding = art_new (int, vp->n_segs);

  active_segs = art_new (int, vp->n_segs);
  cursor = art_new (int, vp->n_segs);

  n_active_segs = 0;
  seg_idx = 0;
  y = vp->segs[0].points[0].y;
  while (seg_idx < vp->n_segs || n_active_segs > 0)
    {
#ifdef VERBOSE
      printf ("y = %g\n", y);
#endif
      /* delete segments ending at y from active list */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  if (vp->segs[asi].n_points - 1 == cursor[asi] &&
	      vp->segs[asi].points[cursor[asi]].y == y)
	    {
#ifdef VERBOSE
	      printf ("deleting %d\n", asi);
#endif
	      n_active_segs--;
	      for (j = i; j < n_active_segs; j++)
		active_segs[j] = active_segs[j + 1];
	      i--;
	    }
	}

      /* insert new segments into the active list */
      while (seg_idx < vp->n_segs && y == vp->segs[seg_idx].points[0].y)
	{
#ifdef VERBOSE
	  printf ("inserting %d\n", seg_idx);
#endif
	  cursor[seg_idx] = 0;
	  for (i = 0; i < n_active_segs; i++)
	    {
	      asi = active_segs[i];
	      if (x_order_2 (vp->segs[seg_idx].points[0],
			     vp->segs[seg_idx].points[1],
			     vp->segs[asi].points[cursor[asi]],
			     vp->segs[asi].points[cursor[asi] + 1]) == -1)
		break;
	    }

	  /* Determine winding number for this segment */
	  if (i == 0)
	    left_wind = 0;
	  else if (vp->segs[active_segs[i - 1]].dir)
	    left_wind = winding[active_segs[i - 1]];
	  else
	    left_wind = winding[active_segs[i - 1]] - 1;

	  if (vp->segs[seg_idx].dir)
	    wind = left_wind + 1;
	  else
	    wind = left_wind;

	  winding[seg_idx] = wind;

	  switch (rule)
	    {
	    case ART_WIND_RULE_NONZERO:
	      keep = (wind == 1 || wind == 0);
	      invert = (wind == 0);
	      break;
	    case ART_WIND_RULE_INTERSECT:
	      keep = (wind == 2);
	      invert = 0;
	      break;
	    case ART_WIND_RULE_ODDEVEN:
	      keep = 1;
	      invert = !(wind & 1);
	      break;
	    case ART_WIND_RULE_POSITIVE:
	      keep = (wind == 1);
	      invert = 0;
	      break;
	    default:
	      keep = 0;
	      invert = 0;
	      break;
	    }

	  if (keep)
	    {
	      ArtPoint *points, *new_points;
	      int n_points;
	      int new_dir;

#ifdef VERBOSE
	      printf ("keeping segment %d\n", seg_idx);
#endif
	      n_points = vp->segs[seg_idx].n_points;
	      points = vp->segs[seg_idx].points;
	      new_points = art_new (ArtPoint, n_points);
	      memcpy (new_points, points, n_points * sizeof (ArtPoint));
	      new_dir = vp->segs[seg_idx].dir ^ invert;
	      art_svp_add_segment (&new_vp, &n_segs_max,
				   NULL,
				   n_points, new_dir, new_points,
				   &vp->segs[seg_idx].bbox);
	    }

	  tmp1 = seg_idx;
	  for (j = i; j < n_active_segs; j++)
	    {
	      tmp2 = active_segs[j];
	      active_segs[j] = tmp1;
	      tmp1 = tmp2;
	    }
	  active_segs[n_active_segs] = tmp1;
	  n_active_segs++;
	  seg_idx++;
	}

#ifdef VERBOSE
      /* all active segs cross the y scanline (considering segs to be
       closed on top and open on bottom) */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  printf ("%d:%d (%g, %g) - (%g, %g) %s %d\n", asi,
		  cursor[asi],
		  vp->segs[asi].points[cursor[asi]].x,
		  vp->segs[asi].points[cursor[asi]].y,
		  vp->segs[asi].points[cursor[asi] + 1].x,
		  vp->segs[asi].points[cursor[asi] + 1].y,
		  vp->segs[asi].dir ? "v" : "^",
		  winding[asi]);
	}
#endif

      /* advance y to the next event */
      if (n_active_segs == 0)
	{
	  if (seg_idx < vp->n_segs)
	    y = vp->segs[seg_idx].points[0].y;
	  /* else we're done */
	}
      else
	{
	  asi = active_segs[0];
	  y = vp->segs[asi].points[cursor[asi] + 1].y;
	  for (i = 1; i < n_active_segs; i++)
	    {
	      asi = active_segs[i];
	      if (y > vp->segs[asi].points[cursor[asi] + 1].y)
		y = vp->segs[asi].points[cursor[asi] + 1].y;
	    }
	  if (seg_idx < vp->n_segs && y > vp->segs[seg_idx].points[0].y)
	    y = vp->segs[seg_idx].points[0].y;
	}

      /* advance cursors to reach new y */
      for (i = 0; i < n_active_segs; i++)
	{
	  asi = active_segs[i];
	  while (cursor[asi] < vp->segs[asi].n_points - 1 &&
		 y >= vp->segs[asi].points[cursor[asi] + 1].y)
	    cursor[asi]++;
	}
#ifdef VERBOSE
      printf ("\n");
#endif
    }
  art_free (cursor);
  art_free (active_segs);
  art_free (winding);

  return new_vp;
}