DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998-2000 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* The spiffy antialiased renderer for sorted vector paths. */

#include "config.h"
#include "art_svp_render_aa.h"

#include <math.h>
#include <string.h> /* for memmove */
#include "art_misc.h"

#include "art_rect.h"
#include "art_svp.h"

#include <stdio.h>

typedef double artfloat;

struct _ArtSVPRenderAAIter {
  const ArtSVP *svp;
  int x0, x1;
  int y;
  int seg_ix;

  int *active_segs;
  int n_active_segs;
  int *cursor;
  artfloat *seg_x;
  artfloat *seg_dx;

  ArtSVPRenderAAStep *steps;
};

static void
art_svp_render_insert_active (int i, int *active_segs, int n_active_segs,
			      artfloat *seg_x, artfloat *seg_dx)
{
  int j;
  artfloat x;
  int tmp1, tmp2;

  /* this is a cheap hack to get ^'s sorted correctly */
  x = seg_x[i] + 0.001 * seg_dx[i];
  for (j = 0; j < n_active_segs && seg_x[active_segs[j]] < x; j++);

  tmp1 = i;
  while (j < n_active_segs)
    {
      tmp2 = active_segs[j];
      active_segs[j] = tmp1;
      tmp1 = tmp2;
      j++;
    }
  active_segs[j] = tmp1;
}

static void
art_svp_render_delete_active (int *active_segs, int j, int n_active_segs)
{
  int k;

  for (k = j; k < n_active_segs; k++)
    active_segs[k] = active_segs[k + 1];
}

#define EPSILON 1e-6

/* Render the sorted vector path in the given rectangle, antialiased.

   This interface uses a callback for the actual pixel rendering. The
   callback is called y1 - y0 times (once for each scan line). The y
   coordinate is given as an argument for convenience (it could be
   stored in the callback's private data and incremented on each
   call).

   The rendered polygon is represented in a semi-runlength format: a
   start value and a sequence of "steps". Each step has an x
   coordinate and a value delta. The resulting value at position x is
   equal to the sum of the start value and all step delta values for
   which the step x coordinate is less than or equal to x. An
   efficient algorithm will traverse the steps left to right, keeping
   a running sum.

   All x coordinates in the steps are guaranteed to be x0 <= x < x1.
   (This guarantee is a change from the gfonted vpaar renderer, and is
   designed to simplify the callback).

   There is now a further guarantee that no two steps will have the
   same x value. This may allow for further speedup and simplification
   of renderers.

   The value 0x8000 represents 0% coverage by the polygon, while
   0xff8000 represents 100% coverage. This format is designed so that
   >> 16 results in a standard 0x00..0xff value range, with nice
   rounding.

   Status of this routine:

   Basic correctness: OK

   Numerical stability: pretty good, although probably not
   bulletproof.

   Speed: Needs more aggressive culling of bounding boxes.  Can
   probably speed up the [x0,x1) clipping of step values.  Can do more
   of the step calculation in fixed point.

   Precision: No known problems, although it should be tested
   thoroughly, especially for symmetry.

*/

ArtSVPRenderAAIter *
art_svp_render_aa_iter (const ArtSVP *svp,
			int x0, int y0, int x1, int y1)
{
  ArtSVPRenderAAIter *iter = art_new (ArtSVPRenderAAIter, 1);

  iter->svp = svp;
  iter->y = y0;
  iter->x0 = x0;
  iter->x1 = x1;
  iter->seg_ix = 0;

  iter->active_segs = art_new (int, svp->n_segs);
  iter->cursor = art_new (int, svp->n_segs);
  iter->seg_x = art_new (artfloat, svp->n_segs);
  iter->seg_dx = art_new (artfloat, svp->n_segs);
  iter->steps = art_new (ArtSVPRenderAAStep, x1 - x0);
  iter->n_active_segs = 0;

  return iter;
}

#define ADD_STEP(xpos, xdelta)                          \
  /* stereotype code fragment for adding a step */      \
  if (n_steps == 0 || steps[n_steps - 1].x < xpos)      \
    {                                                   \
      sx = n_steps;                                     \
      steps[sx].x = xpos;                               \
      steps[sx].delta = xdelta;                         \
      n_steps++;                                        \
    }                                                   \
  else                                                  \
    {                                                   \
      for (sx = n_steps; sx > 0; sx--)                  \
	{                                               \
	  if (steps[sx - 1].x == xpos)                  \
	    {                                           \
	      steps[sx - 1].delta += xdelta;            \
	      sx = n_steps;                             \
	      break;                                    \
	    }                                           \
	  else if (steps[sx - 1].x < xpos)              \
	    {                                           \
	      break;                                    \
	    }                                           \
	}                                               \
      if (sx < n_steps)                                 \
	{                                               \
	  memmove (&steps[sx + 1], &steps[sx],          \
		   (n_steps - sx) * sizeof(steps[0]));  \
	  steps[sx].x = xpos;                           \
	  steps[sx].delta = xdelta;                     \
	  n_steps++;                                    \
	}                                               \
    }

void
art_svp_render_aa_iter_step (ArtSVPRenderAAIter *iter, int *p_start,
			     ArtSVPRenderAAStep **p_steps, int *p_n_steps)
{
  const ArtSVP *svp = iter->svp;
  int *active_segs = iter->active_segs;
  int n_active_segs = iter->n_active_segs;
  int *cursor = iter->cursor;
  artfloat *seg_x = iter->seg_x;
  artfloat *seg_dx = iter->seg_dx;
  int i = iter->seg_ix;
  int j;
  int x0 = iter->x0;
  int x1 = iter->x1;
  int y = iter->y;
  int seg_index;

  int x;
  ArtSVPRenderAAStep *steps = iter->steps;
  int n_steps;
  artfloat y_top, y_bot;
  artfloat x_top, x_bot;
  artfloat x_min, x_max;
  int ix_min, ix_max;
  artfloat delta; /* delta should be int too? */
  int last, this;
  int xdelta;
  artfloat rslope, drslope;
  int start;
  const ArtSVPSeg *seg;
  int curs;
  artfloat dy;

  int sx;
  
  /* insert new active segments */
  for (; i < svp->n_segs && svp->segs[i].bbox.y0 < y + 1; i++)
    {
      if (svp->segs[i].bbox.y1 > y &&
	  svp->segs[i].bbox.x0 < x1)
	{
	  seg = &svp->segs[i];
	  /* move cursor to topmost vector which overlaps [y,y+1) */
	  for (curs = 0; seg->points[curs + 1].y < y; curs++);
	  cursor[i] = curs;
	  dy = seg->points[curs + 1].y - seg->points[curs].y;
	  if (fabs (dy) >= EPSILON)
	    seg_dx[i] = (seg->points[curs + 1].x - seg->points[curs].x) /
	      dy;
	  else
	    seg_dx[i] = 1e12;
	  seg_x[i] = seg->points[curs].x +
	    (y - seg->points[curs].y) * seg_dx[i];
	  art_svp_render_insert_active (i, active_segs, n_active_segs++,
					seg_x, seg_dx);
	}
    }

  n_steps = 0;

  /* render the runlengths, advancing and deleting as we go */
  start = 0x8000;

  for (j = 0; j < n_active_segs; j++)
    {
      seg_index = active_segs[j];
      seg = &svp->segs[seg_index];
      curs = cursor[seg_index];
      while (curs != seg->n_points - 1 &&
	     seg->points[curs].y < y + 1)
	{
	  y_top = y;
	  if (y_top < seg->points[curs].y)
	    y_top = seg->points[curs].y;
	  y_bot = y + 1;
	  if (y_bot > seg->points[curs + 1].y)
	    y_bot = seg->points[curs + 1].y;
	  if (y_top != y_bot) {
	    delta = (seg->dir ? 16711680.0 : -16711680.0) *
	      (y_bot - y_top);
	    x_top = seg_x[seg_index] + (y_top - y) * seg_dx[seg_index];
	    x_bot = seg_x[seg_index] + (y_bot - y) * seg_dx[seg_index];
	    if (x_top < x_bot)
	      {
		x_min = x_top;
		x_max = x_bot;
	      }
	    else
	      {
		x_min = x_bot;
		x_max = x_top;
	      }
	    ix_min = floor (x_min);
	    ix_max = floor (x_max);
	    if (ix_min >= x1)
	      {
		/* skip; it starts to the right of the render region */
	      }
	    else if (ix_max < x0)
	      /* it ends to the left of the render region */
	      start += delta;
	    else if (ix_min == ix_max)
	      {
		/* case 1, antialias a single pixel */
		xdelta = (ix_min + 1 - (x_min + x_max) * 0.5) * delta;

		ADD_STEP(ix_min, xdelta)

		if (ix_min + 1 < x1)
		  {
		    xdelta = delta - xdelta;

		    ADD_STEP(ix_min + 1, xdelta)
		  }
	      }
	    else
	      {
		/* case 2, antialias a run */
		rslope = 1.0 / fabs (seg_dx[seg_index]);
		drslope = delta * rslope;
		last =
		  drslope * 0.5 *
		  (ix_min + 1 - x_min) * (ix_min + 1 - x_min);
		xdelta = last;
		if (ix_min >= x0)
		  {
		    ADD_STEP(ix_min, xdelta)
		    
		    x = ix_min + 1;
		  }
		else
		  {
		    start += last;
		    x = x0;
		  }
		if (ix_max > x1)
		  ix_max = x1;
		for (; x < ix_max; x++)
		  {
		    this = (seg->dir ? 16711680.0 : -16711680.0) * rslope *
		      (x + 0.5 - x_min);
		    xdelta = this - last;
		    last = this;

		    ADD_STEP(x, xdelta)
		  }
		if (x < x1)
		  {
		    this =
		      delta * (1 - 0.5 *
			       (x_max - ix_max) * (x_max - ix_max) *
			       rslope);
		    xdelta = this - last;
		    last = this;

		    ADD_STEP(x, xdelta)
		    
		    if (x + 1 < x1)
		      {
			xdelta = delta - last;

			ADD_STEP(x + 1, xdelta)
		      }
		  }
	      }
	  }
	  curs++;
	  if (curs != seg->n_points - 1 &&
	      seg->points[curs].y < y + 1)
	    {
	      dy = seg->points[curs + 1].y - seg->points[curs].y;
	      if (fabs (dy) >= EPSILON)
		seg_dx[seg_index] = (seg->points[curs + 1].x -
				     seg->points[curs].x) / dy;
	      else
		seg_dx[seg_index] = 1e12;
	      seg_x[seg_index] = seg->points[curs].x +
		(y - seg->points[curs].y) * seg_dx[seg_index];
	    }
	  /* break here, instead of duplicating predicate in while? */
	}
      if (seg->points[curs].y >= y + 1)
	{
	  curs--;
	  cursor[seg_index] = curs;
	  seg_x[seg_index] += seg_dx[seg_index];
	}
      else
	{
	  art_svp_render_delete_active (active_segs, j--,
					--n_active_segs);
	}
    }

  *p_start = start;
  *p_steps = steps;
  *p_n_steps = n_steps;

  iter->seg_ix = i;
  iter->n_active_segs = n_active_segs;
  iter->y++;
}

void
art_svp_render_aa_iter_done (ArtSVPRenderAAIter *iter)
{
  art_free (iter->steps);

  art_free (iter->seg_dx);
  art_free (iter->seg_x);
  art_free (iter->cursor);
  art_free (iter->active_segs);
  art_free (iter);
}

/**
 * art_svp_render_aa: Render SVP antialiased.
 * @svp: The #ArtSVP to render.
 * @x0: Left coordinate of destination rectangle.
 * @y0: Top coordinate of destination rectangle.
 * @x1: Right coordinate of destination rectangle.
 * @y1: Bottom coordinate of destination rectangle.
 * @callback: The callback which actually paints the pixels.
 * @callback_data: Private data for @callback.
 *
 * Renders the sorted vector path in the given rectangle, antialiased.
 *
 * This interface uses a callback for the actual pixel rendering. The
 * callback is called @y1 - @y0 times (once for each scan line). The y
 * coordinate is given as an argument for convenience (it could be
 * stored in the callback's private data and incremented on each
 * call).
 *
 * The rendered polygon is represented in a semi-runlength format: a
 * start value and a sequence of "steps". Each step has an x
 * coordinate and a value delta. The resulting value at position x is
 * equal to the sum of the start value and all step delta values for
 * which the step x coordinate is less than or equal to x. An
 * efficient algorithm will traverse the steps left to right, keeping
 * a running sum.
 *
 * All x coordinates in the steps are guaranteed to be @x0 <= x < @x1.
 * (This guarantee is a change from the gfonted vpaar renderer from
 * which this routine is derived, and is designed to simplify the
 * callback).
 *
 * The value 0x8000 represents 0% coverage by the polygon, while
 * 0xff8000 represents 100% coverage. This format is designed so that
 * >> 16 results in a standard 0x00..0xff value range, with nice
 * rounding.
 * 
 **/
void
art_svp_render_aa (const ArtSVP *svp,
		   int x0, int y0, int x1, int y1,
		   void (*callback) (void *callback_data,
				     int y,
				     int start,
				     ArtSVPRenderAAStep *steps, int n_steps),
		   void *callback_data)
{
  ArtSVPRenderAAIter *iter;
  int y;
  int start;
  ArtSVPRenderAAStep *steps;
  int n_steps;

  iter = art_svp_render_aa_iter (svp, x0, y0, x1, y1);


  for (y = y0; y < y1; y++)
    {
      art_svp_render_aa_iter_step (iter, &start, &steps, &n_steps);
      (*callback) (callback_data, y, start, steps, n_steps);
    }

  art_svp_render_aa_iter_done (iter);
}