DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998-2000 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */


#include "config.h"
#include "art_svp_vpath_stroke.h"

#include <stdlib.h>
#include <math.h>

#include "art_misc.h"

#include "art_vpath.h"
#include "art_svp.h"
#ifdef ART_USE_NEW_INTERSECTOR
#include "art_svp_intersect.h"
#else
#include "art_svp_wind.h"
#endif
#include "art_svp_vpath.h"

#define EPSILON 1e-6
#define EPSILON_2 1e-12

#define yes_OPTIMIZE_INNER

/* Render an arc segment starting at (xc + x0, yc + y0) to (xc + x1,
   yc + y1), centered at (xc, yc), and with given radius. Both x0^2 +
   y0^2 and x1^2 + y1^2 should be equal to radius^2.

   A positive value of radius means curve to the left, negative means
   curve to the right.
*/
static void
art_svp_vpath_stroke_arc (ArtVpath **p_vpath, int *pn, int *pn_max,
			  double xc, double yc,
			  double x0, double y0,
			  double x1, double y1,
			  double radius,
			  double flatness)
{
  double theta;
  double th_0, th_1;
  int n_pts;
  int i;
  double aradius;

  aradius = fabs (radius);
  theta = 2 * M_SQRT2 * sqrt (flatness / aradius);
  th_0 = atan2 (y0, x0);
  th_1 = atan2 (y1, x1);
  if (radius > 0)
    {
      /* curve to the left */
      if (th_0 < th_1) th_0 += M_PI * 2;
      n_pts = ceil ((th_0 - th_1) / theta);
    }
  else
    {
      /* curve to the right */
      if (th_1 < th_0) th_1 += M_PI * 2;
      n_pts = ceil ((th_1 - th_0) / theta);
    }
#ifdef VERBOSE
  printf ("start %f %f; th_0 = %f, th_1 = %f, r = %f, theta = %f\n", x0, y0, th_0, th_1, radius, theta);
#endif
  art_vpath_add_point (p_vpath, pn, pn_max,
		       ART_LINETO, xc + x0, yc + y0);
  for (i = 1; i < n_pts; i++)
    {
      theta = th_0 + (th_1 - th_0) * i / n_pts;
      art_vpath_add_point (p_vpath, pn, pn_max,
			   ART_LINETO, xc + cos (theta) * aradius,
			   yc + sin (theta) * aradius);
#ifdef VERBOSE
      printf ("mid %f %f\n", cos (theta) * radius, sin (theta) * radius);
#endif
    }
  art_vpath_add_point (p_vpath, pn, pn_max,
		       ART_LINETO, xc + x1, yc + y1);
#ifdef VERBOSE
  printf ("end %f %f\n", x1, y1);
#endif
}

/* Assume that forw and rev are at point i0. Bring them to i1,
   joining with the vector i1 - i2.

   This used to be true, but isn't now that the stroke_raw code is
   filtering out (near)zero length vectors: {It so happens that all
   invocations of this function maintain the precondition i1 = i0 + 1,
   so we could decrease the number of arguments by one. We haven't
   done that here, though.}

   forw is to the line's right and rev is to its left.

   Precondition: no zero-length vectors, otherwise a divide by
   zero will happen.  */
static void
render_seg (ArtVpath **p_forw, int *pn_forw, int *pn_forw_max,
	    ArtVpath **p_rev, int *pn_rev, int *pn_rev_max,
	    ArtVpath *vpath, int i0, int i1, int i2,
	    ArtPathStrokeJoinType join,
	    double line_width, double miter_limit, double flatness)
{
  double dx0, dy0;
  double dx1, dy1;
  double dlx0, dly0;
  double dlx1, dly1;
  double dmx, dmy;
  double dmr2;
  double scale;
  double cross;

#ifdef VERBOSE
  printf ("join style = %d\n", join);
#endif

  /* The vectors of the lines from i0 to i1 and i1 to i2. */
  dx0 = vpath[i1].x - vpath[i0].x;
  dy0 = vpath[i1].y - vpath[i0].y;

  dx1 = vpath[i2].x - vpath[i1].x;
  dy1 = vpath[i2].y - vpath[i1].y;

  /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
     90 degrees, and scaled to the length of line_width. */
  scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0);
  dlx0 = dy0 * scale;
  dly0 = -dx0 * scale;

  /* Set dl[xy]1 to the vector from i1 to i2, rotated counterclockwise
     90 degrees, and scaled to the length of line_width. */
  scale = line_width / sqrt (dx1 * dx1 + dy1 * dy1);
  dlx1 = dy1 * scale;
  dly1 = -dx1 * scale;

#ifdef VERBOSE
  printf ("%% render_seg: (%g, %g) - (%g, %g) - (%g, %g)\n",
	  vpath[i0].x, vpath[i0].y,
	  vpath[i1].x, vpath[i1].y,
	  vpath[i2].x, vpath[i2].y);

  printf ("%% render_seg: d[xy]0 = (%g, %g), dl[xy]0 = (%g, %g)\n",
	  dx0, dy0, dlx0, dly0);

  printf ("%% render_seg: d[xy]1 = (%g, %g), dl[xy]1 = (%g, %g)\n",
	  dx1, dy1, dlx1, dly1);
#endif

  /* now, forw's last point is expected to be colinear along d[xy]0
     to point i0 - dl[xy]0, and rev with i0 + dl[xy]0. */

  /* positive for positive area (i.e. left turn) */
  cross = dx1 * dy0 - dx0 * dy1;

  dmx = (dlx0 + dlx1) * 0.5;
  dmy = (dly0 + dly1) * 0.5;
  dmr2 = dmx * dmx + dmy * dmy;

  if (join == ART_PATH_STROKE_JOIN_MITER &&
      dmr2 * miter_limit * miter_limit < line_width * line_width)
    join = ART_PATH_STROKE_JOIN_BEVEL;

  /* the case when dmr2 is zero or very small bothers me
     (i.e. near a 180 degree angle) */
  scale = line_width * line_width / dmr2;
  dmx *= scale;
  dmy *= scale;

  if (cross * cross < EPSILON_2 && dx0 * dx1 + dy0 * dy1 >= 0)
    {
      /* going straight */
#ifdef VERBOSE
      printf ("%% render_seg: straight\n");
#endif
      art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
		       ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
      art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
		       ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
    }
  else if (cross > 0)
    {
      /* left turn, forw is outside and rev is inside */

#ifdef VERBOSE
      printf ("%% render_seg: left\n");
#endif
      if (
#ifdef NO_OPTIMIZE_INNER
	  0 &&
#endif
	  /* check that i1 + dm[xy] is inside i0-i1 rectangle */
	  (dx0 + dmx) * dx0 + (dy0 + dmy) * dy0 > 0 &&
	  /* and that i1 + dm[xy] is inside i1-i2 rectangle */
	  ((dx1 - dmx) * dx1 + (dy1 - dmy) * dy1 > 0)
#ifdef PEDANTIC_INNER
	  &&
	  /* check that i1 + dl[xy]1 is inside i0-i1 rectangle */
	  (dx0 + dlx1) * dx0 + (dy0 + dly1) * dy0 > 0 &&
	  /* and that i1 + dl[xy]0 is inside i1-i2 rectangle */
	  ((dx1 - dlx0) * dx1 + (dy1 - dly0) * dy1 > 0)
#endif
	  )
	{
	  /* can safely add single intersection point */
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
	}
      else
	{
	  /* need to loop-de-loop the inside */
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x, vpath[i1].y);
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
	}

      if (join == ART_PATH_STROKE_JOIN_BEVEL)
	{
	  /* bevel */
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
	}
      else if (join == ART_PATH_STROKE_JOIN_MITER)
	{
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
	}
      else if (join == ART_PATH_STROKE_JOIN_ROUND)
	art_svp_vpath_stroke_arc (p_forw, pn_forw, pn_forw_max,
				  vpath[i1].x, vpath[i1].y,
				  -dlx0, -dly0,
				  -dlx1, -dly1,
				  line_width,
				  flatness);
    }
  else
    {
      /* right turn, rev is outside and forw is inside */
#ifdef VERBOSE
      printf ("%% render_seg: right\n");
#endif

      if (
#ifdef NO_OPTIMIZE_INNER
	  0 &&
#endif
	  /* check that i1 - dm[xy] is inside i0-i1 rectangle */
	  (dx0 - dmx) * dx0 + (dy0 - dmy) * dy0 > 0 &&
	  /* and that i1 - dm[xy] is inside i1-i2 rectangle */
	  ((dx1 + dmx) * dx1 + (dy1 + dmy) * dy1 > 0)
#ifdef PEDANTIC_INNER
	  &&
	  /* check that i1 - dl[xy]1 is inside i0-i1 rectangle */
	  (dx0 - dlx1) * dx0 + (dy0 - dly1) * dy0 > 0 &&
	  /* and that i1 - dl[xy]0 is inside i1-i2 rectangle */
	  ((dx1 + dlx0) * dx1 + (dy1 + dly0) * dy1 > 0)
#endif
	  )
	{
	  /* can safely add single intersection point */
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
	}
      else
	{
	  /* need to loop-de-loop the inside */
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x, vpath[i1].y);
	  art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
			   ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
	}

      if (join == ART_PATH_STROKE_JOIN_BEVEL)
	{
	  /* bevel */
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
	}
      else if (join == ART_PATH_STROKE_JOIN_MITER)
	{
	  art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
			   ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
	}
      else if (join == ART_PATH_STROKE_JOIN_ROUND)
	art_svp_vpath_stroke_arc (p_rev, pn_rev, pn_rev_max,
				  vpath[i1].x, vpath[i1].y,
				  dlx0, dly0,
				  dlx1, dly1,
				  -line_width,
				  flatness);

    }
}

/* caps i1, under the assumption of a vector from i0 */
static void
render_cap (ArtVpath **p_result, int *pn_result, int *pn_result_max,
	    ArtVpath *vpath, int i0, int i1,
	    ArtPathStrokeCapType cap, double line_width, double flatness)
{
  double dx0, dy0;
  double dlx0, dly0;
  double scale;
  int n_pts;
  int i;

  dx0 = vpath[i1].x - vpath[i0].x;
  dy0 = vpath[i1].y - vpath[i0].y;

  /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
     90 degrees, and scaled to the length of line_width. */
  scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0);
  dlx0 = dy0 * scale;
  dly0 = -dx0 * scale;

#ifdef VERBOSE
  printf ("cap style = %d\n", cap);
#endif

  switch (cap)
    {
    case ART_PATH_STROKE_CAP_BUTT:
      art_vpath_add_point (p_result, pn_result, pn_result_max,
			   ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
      art_vpath_add_point (p_result, pn_result, pn_result_max,
			   ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
      break;
    case ART_PATH_STROKE_CAP_ROUND:
      n_pts = ceil (M_PI / (2.0 * M_SQRT2 * sqrt (flatness / line_width)));
      art_vpath_add_point (p_result, pn_result, pn_result_max,
			   ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
      for (i = 1; i < n_pts; i++)
	{
	  double theta, c_th, s_th;

	  theta = M_PI * i / n_pts;
	  c_th = cos (theta);
	  s_th = sin (theta);
	  art_vpath_add_point (p_result, pn_result, pn_result_max,
			       ART_LINETO,
			       vpath[i1].x - dlx0 * c_th - dly0 * s_th,
			       vpath[i1].y - dly0 * c_th + dlx0 * s_th);
	}
      art_vpath_add_point (p_result, pn_result, pn_result_max,
			   ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
      break;
    case ART_PATH_STROKE_CAP_SQUARE:
      art_vpath_add_point (p_result, pn_result, pn_result_max,
			   ART_LINETO,
			   vpath[i1].x - dlx0 - dly0,
			   vpath[i1].y - dly0 + dlx0);
      art_vpath_add_point (p_result, pn_result, pn_result_max,
			   ART_LINETO,
			   vpath[i1].x + dlx0 - dly0,
			   vpath[i1].y + dly0 + dlx0);
      break;
    }
}

/**
 * art_svp_from_vpath_raw: Stroke a vector path, raw version
 * @vpath: #ArtVPath to stroke.
 * @join: Join style.
 * @cap: Cap style.
 * @line_width: Width of stroke.
 * @miter_limit: Miter limit.
 * @flatness: Flatness.
 *
 * Exactly the same as art_svp_vpath_stroke(), except that the resulting
 * stroke outline may self-intersect and have regions of winding number
 * greater than 1.
 *
 * Return value: Resulting raw stroked outline in svp format.
 **/
ArtVpath *
art_svp_vpath_stroke_raw (ArtVpath *vpath,
			  ArtPathStrokeJoinType join,
			  ArtPathStrokeCapType cap,
			  double line_width,
			  double miter_limit,
			  double flatness)
{
  int begin_idx, end_idx;
  int i;
  ArtVpath *forw, *rev;
  int n_forw, n_rev;
  int n_forw_max, n_rev_max;
  ArtVpath *result;
  int n_result, n_result_max;
  double half_lw = 0.5 * line_width;
  int closed;
  int last, this, next, second;
  double dx, dy;

  n_forw_max = 16;
  forw = art_new (ArtVpath, n_forw_max);

  n_rev_max = 16;
  rev = art_new (ArtVpath, n_rev_max);

  n_result = 0;
  n_result_max = 16;
  result = art_new (ArtVpath, n_result_max);

  for (begin_idx = 0; vpath[begin_idx].code != ART_END; begin_idx = end_idx)
    {
      n_forw = 0;
      n_rev = 0;

      closed = (vpath[begin_idx].code == ART_MOVETO);

      /* we don't know what the first point joins with until we get to the
	 last point and see if it's closed. So we start with the second
	 line in the path.

	 Note: this is not strictly true (we now know it's closed from
	 the opening pathcode), but why fix code that isn't broken?
      */

      this = begin_idx;
      /* skip over identical points at the beginning of the subpath */
      for (i = this + 1; vpath[i].code == ART_LINETO; i++)
	{
	  dx = vpath[i].x - vpath[this].x;
	  dy = vpath[i].y - vpath[this].y;
	  if (dx * dx + dy * dy > EPSILON_2)
	    break;
	}
      next = i;
      second = next;

      /* invariant: this doesn't coincide with next */
      while (vpath[next].code == ART_LINETO)
	{
	  last = this;
	  this = next;
	  /* skip over identical points after the beginning of the subpath */
	  for (i = this + 1; vpath[i].code == ART_LINETO; i++)
	    {
	      dx = vpath[i].x - vpath[this].x;
	      dy = vpath[i].y - vpath[this].y;
	      if (dx * dx + dy * dy > EPSILON_2)
		break;
	    }
	  next = i;
	  if (vpath[next].code != ART_LINETO)
	    {
	      /* reached end of path */
	      /* make "closed" detection conform to PostScript
		 semantics (i.e. explicit closepath code rather than
		 just the fact that end of the path is the beginning) */
	      if (closed &&
		  vpath[this].x == vpath[begin_idx].x &&
		  vpath[this].y == vpath[begin_idx].y)
		{
		  int j;

		  /* path is closed, render join to beginning */
		  render_seg (&forw, &n_forw, &n_forw_max,
			      &rev, &n_rev, &n_rev_max,
			      vpath, last, this, second,
			      join, half_lw, miter_limit, flatness);

#ifdef VERBOSE
		  printf ("%% forw %d, rev %d\n", n_forw, n_rev);
#endif
		  /* do forward path */
		  art_vpath_add_point (&result, &n_result, &n_result_max,
				   ART_MOVETO, forw[n_forw - 1].x,
				   forw[n_forw - 1].y);
		  for (j = 0; j < n_forw; j++)
		    art_vpath_add_point (&result, &n_result, &n_result_max,
				     ART_LINETO, forw[j].x,
				     forw[j].y);

		  /* do reverse path, reversed */
		  art_vpath_add_point (&result, &n_result, &n_result_max,
				   ART_MOVETO, rev[0].x,
				   rev[0].y);
		  for (j = n_rev - 1; j >= 0; j--)
		    art_vpath_add_point (&result, &n_result, &n_result_max,
				     ART_LINETO, rev[j].x,
				     rev[j].y);
		}
	      else
		{
		  /* path is open */
		  int j;

		  /* add to forw rather than result to ensure that
		     forw has at least one point. */
		  render_cap (&forw, &n_forw, &n_forw_max,
			      vpath, last, this,
			      cap, half_lw, flatness);
		  art_vpath_add_point (&result, &n_result, &n_result_max,
				   ART_MOVETO, forw[0].x,
				   forw[0].y);
		  for (j = 1; j < n_forw; j++)
		    art_vpath_add_point (&result, &n_result, &n_result_max,
				     ART_LINETO, forw[j].x,
				     forw[j].y);
		  for (j = n_rev - 1; j >= 0; j--)
		    art_vpath_add_point (&result, &n_result, &n_result_max,
				     ART_LINETO, rev[j].x,
				     rev[j].y);
		  render_cap (&result, &n_result, &n_result_max,
			      vpath, second, begin_idx,
			      cap, half_lw, flatness);
		  art_vpath_add_point (&result, &n_result, &n_result_max,
				   ART_LINETO, forw[0].x,
				   forw[0].y);
		}
	    }
	  else
	    render_seg (&forw, &n_forw, &n_forw_max,
			&rev, &n_rev, &n_rev_max,
			vpath, last, this, next,
			join, half_lw, miter_limit, flatness);
	}
      end_idx = next;
    }

  art_free (forw);
  art_free (rev);
#ifdef VERBOSE
  printf ("%% n_result = %d\n", n_result);
#endif
  art_vpath_add_point (&result, &n_result, &n_result_max, ART_END, 0, 0);
  return result;
}

#define noVERBOSE

#ifdef VERBOSE

#define XOFF 50
#define YOFF 700

static void
print_ps_vpath (ArtVpath *vpath)
{
  int i;

  for (i = 0; vpath[i].code != ART_END; i++)
    {
      switch (vpath[i].code)
	{
	case ART_MOVETO:
	  printf ("%g %g moveto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
	  break;
	case ART_LINETO:
	  printf ("%g %g lineto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
	  break;
	default:
	  break;
	}
    }
  printf ("stroke showpage\n");
}

static void
print_ps_svp (ArtSVP *vpath)
{
  int i, j;

  printf ("%% begin\n");
  for (i = 0; i < vpath->n_segs; i++)
    {
      printf ("%g setgray\n", vpath->segs[i].dir ? 0.7 : 0);
      for (j = 0; j < vpath->segs[i].n_points; j++)
	{
	  printf ("%g %g %s\n",
		  XOFF + vpath->segs[i].points[j].x,
		  YOFF - vpath->segs[i].points[j].y,
		  j ? "lineto" : "moveto");
	}
      printf ("stroke\n");
    }

  printf ("showpage\n");
}
#endif

/* Render a vector path into a stroked outline.

   Status of this routine:

   Basic correctness: Only miter and bevel line joins are implemented,
   and only butt line caps. Otherwise, seems to be fine.

   Numerical stability: We cheat (adding random perturbation). Thus,
   it seems very likely that no numerical stability problems will be
   seen in practice.

   Speed: Should be pretty good.

   Precision: The perturbation fuzzes the coordinates slightly,
   but not enough to be visible.  */
/**
 * art_svp_vpath_stroke: Stroke a vector path.
 * @vpath: #ArtVPath to stroke.
 * @join: Join style.
 * @cap: Cap style.
 * @line_width: Width of stroke.
 * @miter_limit: Miter limit.
 * @flatness: Flatness.
 *
 * Computes an svp representing the stroked outline of @vpath. The
 * width of the stroked line is @line_width.
 *
 * Lines are joined according to the @join rule. Possible values are
 * ART_PATH_STROKE_JOIN_MITER (for mitered joins),
 * ART_PATH_STROKE_JOIN_ROUND (for round joins), and
 * ART_PATH_STROKE_JOIN_BEVEL (for bevelled joins). The mitered join
 * is converted to a bevelled join if the miter would extend to a
 * distance of more than @miter_limit * @line_width from the actual
 * join point.
 *
 * If there are open subpaths, the ends of these subpaths are capped
 * according to the @cap rule. Possible values are
 * ART_PATH_STROKE_CAP_BUTT (squared cap, extends exactly to end
 * point), ART_PATH_STROKE_CAP_ROUND (rounded half-circle centered at
 * the end point), and ART_PATH_STROKE_CAP_SQUARE (squared cap,
 * extending half @line_width past the end point).
 *
 * The @flatness parameter controls the accuracy of the rendering. It
 * is most important for determining the number of points to use to
 * approximate circular arcs for round lines and joins. In general, the
 * resulting vector path will be within @flatness pixels of the "ideal"
 * path containing actual circular arcs. I reserve the right to use
 * the @flatness parameter to convert bevelled joins to miters for very
 * small turn angles, as this would reduce the number of points in the
 * resulting outline path.
 *
 * The resulting path is "clean" with respect to self-intersections, i.e.
 * the winding number is 0 or 1 at each point.
 *
 * Return value: Resulting stroked outline in svp format.
 **/
ArtSVP *
art_svp_vpath_stroke (ArtVpath *vpath,
		      ArtPathStrokeJoinType join,
		      ArtPathStrokeCapType cap,
		      double line_width,
		      double miter_limit,
		      double flatness)
{
#ifdef ART_USE_NEW_INTERSECTOR
  ArtVpath *vpath_stroke;
  ArtSVP *svp, *svp2;
  ArtSvpWriter *swr;

  vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap,
					   line_width, miter_limit, flatness);
#ifdef VERBOSE
  print_ps_vpath (vpath_stroke);
#endif
  svp = art_svp_from_vpath (vpath_stroke);
#ifdef VERBOSE
  print_ps_svp (svp);
#endif
  art_free (vpath_stroke);

  swr = art_svp_writer_rewind_new (ART_WIND_RULE_NONZERO);
  art_svp_intersector (svp, swr);

  svp2 = art_svp_writer_rewind_reap (swr);
#ifdef VERBOSE
  print_ps_svp (svp2);
#endif
  art_svp_free (svp);
  return svp2;
#else
  ArtVpath *vpath_stroke, *vpath2;
  ArtSVP *svp, *svp2, *svp3;

  vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap,
					   line_width, miter_limit, flatness);
#ifdef VERBOSE
  print_ps_vpath (vpath_stroke);
#endif
  vpath2 = art_vpath_perturb (vpath_stroke);
#ifdef VERBOSE
  print_ps_vpath (vpath2);
#endif
  art_free (vpath_stroke);
  svp = art_svp_from_vpath (vpath2);
#ifdef VERBOSE
  print_ps_svp (svp);
#endif
  art_free (vpath2);
  svp2 = art_svp_uncross (svp);
#ifdef VERBOSE
  print_ps_svp (svp2);
#endif
  art_svp_free (svp);
  svp3 = art_svp_rewind_uncrossed (svp2, ART_WIND_RULE_NONZERO);
#ifdef VERBOSE
  print_ps_svp (svp3);
#endif
  art_svp_free (svp2);

  return svp3;
#endif
}