DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/* Libart_LGPL - library of basic graphic primitives
 * Copyright (C) 1998 Raph Levien
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* Simple manipulations with affine transformations */

#include "config.h"
#include "art_affine.h"

#include <math.h>
#include <stdio.h> /* for sprintf */
#include <string.h> /* for strcpy */

#include "art_misc.h" /* for M_PI */

/* According to a strict interpretation of the libart structure, this
   routine should go into its own module, art_point_affine.  However,
   it's only two lines of code, and it can be argued that it is one of
   the natural basic functions of an affine transformation.
*/

/**
 * art_affine_point: Do an affine transformation of a point.
 * @dst: Where the result point is stored.
 * @src: The original point.
 @ @affine: The affine transformation.
 **/
void
art_affine_point (ArtPoint *dst, const ArtPoint *src,
		  const double affine[6])
{
  double x, y;

  x = src->x;
  y = src->y;
  dst->x = x * affine[0] + y * affine[2] + affine[4];
  dst->y = x * affine[1] + y * affine[3] + affine[5];
}

/**
 * art_affine_invert: Find the inverse of an affine transformation.
 * @dst: Where the resulting affine is stored.
 * @src: The original affine transformation.
 *
 * All non-degenerate affine transforms are invertible. If the original
 * affine is degenerate or nearly so, expect numerical instability and
 * very likely core dumps on Alpha and other fp-picky architectures.
 * Otherwise, @dst multiplied with @src, or @src multiplied with @dst
 * will be (to within roundoff error) the identity affine.
 **/
void
art_affine_invert (double dst[6], const double src[6])
{
  double r_det;

  r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]);
  dst[0] = src[3] * r_det;
  dst[1] = -src[1] * r_det;
  dst[2] = -src[2] * r_det;
  dst[3] = src[0] * r_det;
  dst[4] = -src[4] * dst[0] - src[5] * dst[2];
  dst[5] = -src[4] * dst[1] - src[5] * dst[3];
}

/**
 * art_affine_flip: Flip an affine transformation horizontally and/or vertically.
 * @dst_affine: Where the resulting affine is stored.
 * @src_affine: The original affine transformation.
 * @horiz: Whether or not to flip horizontally.
 * @vert: Whether or not to flip horizontally.
 *
 * Flips the affine transform. FALSE for both @horiz and @vert implements
 * a simple copy operation. TRUE for both @horiz and @vert is a
 * 180 degree rotation. It is ok for @src_affine and @dst_affine to
 * be equal pointers.
 **/
void
art_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert)
{
  dst_affine[0] = horz ? - src_affine[0] : src_affine[0];
  dst_affine[1] = horz ? - src_affine[1] : src_affine[1];
  dst_affine[2] = vert ? - src_affine[2] : src_affine[2];
  dst_affine[3] = vert ? - src_affine[3] : src_affine[3];
  dst_affine[4] = horz ? - src_affine[4] : src_affine[4];
  dst_affine[5] = vert ? - src_affine[5] : src_affine[5];
}

#define EPSILON 1e-6

/* It's ridiculous I have to write this myself. This is hardcoded to
   six digits of precision, which is good enough for PostScript.

   The return value is the number of characters (i.e. strlen (str)).
   It is no more than 12. */
static int
art_ftoa (char str[80], double x)
{
  char *p = str;
  int i, j;

  p = str;
  if (fabs (x) < EPSILON / 2)
    {
      strcpy (str, "0");
      return 1;
    }
  if (x < 0)
    {
      *p++ = '-';
      x = -x;
    }
  if ((int)floor ((x + EPSILON / 2) < 1))
    {
      *p++ = '0';
      *p++ = '.';
      i = sprintf (p, "%06d", (int)floor ((x + EPSILON / 2) * 1e6));
      while (i && p[i - 1] == '0')
	i--;
      if (i == 0)
	i--;
      p += i;
    }
  else if (x < 1e6)
    {
      i = sprintf (p, "%d", (int)floor (x + EPSILON / 2));
      p += i;
      if (i < 6)
	{
	  int ix;

	  *p++ = '.';
	  x -= floor (x + EPSILON / 2);
	  for (j = i; j < 6; j++)
	    x *= 10;
	  ix = floor (x + 0.5);

	  for (j = 0; j < i; j++)
	    ix *= 10;

	  /* A cheap hack, this routine can round wrong for fractions
	     near one. */
	  if (ix == 1000000)
	    ix = 999999;

	  sprintf (p, "%06d", ix);
	  i = 6 - i;
	  while (i && p[i - 1] == '0')
	    i--;
	  if (i == 0)
	    i--;
	  p += i;
	}
    }
  else
    p += sprintf (p, "%g", x);

  *p = '\0';
  return p - str;
}



#include <stdlib.h>
/**
 * art_affine_to_string: Convert affine transformation to concise PostScript string representation.
 * @str: Where to store the resulting string.
 * @src: The affine transform.
 *
 * Converts an affine transform into a bit of PostScript code that
 * implements the transform. Special cases of scaling, rotation, and
 * translation are detected, and the corresponding PostScript
 * operators used (this greatly aids understanding the output
 * generated). The identity transform is mapped to the null string.
 **/
void
art_affine_to_string (char str[128], const double src[6])
{
  char tmp[80];
  int i, ix;

#if 0
  for (i = 0; i < 1000; i++)
    {
      double d = rand () * .1 / RAND_MAX;
      art_ftoa (tmp, d);
      printf ("%g %f %s\n", d, d, tmp);
    }
#endif
  if (fabs (src[4]) < EPSILON && fabs (src[5]) < EPSILON)
    {
      /* could be scale or rotate */
      if (fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON)
	{
	  /* scale */
	  if (fabs (src[0] - 1) < EPSILON && fabs (src[3] - 1) < EPSILON)
	    {
	      /* identity transform */
	      str[0] = '\0';
	      return;
	    }
	  else
	    {
	      ix = 0;
	      ix += art_ftoa (str + ix, src[0]);
	      str[ix++] = ' ';
	      ix += art_ftoa (str + ix, src[3]);
	      strcpy (str + ix, " scale");
	      return;
	    }
	}
      else
	{
	  /* could be rotate */
	  if (fabs (src[0] - src[3]) < EPSILON &&
	      fabs (src[1] + src[2]) < EPSILON &&
	      fabs (src[0] * src[0] + src[1] * src[1] - 1) < 2 * EPSILON)
	    {
	      double theta;

	      theta = (180 / M_PI) * atan2 (src[1], src[0]);
	      art_ftoa (tmp, theta);
	      sprintf (str, "%s rotate", tmp);
	      return;
	    }
	}
    }
  else
    {
      /* could be translate */
      if (fabs (src[0] - 1) < EPSILON && fabs (src[1]) < EPSILON &&
	  fabs (src[2]) < EPSILON && fabs (src[3] - 1) < EPSILON)
	{
	  ix = 0;
	  ix += art_ftoa (str + ix, src[4]);
	  str[ix++] = ' ';
	  ix += art_ftoa (str + ix, src[5]);
	  strcpy (str + ix, " translate");
	  return;
	}
    }

  ix = 0;
  str[ix++] = '[';
  str[ix++] = ' ';
  for (i = 0; i < 6; i++)
    {
      ix += art_ftoa (str + ix, src[i]);
      str[ix++] = ' ';
    }
  strcpy (str + ix, "] concat");
}

/**
 * art_affine_multiply: Multiply two affine transformation matrices.
 * @dst: Where to store the result.
 * @src1: The first affine transform to multiply.
 * @src2: The second affine transform to multiply.
 *
 * Multiplies two affine transforms together, i.e. the resulting @dst
 * is equivalent to doing first @src1 then @src2. Note that the
 * PostScript concat operator multiplies on the left, i.e.  "M concat"
 * is equivalent to "CTM = multiply (M, CTM)";
 *
 * It is safe to call this function with @dst equal to @src1 or @src2.
 **/
void
art_affine_multiply (double dst[6], const double src1[6], const double src2[6])
{
  double d0, d1, d2, d3, d4, d5;

  d0 = src1[0] * src2[0] + src1[1] * src2[2];
  d1 = src1[0] * src2[1] + src1[1] * src2[3];
  d2 = src1[2] * src2[0] + src1[3] * src2[2];
  d3 = src1[2] * src2[1] + src1[3] * src2[3];
  d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4];
  d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5];
  dst[0] = d0;
  dst[1] = d1;
  dst[2] = d2;
  dst[3] = d3;
  dst[4] = d4;
  dst[5] = d5;
}

/**
 * art_affine_identity: Set up the identity matrix.
 * @dst: Where to store the resulting affine transform.
 *
 * Sets up an identity matrix.
 **/
void
art_affine_identity (double dst[6])
{
  dst[0] = 1;
  dst[1] = 0;
  dst[2] = 0;
  dst[3] = 1;
  dst[4] = 0;
  dst[5] = 0;
}


/**
 * art_affine_scale: Set up a scaling matrix.
 * @dst: Where to store the resulting affine transform.
 * @sx: X scale factor.
 * @sy: Y scale factor.
 *
 * Sets up a scaling matrix.
 **/
void
art_affine_scale (double dst[6], double sx, double sy)
{
  dst[0] = sx;
  dst[1] = 0;
  dst[2] = 0;
  dst[3] = sy;
  dst[4] = 0;
  dst[5] = 0;
}

/**
 * art_affine_rotate: Set up a rotation affine transform.
 * @dst: Where to store the resulting affine transform.
 * @theta: Rotation angle in degrees.
 *
 * Sets up a rotation matrix. In the standard libart coordinate
 * system, in which increasing y moves downward, this is a
 * counterclockwise rotation. In the standard PostScript coordinate
 * system, which is reversed in the y direction, it is a clockwise
 * rotation.
 **/
void
art_affine_rotate (double dst[6], double theta)
{
  double s, c;

  s = sin (theta * M_PI / 180.0);
  c = cos (theta * M_PI / 180.0);
  dst[0] = c;
  dst[1] = s;
  dst[2] = -s;
  dst[3] = c;
  dst[4] = 0;
  dst[5] = 0;
}

/**
 * art_affine_shear: Set up a shearing matrix.
 * @dst: Where to store the resulting affine transform.
 * @theta: Shear angle in degrees.
 *
 * Sets up a shearing matrix. In the standard libart coordinate system
 * and a small value for theta, || becomes \\. Horizontal lines remain
 * unchanged.
 **/
void
art_affine_shear (double dst[6], double theta)
{
  double t;

  t = tan (theta * M_PI / 180.0);
  dst[0] = 1;
  dst[1] = 0;
  dst[2] = t;
  dst[3] = 1;
  dst[4] = 0;
  dst[5] = 0;
}

/**
 * art_affine_translate: Set up a translation matrix.
 * @dst: Where to store the resulting affine transform.
 * @tx: X translation amount.
 * @tx: Y translation amount.
 *
 * Sets up a translation matrix.
 **/
void
art_affine_translate (double dst[6], double tx, double ty)
{
  dst[0] = 1;
  dst[1] = 0;
  dst[2] = 0;
  dst[3] = 1;
  dst[4] = tx;
  dst[5] = ty;
}

/**
 * art_affine_expansion: Find the affine's expansion factor.
 * @src: The affine transformation.
 *
 * Finds the expansion factor, i.e. the square root of the factor
 * by which the affine transform affects area. In an affine transform
 * composed of scaling, rotation, shearing, and translation, returns
 * the amount of scaling.
 *
 * Return value: the expansion factor.
 **/
double
art_affine_expansion (const double src[6])
{
  return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
}

/**
 * art_affine_rectilinear: Determine whether the affine transformation is rectilinear.
 * @src: The original affine transformation.
 *
 * Determines whether @src is rectilinear, i.e.  grid-aligned
 * rectangles are transformed to other grid-aligned rectangles.  The
 * implementation has epsilon-tolerance for roundoff errors.
 *
 * Return value: TRUE if @src is rectilinear.
 **/
int
art_affine_rectilinear (const double src[6])
{
  return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) ||
	  (fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON));
}

/**
 * art_affine_equal: Determine whether two affine transformations are equal.
 * @matrix1: An affine transformation.
 * @matrix2: Another affine transformation.
 *
 * Determines whether @matrix1 and @matrix2 are equal, with
 * epsilon-tolerance for roundoff errors.
 *
 * Return value: TRUE if @matrix1 and @matrix2 are equal.
 **/
int
art_affine_equal (double matrix1[6], double matrix2[6])
{
  return (fabs (matrix1[0] - matrix2[0]) < EPSILON &&
	  fabs (matrix1[1] - matrix2[1]) < EPSILON &&
	  fabs (matrix1[2] - matrix2[2]) < EPSILON &&
	  fabs (matrix1[3] - matrix2[3]) < EPSILON &&
	  fabs (matrix1[4] - matrix2[4]) < EPSILON &&
	  fabs (matrix1[5] - matrix2[5]) < EPSILON);
}