DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
//
//  Little cms
//  Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining 
// a copy of this software and associated documentation files (the "Software"), 
// to deal in the Software without restriction, including without limitation 
// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
// and/or sell copies of the Software, and to permit persons to whom the Software 
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in 
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

// Interpolation

#include "lcms.h"

void cmsCalcL16Params(int nSamples, LPL16PARAMS p)
{
       p -> nSamples = nSamples;
       p -> Domain   = (WORD) (nSamples - 1);
       p -> nInputs = p -> nOutputs = 1;
      
}



// Eval gray LUT having only one input channel 

static
void Eval1Input(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
       Fixed32 fk;
       Fixed32 k0, k1, rk, K0, K1;
       int OutChan;

       fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
       k0 = FIXED_TO_INT(fk);
       rk = (WORD) FIXED_REST_TO_INT(fk);

       k1 = k0 + (StageABC[0] != 0xFFFFU ? 1 : 0);

       K0 = p16 -> opta1 * k0;
       K1 = p16 -> opta1 * k1;

       for (OutChan=0; OutChan < p16->nOutputs; OutChan++) {

           StageLMN[OutChan] = (WORD) FixedLERP(rk, LutTable[K0+OutChan],
                                                    LutTable[K1+OutChan]);
       }
}



// For more that 3 inputs (i.e., CMYK)
// evaluate two 3-dimensional interpolations and then linearly interpolate between them.
static
void Eval4Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{       
       Fixed32 fk;
       Fixed32 k0, rk;
       int K0, K1;
       LPWORD T;
       int i;
       WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];

       
       fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
       k0 = FIXED_TO_INT(fk);
       rk = FIXED_REST_TO_INT(fk);

       K0 = p16 -> opta4 * k0;
       K1 = p16 -> opta4 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));

       p16 -> nInputs = 3;

       T = LutTable + K0;

       cmsTetrahedralInterp16(StageABC + 1,  Tmp1, T, p16);

      
       T = LutTable + K1;

       cmsTetrahedralInterp16(StageABC + 1,  Tmp2, T, p16);

      
       p16 -> nInputs = 4;
       for (i=0; i < p16 -> nOutputs; i++)
       {
              StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
              
       }

}


static
void Eval5Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{       
       Fixed32 fk;
       Fixed32 k0, rk;
       int K0, K1;
       LPWORD T;
       int i;
       WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];

       
       fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
       k0 = FIXED_TO_INT(fk);
       rk = FIXED_REST_TO_INT(fk);

       K0 = p16 -> opta5 * k0;
       K1 = p16 -> opta5 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));

       p16 -> nInputs = 4;

       T = LutTable + K0;

       Eval4Inputs(StageABC + 1, Tmp1, T, p16);

       T = LutTable + K1;

       Eval4Inputs(StageABC + 1, Tmp2, T, p16);

       p16 -> nInputs = 5;
       for (i=0; i < p16 -> nOutputs; i++)
       {
              StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);           
              
       }

}


static
void Eval6Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{       
       Fixed32 fk;
       Fixed32 k0, rk;
       int K0, K1;
       LPWORD T;
       int i;
       WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];

       
       fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
       k0 = FIXED_TO_INT(fk);
       rk = FIXED_REST_TO_INT(fk);

       K0 = p16 -> opta6 * k0;
       K1 = p16 -> opta6 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));

       p16 -> nInputs = 5;

       T = LutTable + K0;

       Eval5Inputs(StageABC + 1, Tmp1, T, p16);

       T = LutTable + K1;

       Eval5Inputs(StageABC + 1, Tmp2, T, p16);

       p16 -> nInputs = 6;
       for (i=0; i < p16 -> nOutputs; i++)
       {
              StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
       }

}

static
void Eval7Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{       
       Fixed32 fk;
       Fixed32 k0, rk;
       int K0, K1;
       LPWORD T;
       int i;
       WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];

       
       fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
       k0 = FIXED_TO_INT(fk);
       rk = FIXED_REST_TO_INT(fk);

       K0 = p16 -> opta7 * k0;
       K1 = p16 -> opta7 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));

       p16 -> nInputs = 6;

       T = LutTable + K0;

       Eval6Inputs(StageABC + 1, Tmp1, T, p16);

       T = LutTable + K1;

       Eval6Inputs(StageABC + 1, Tmp2, T, p16);

       p16 -> nInputs = 7;
       for (i=0; i < p16 -> nOutputs; i++)
       {
              StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
       }

}

static
void Eval8Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{       
       Fixed32 fk;
       Fixed32 k0, rk;
       int K0, K1;
       LPWORD T;
       int i;
       WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];

       
       fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
       k0 = FIXED_TO_INT(fk);
       rk = FIXED_REST_TO_INT(fk);

       K0 = p16 -> opta8 * k0;
       K1 = p16 -> opta8 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));

       p16 -> nInputs = 7;

       T = LutTable + K0;

       Eval7Inputs(StageABC + 1, Tmp1, T, p16);

       T = LutTable + K1;

       Eval7Inputs(StageABC + 1, Tmp2, T, p16);

       p16 -> nInputs = 8;
       for (i=0; i < p16 -> nOutputs; i++)
       {
              StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
       }

}


// Fills optimization parameters

void cmsCalcCLUT16ParamsEx(int nSamples, int InputChan, int OutputChan, 
                                            LCMSBOOL lUseTetrahedral, LPL16PARAMS p)
{
       int clutPoints;

       cmsCalcL16Params(nSamples, p);

       p -> nInputs  = InputChan;
       p -> nOutputs = OutputChan;

       clutPoints = p -> Domain + 1;

       p -> opta1 = p -> nOutputs;              // Z
       p -> opta2 = p -> opta1 * clutPoints;    // Y
       p -> opta3 = p -> opta2 * clutPoints;    // X
       p -> opta4 = p -> opta3 * clutPoints;    // Used only in 4 inputs LUT
       p -> opta5 = p -> opta4 * clutPoints;    // Used only in 5 inputs LUT
       p -> opta6 = p -> opta5 * clutPoints;    // Used only on 6 inputs LUT
       p -> opta7 = p -> opta6 * clutPoints;    // Used only on 7 inputs LUT
       p -> opta8 = p -> opta7 * clutPoints;    // Used only on 8 inputs LUT


       switch (InputChan) {


           case 1: // Gray LUT

               p ->Interp3D = Eval1Input;
               break;

           case 3:  // RGB et al               
               if (lUseTetrahedral) {                   
                   p ->Interp3D = cmsTetrahedralInterp16;                   
               }
               else
                   p ->Interp3D = cmsTrilinearInterp16;   
               break;

           case 4:  // CMYK LUT             
                p ->Interp3D = Eval4Inputs;
                break;

           case 5: // 5 Inks
                p ->Interp3D = Eval5Inputs;
                break;           

           case 6: // 6 Inks
                p -> Interp3D = Eval6Inputs;
                break;     
                
            case 7: // 7 inks
                p ->Interp3D = Eval7Inputs;
                break;

           case 8: // 8 inks
                p ->Interp3D = Eval8Inputs;
                break;

           default:
                cmsSignalError(LCMS_ERRC_ABORTED, "Unsupported restoration (%d channels)", InputChan);
           }
       
}


void cmsCalcCLUT16Params(int nSamples, int InputChan, int OutputChan, LPL16PARAMS p)
{
    cmsCalcCLUT16ParamsEx(nSamples, InputChan, OutputChan, FALSE, p);
}



#ifdef USE_FLOAT


// Floating-point version

WORD cmsLinearInterpLUT16(WORD Value, WORD LutTable[], LPL16PARAMS p)
{
       double y1, y0;
       double y;
       double val2, rest;
       int cell0, cell1;

       // if last value...

       if (Value == 0xffff) return LutTable[p -> Domain];

       val2 = p -> Domain * ((double) Value / 65535.0);

       cell0 = (int) floor(val2);
       cell1 = (int) ceil(val2);

       // Rest is 16 LSB bits

       rest = val2 - cell0;

       y0 = LutTable[cell0] ;
       y1 = LutTable[cell1] ;

       y = y0 + (y1 - y0) * rest;


       return (WORD) floor(y+.5);
}

#endif


//
//  Linear interpolation (Fixed-point optimized, but C source)
//


#ifdef USE_C

WORD cmsLinearInterpLUT16(WORD Value1, WORD LutTable[], LPL16PARAMS p)
{
       WORD y1, y0;
       WORD y;
       int dif, a1;
       int cell0, rest;
       int val3, Value;

       // if last value...


       Value = Value1;
       if (Value == 0xffff) return LutTable[p -> Domain];

       val3 = p -> Domain * Value;
       val3 = ToFixedDomain(val3);              // To fixed 15.16

       cell0 = FIXED_TO_INT(val3);             // Cell is 16 MSB bits
       rest  = FIXED_REST_TO_INT(val3);        // Rest is 16 LSB bits

       y0 = LutTable[cell0] ;
       y1 = LutTable[cell0+1] ;

       dif = (int) y1 - y0;        // dif is in domain -ffff ... ffff

       if (dif >= 0)
       {
       a1 = ToFixedDomain(dif * rest);
       a1 += 0x8000;
       }
       else
       {
              a1 = ToFixedDomain((- dif) * rest);
              a1 -= 0x8000;
              a1 = -a1;
       }

       y = (WORD) (y0 + FIXED_TO_INT(a1));

       return y;
}

#endif

// Linear interpolation (asm by hand optimized)

#ifdef USE_ASSEMBLER

#ifdef _MSC_VER
#pragma warning(disable : 4033)
#pragma warning(disable : 4035)
#endif

WORD cmsLinearInterpLUT16(WORD Value, WORD LutTable[], LPL16PARAMS p)
{
       int xDomain = p -> Domain;


       if (Value == 0xffff) return LutTable[p -> Domain];
       else
       ASM {
              xor       eax, eax
              mov       ax, word ptr ss:Value
              mov       edx, ss:xDomain
              mul       edx                         //  val3 = p -> Domain * Value;
              shld      edx, eax, 16                // Convert it to fixed 15.16
              shl       eax, 16                     // * 65536 / 65535
              mov       ebx, 0x0000ffff
              div       ebx
              mov       ecx, eax
              sar       ecx, 16                        // ecx = cell0
              mov       edx, eax                       // rest = (val2 & 0xFFFFU)
              and       edx, 0x0000ffff                // edx = rest
              mov       ebx, ss:LutTable
              lea       eax, dword ptr [ebx+2*ecx]     // Ptr to LUT
              xor       ebx, ebx
              mov        bx, word  ptr [eax]           // EBX = y0
              movzx     eax, word  ptr [eax+2]         // EAX = y1
              sub       eax, ebx                       // EAX = y1-y0
              js        IsNegative
              mul       edx                            // EAX = EAX * rest
              shld      edx, eax, 16                   // Pass it to fixed
              sal       eax, 16                        // * 65536 / 65535
              mov       ecx, 0x0000ffff
              div       ecx
              add       eax, 0x8000                    // Rounding
              sar       eax, 16
              add       eax, ebx                       // Done!
              }

              RET((WORD) _EAX);

       IsNegative:

              ASM {
              neg       eax
              mul       edx                            // EAX = EAX * rest
              shld      edx, eax, 16                   // Pass it to fixed
              sal       eax, 16                        // * 65536 / 65535
              mov       ecx, 0x0000ffff
              div       ecx
              sub       eax, 0x8000
              neg       eax
              sar       eax, 16
              add       eax, ebx                       // Done!
              }

              RET((WORD) _EAX);
}

#ifdef _MSC_VER
#pragma warning(default : 4033)
#pragma warning(default : 4035)
#endif

#endif

Fixed32 cmsLinearInterpFixed(WORD Value1, WORD LutTable[], LPL16PARAMS p)
{
       Fixed32 y1, y0;
       int cell0;
       int val3, Value;

       // if last value...


       Value = Value1;
       if (Value == 0xffffU) return LutTable[p -> Domain];

       val3 = p -> Domain * Value;
       val3 = ToFixedDomain(val3);              // To fixed 15.16

       cell0 = FIXED_TO_INT(val3);             // Cell is 16 MSB bits

       y0 = LutTable[cell0] ;
       y1 = LutTable[cell0+1] ;


       return y0 + FixedMul((y1 - y0), (val3 & 0xFFFFL));
}


// Reverse Lineal interpolation (16 bits)
// Im using a sort of binary search here, this is not a time-critical function

WORD cmsReverseLinearInterpLUT16(WORD Value, WORD LutTable[], LPL16PARAMS p)
{
        register int l = 1;
        register int r = 0x10000;
        register int x = 0, res;       // 'int' Give spacing for negative values
        int NumZeroes, NumPoles;
        int cell0, cell1;
        double val2;
        double y0, y1, x0, x1;
        double a, b, f;

        // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
        // number of elements containing 0 at the begining of the table (Zeroes)
        // and another arbitrary number of poles (FFFFh) at the end.
        // First the zero and pole extents are computed, then value is compared.

        NumZeroes = 0;
        while (LutTable[NumZeroes] == 0 && NumZeroes < p -> Domain)
                        NumZeroes++;

        // There are no zeros at the beginning and we are trying to find a zero, so
        // return anything. It seems zero would be the less destructive choice

        if (NumZeroes == 0 && Value == 0)
            return 0;

        NumPoles = 0;
        while (LutTable[p -> Domain - NumPoles] == 0xFFFF && NumPoles < p -> Domain)
                        NumPoles++;

        // Does the curve belong to this case?
        if (NumZeroes > 1 || NumPoles > 1)
        {               
                int a, b;

                // Identify if value fall downto 0 or FFFF zone             
                if (Value == 0) return 0;
               // if (Value == 0xFFFF) return 0xFFFF;

                // else restrict to valid zone

                a = ((NumZeroes-1) * 0xFFFF) / p->Domain;               
                b = ((p -> Domain - NumPoles) * 0xFFFF) / p ->Domain;
                                                                
                l = a - 1;
                r = b + 1;
        }


        // Seems not a degenerated case... apply binary search

        while (r > l) {

                x = (l + r) / 2;

                res = (int) cmsLinearInterpLUT16((WORD) (x - 1), LutTable, p);

                if (res == Value) {

                    // Found exact match. 
                    
                    return (WORD) (x - 1);
                }

                if (res > Value) r = x - 1;
                else l = x + 1;
        }

        // Not found, should we interpolate?

                
        // Get surrounding nodes
        
        val2 = p -> Domain * ((double) (x - 1) / 65535.0);

        cell0 = (int) floor(val2);
        cell1 = (int) ceil(val2);
           
        if (cell0 == cell1) return (WORD) x;

        y0 = LutTable[cell0] ;
        x0 = (65535.0 * cell0) / p ->Domain; 

        y1 = LutTable[cell1] ;
        x1 = (65535.0 * cell1) / p ->Domain;

        a = (y1 - y0) / (x1 - x0);
        b = y0 - a * x0;

        if (fabs(a) < 0.01) return (WORD) x;

        f = ((Value - b) / a);

        if (f < 0.0) return (WORD) 0;
        if (f >= 65535.0) return (WORD) 0xFFFF;

        return (WORD) floor(f + 0.5);                        
        
}




// Trilinear interpolation (16 bits) - float version

#ifdef USE_FLOAT
void cmsTrilinearInterp16(WORD Input[], WORD Output[],
                            WORD LutTable[], LPL16PARAMS p)

{
#   define LERP(a,l,h)  (double) ((l)+(((h)-(l))*(a)))
#   define DENS(X, Y, Z)    (double) (LutTable[TotalOut*((Z)+clutPoints*((Y)+clutPoints*(X)))+OutChan])



    double     px, py, pz;
    int        x0, y0, z0,
               x1, y1, z1;
               int clutPoints, TotalOut, OutChan;
    double     fx, fy, fz,
               d000, d001, d010, d011,
               d100, d101, d110, d111,
               dx00, dx01, dx10, dx11,
               dxy0, dxy1, dxyz;


    clutPoints = p -> Domain + 1;
    TotalOut   = p -> nOutputs;

    px = ((double) Input[0] * (p->Domain)) / 65535.0;
    py = ((double) Input[1] * (p->Domain)) / 65535.0;
    pz = ((double) Input[2] * (p->Domain)) / 65535.0;

    x0 = (int) _cmsQuickFloor(px); fx = px - (double) x0;
    y0 = (int) _cmsQuickFloor(py); fy = py - (double) y0;
    z0 = (int) _cmsQuickFloor(pz); fz = pz - (double) z0;

    x1 = x0 + (Input[0] != 0xFFFFU ? 1 : 0);
    y1 = y0 + (Input[1] != 0xFFFFU ? 1 : 0);
    z1 = z0 + (Input[2] != 0xFFFFU ? 1 : 0);


    for (OutChan = 0; OutChan < TotalOut; OutChan++)
    {

        d000 = DENS(x0, y0, z0);
        d001 = DENS(x0, y0, z1);
        d010 = DENS(x0, y1, z0);
        d011 = DENS(x0, y1, z1);

        d100 = DENS(x1, y0, z0);
        d101 = DENS(x1, y0, z1);
        d110 = DENS(x1, y1, z0);
        d111 = DENS(x1, y1, z1);


    dx00 = LERP(fx, d000, d100);
    dx01 = LERP(fx, d001, d101);
    dx10 = LERP(fx, d010, d110);
    dx11 = LERP(fx, d011, d111);

    dxy0 = LERP(fy, dx00, dx10);
    dxy1 = LERP(fy, dx01, dx11);

    dxyz = LERP(fz, dxy0, dxy1);

    Output[OutChan] = (WORD) floor(dxyz + .5);
    }


#   undef LERP
#   undef DENS
}


#endif


#ifndef USE_FLOAT

// Trilinear interpolation (16 bits) - optimized version

void cmsTrilinearInterp16(WORD Input[], WORD Output[],
                            WORD LutTable[], LPL16PARAMS p)

{
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
#define LERP(a,l,h)     (WORD) (l+ ROUND_FIXED_TO_INT(((h-l)*a)))


           int        OutChan, TotalOut;
           Fixed32    fx, fy, fz;
  register int        rx, ry, rz;
           int        x0, y0, z0;
  register int        X0, X1, Y0, Y1, Z0, Z1;
           int        d000, d001, d010, d011,
                      d100, d101, d110, d111,
                      dx00, dx01, dx10, dx11,
                      dxy0, dxy1, dxyz;


    TotalOut   = p -> nOutputs;

    fx = ToFixedDomain((int) Input[0] * p -> Domain);
    x0  = FIXED_TO_INT(fx);
    rx  = FIXED_REST_TO_INT(fx);    // Rest in 0..1.0 domain


    fy = ToFixedDomain((int) Input[1] * p -> Domain);
    y0  = FIXED_TO_INT(fy);
    ry  = FIXED_REST_TO_INT(fy);

    fz = ToFixedDomain((int) Input[2] * p -> Domain);
    z0 = FIXED_TO_INT(fz);
    rz = FIXED_REST_TO_INT(fz);



    X0 = p -> opta3 * x0;
    X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta3);

    Y0 = p -> opta2 * y0;
    Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta2);
   
    Z0 = p -> opta1 * z0;
    Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta1);
    


    for (OutChan = 0; OutChan < TotalOut; OutChan++)
    {

        d000 = DENS(X0, Y0, Z0);
        d001 = DENS(X0, Y0, Z1);
        d010 = DENS(X0, Y1, Z0);
        d011 = DENS(X0, Y1, Z1);

        d100 = DENS(X1, Y0, Z0);
        d101 = DENS(X1, Y0, Z1);
        d110 = DENS(X1, Y1, Z0);
        d111 = DENS(X1, Y1, Z1);


        dx00 = LERP(rx, d000, d100);
        dx01 = LERP(rx, d001, d101);
        dx10 = LERP(rx, d010, d110);
        dx11 = LERP(rx, d011, d111);

        dxy0 = LERP(ry, dx00, dx10);
        dxy1 = LERP(ry, dx01, dx11);

        dxyz = LERP(rz, dxy0, dxy1);

        Output[OutChan] = (WORD) dxyz;
    }


#   undef LERP
#   undef DENS
}

#endif


#ifdef USE_FLOAT

#define DENS(X, Y, Z)    (double) (LutTable[TotalOut*((Z)+clutPoints*((Y)+clutPoints*(X)))+OutChan])


// Tetrahedral interpolation, using Sakamoto algorithm. 

void cmsTetrahedralInterp16(WORD Input[],
                            WORD Output[],
                            WORD LutTable[],
                            LPL16PARAMS p)
{
    double     px, py, pz;
    int        x0, y0, z0,
               x1, y1, z1;
    double     fx, fy, fz;
    double     c1=0, c2=0, c3=0;
    int        clutPoints, OutChan, TotalOut;


    clutPoints = p -> Domain + 1;
    TotalOut   = p -> nOutputs;


    px = ((double) Input[0] * p->Domain) / 65535.0;
    py = ((double) Input[1] * p->Domain) / 65535.0;
    pz = ((double) Input[2] * p->Domain) / 65535.0;

    x0 = (int) _cmsQuickFloor(px); fx = (px - (double) x0);
    y0 = (int) _cmsQuickFloor(py); fy = (py - (double) y0);
    z0 = (int) _cmsQuickFloor(pz); fz = (pz - (double) z0);


    x1 = x0 + (Input[0] != 0xFFFFU ? 1 : 0);
    y1 = y0 + (Input[1] != 0xFFFFU ? 1 : 0);
    z1 = z0 + (Input[2] != 0xFFFFU ? 1 : 0);


    for (OutChan=0; OutChan < TotalOut; OutChan++)
    {

       // These are the 6 Tetrahedral

       if (fx >= fy && fy >= fz)
       {
              c1 = DENS(x1, y0, z0) - DENS(x0, y0, z0);
              c2 = DENS(x1, y1, z0) - DENS(x1, y0, z0);
              c3 = DENS(x1, y1, z1) - DENS(x1, y1, z0);
       }
       else
       if (fx >= fz && fz >= fy)
       {
              c1 = DENS(x1, y0, z0) - DENS(x0, y0, z0);
              c2 = DENS(x1, y1, z1) - DENS(x1, y0, z1);
              c3 = DENS(x1, y0, z1) - DENS(x1, y0, z0);
       }
       else
       if (fz >= fx && fx >= fy)
       {
              c1 = DENS(x1, y0, z1) - DENS(x0, y0, z1);
              c2 = DENS(x1, y1, z1) - DENS(x1, y0, z1);
              c3 = DENS(x0, y0, z1) - DENS(x0, y0, z0);
       }
       else
       if (fy >= fx && fx >= fz)
       {
              c1 = DENS(x1, y1, z0) - DENS(x0, y1, z0);
              c2 = DENS(x0, y1, z0) - DENS(x0, y0, z0);
              c3 = DENS(x1, y1, z1) - DENS(x1, y1, z0);

       }
       else
       if (fy >= fz && fz >= fx)
       {
              c1 = DENS(x1, y1, z1) - DENS(x0, y1, z1);
              c2 = DENS(x0, y1, z0) - DENS(x0, y0, z0);
              c3 = DENS(x0, y1, z1) - DENS(x0, y1, z0);
       }
       else
       if (fz >= fy && fy >= fx)
       {
              c1 = DENS(x1, y1, z1) - DENS(x0, y1, z1);
              c2 = DENS(x0, y1, z1) - DENS(x0, y0, z1);
              c3 = DENS(x0, y0, z1) - DENS(x0, y0, z0);
       }
       else
       { 
         c1 = c2 = c3 = 0;
       //  assert(FALSE);
       }


       Output[OutChan] = (WORD) floor((double) DENS(x0,y0,z0) + c1 * fx + c2 * fy + c3 * fz + .5);
       }

}

#undef DENS

#else

#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])


void cmsTetrahedralInterp16(WORD Input[],
                            WORD Output[],
                            WORD LutTable1[],
                            LPL16PARAMS p)
{

       Fixed32    fx, fy, fz;
       Fixed32    rx, ry, rz;
       int        x0, y0, z0;
       Fixed32    c0, c1, c2, c3, Rest;       
       int        OutChan;
       Fixed32    X0, X1, Y0, Y1, Z0, Z1;
       int        TotalOut = p -> nOutputs;
       register   LPWORD LutTable = LutTable1;

       

    fx  = ToFixedDomain((int) Input[0] * p -> Domain);
    fy  = ToFixedDomain((int) Input[1] * p -> Domain);
    fz  = ToFixedDomain((int) Input[2] * p -> Domain);

    x0  = FIXED_TO_INT(fx);
    y0  = FIXED_TO_INT(fy); 
    z0  = FIXED_TO_INT(fz);

    rx  = FIXED_REST_TO_INT(fx);   
    ry  = FIXED_REST_TO_INT(fy);      
    rz  = FIXED_REST_TO_INT(fz);

    X0 = p -> opta3 * x0;
    X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta3);

    Y0 = p -> opta2 * y0;
    Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta2);
   
    Z0 = p -> opta1 * z0;
    Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta1);
    
    

    // These are the 6 Tetrahedral
    for (OutChan=0; OutChan < TotalOut; OutChan++) {
       
       c0 = DENS(X0, Y0, Z0);

       if (rx >= ry && ry >= rz) {
             
              c1 = DENS(X1, Y0, Z0) - c0;
              c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
              c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
                            
       }
       else
       if (rx >= rz && rz >= ry) {            

              c1 = DENS(X1, Y0, Z0) - c0;
              c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
              c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
                          
       }
       else
       if (rz >= rx && rx >= ry) {
             
              c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
              c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
              c3 = DENS(X0, Y0, Z1) - c0;                            

       }
       else
       if (ry >= rx && rx >= rz) {
              
              c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
              c2 = DENS(X0, Y1, Z0) - c0;
              c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
                            
       }
       else
       if (ry >= rz && rz >= rx) {
             
              c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
              c2 = DENS(X0, Y1, Z0) - c0;
              c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
                           
       }
       else
       if (rz >= ry && ry >= rx) {             

              c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
              c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
              c3 = DENS(X0, Y0, Z1) - c0;
                           
       }
       else  {
              c1 = c2 = c3 = 0;
              // assert(FALSE);
       }
        
        Rest = c1 * rx + c2 * ry + c3 * rz;                
      
        // There is a lot of math hidden in this expression. The rest is in fixed domain
        // and the result in 0..ffff domain. So the complete expression should be       
        // ROUND_FIXED_TO_INT(ToFixedDomain(Rest)) But that can be optimized as (Rest + 0x7FFF) / 0xFFFF

        Output[OutChan] = (WORD) (c0 + ((Rest + 0x7FFF) / 0xFFFF));

    }

}



#undef DENS

#endif


// A optimized interpolation for 8-bit input.

#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])

void cmsTetrahedralInterp8(WORD Input[],
                           WORD Output[],
                           WORD LutTable[],
                           LPL16PARAMS p)
{

       int        r, g, b;
       Fixed32    rx, ry, rz;            
       Fixed32    c1, c2, c3, Rest;       
       int        OutChan;
       register   Fixed32    X0, X1, Y0, Y1, Z0, Z1;
       int        TotalOut = p -> nOutputs;
       register   LPL8PARAMS p8 = p ->p8; 

    
       
    r = Input[0] >> 8;
    g = Input[1] >> 8;
    b = Input[2] >> 8;

    X0 = X1 = p8->X0[r];
    Y0 = Y1 = p8->Y0[g];
    Z0 = Z1 = p8->Z0[b];

    X1 += (r == 255) ? 0 : p ->opta3;
    Y1 += (g == 255) ? 0 : p ->opta2;
    Z1 += (b == 255) ? 0 : p ->opta1;

    rx = p8 ->rx[r];
    ry = p8 ->ry[g];
    rz = p8 ->rz[b];

    
    // These are the 6 Tetrahedral
    for (OutChan=0; OutChan < TotalOut; OutChan++) {
              
       if (rx >= ry && ry >= rz)
       {
             
              c1 = DENS(X1, Y0, Z0) - DENS(X0, Y0, Z0);
              c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
              c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
                            
       }
       else
       if (rx >= rz && rz >= ry)
       {            
              c1 = DENS(X1, Y0, Z0) - DENS(X0, Y0, Z0);
              c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
              c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
                          
       }
       else
       if (rz >= rx && rx >= ry)
       {
             
              c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
              c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
              c3 = DENS(X0, Y0, Z1) - DENS(X0, Y0, Z0);                            

       }
       else
       if (ry >= rx && rx >= rz)
       {
              
              c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
              c2 = DENS(X0, Y1, Z0) - DENS(X0, Y0, Z0);
              c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
                            
       }
       else
       if (ry >= rz && rz >= rx)
       {
             
              c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
              c2 = DENS(X0, Y1, Z0) - DENS(X0, Y0, Z0);
              c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
                           
       }
       else
       if (rz >= ry && ry >= rx)
       {             
              c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
              c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
              c3 = DENS(X0, Y0, Z1) - DENS(X0, Y0, Z0);
                           
       }
       else  {
              c1 = c2 = c3 = 0;
              // assert(FALSE);
       }
        

        Rest = c1 * rx + c2 * ry + c3 * rz;
                
        Output[OutChan] = (WORD) (DENS(X0,Y0,Z0) + ((Rest + 0x7FFF) / 0xFFFF));
    }

}

#undef DENS