DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
//
//  Little cms
//  Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining 
// a copy of this software and associated documentation files (the "Software"), 
// to deal in the Software without restriction, including without limitation 
// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
// and/or sell copies of the Software, and to permit persons to whom the Software 
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in 
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


#include "lcms.h"

/*
Gamut check by default is a catching of 0xFFFF/0xFFFF/0xFFFF PCS values, used
internally by lcms to hold invalid values. Matrix LUT's, operates in a way that
unencodeable values are marked as this combination, if PCS is XYZ, this is a very
high value since encoding is a 1.15 fixed point, something like 1.9997, 1.9997, 1.9997
not a very common color after all. Lab PCS is not to be a problem, since L>100 are truely
undefined. There is a posibility than ICC comitee defines L>100 as a valid means
to use highlights, then it will be lost.

(1.10 - Actually ICC did it, so this should be checked for full ICC 4.0 support)

*/


LCMSBOOL _cmsEndPointsBySpace(icColorSpaceSignature Space, WORD **White, WORD **Black,
                            int *nOutputs)
{
       // Only most common spaces

       static WORD RGBblack[4]  = { 0, 0, 0 };
       static WORD RGBwhite[4]  = { 0xffff, 0xffff, 0xffff };
       static WORD CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff };   // 400% of ink
       static WORD CMYKwhite[4] = { 0, 0, 0, 0 };
       static WORD LABblack[4]  = { 0, 0x8000, 0x8000 };
       static WORD LABwhite[4]  = { 0xFF00, 0x8000, 0x8000 };
       static WORD CMYblack[4]  = { 0xffff, 0xffff, 0xffff };
       static WORD CMYwhite[4]  = { 0, 0, 0 };
       static WORD Grayblack[4] = { 0 };
       static WORD GrayWhite[4] = { 0xffff };

       switch (Space) {

       case icSigGrayData: if (White)    *White = GrayWhite;
                           if (Black)    *Black = Grayblack;
                           if (nOutputs) *nOutputs = 1;
                           return TRUE;
                        
       case icSigRgbData:  if (White)    *White = RGBwhite;
                           if (Black)    *Black = RGBblack;
                           if (nOutputs) *nOutputs = 3;
                           return TRUE;

       case icSigLabData:  if (White)    *White = LABwhite;
                           if (Black)    *Black = LABblack;
                           if (nOutputs) *nOutputs = 3;
                           return TRUE;

       case icSigCmykData: if (White)    *White = CMYKwhite;
                           if (Black)    *Black = CMYKblack;
                           if (nOutputs) *nOutputs = 4;
                           return TRUE;

       case icSigCmyData:  if (White)    *White = CMYwhite;
                           if (Black)    *Black = CMYblack;
                           if (nOutputs) *nOutputs = 3;
                           return TRUE;

       default:;
       }

  return FALSE;
}


WORD *_cmsWhiteBySpace(icColorSpaceSignature Space)
{
       WORD *White= NULL, *Black = NULL;
       int Dummy;
       static WORD Default[MAXCHANNELS];

       if (_cmsEndPointsBySpace(Space, &White, &Black, &Dummy))
              return White;

       return Default;

}




WORD Clamp_L(Fixed32 in)
{
       if (in == 0xFFFF) return 0xFFFFU;  // Marker

       if (in > 0xFF00) return 0xFF00U;  // L* = 100.0
       return (WORD) in;
}


#define ENCODE_AB(x) (WORD) (((x) + 128.0) * 256.0 + 0.5)

WORD Clamp_ab(Fixed32 in)
{
       if (in == 0xFFFF) return 0xFFFFU;             // Marker

       if (in < 0) return ENCODE_AB(-128.0);         // Max negative number
       if (in > 0xFFFF) return ENCODE_AB(+127.9961); // Max positive number
       return (WORD) in;
}



// Returns dE on two Lab values

double LCMSEXPORT cmsDeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
        double dL, da, db;
        
        if (Lab1 -> L < 0 ||
            Lab2 -> L < 0) return 65536.;

        if (Lab1 -> a < -200 || Lab1 -> a > 200) return 65536.;
        if (Lab1 -> b < -200 || Lab1 -> b > 200) return 65536.;

        if (Lab2 -> a < -200 || Lab2 -> a > 200) return 65536.;
        if (Lab2 -> b < -200 || Lab2 -> b > 200) return 65536.;

        if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
        
        dL = fabs(Lab1 -> L - Lab2 -> L);
        da = fabs(Lab1 -> a - Lab2 -> a);
        db = fabs(Lab1 -> b - Lab2 -> b);

        return pow(dL*dL + da * da + db * db, 0.5);

}


// Square
static
double Sqr(double v)
{
    return v *  v; 
}

// Return the CIE94 Delta E 
double LCMSEXPORT cmsCIE94DeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
    cmsCIELCh LCh1, LCh2;
    double dE, dL, dC, dh, dhsq;
    double c12, sc, sh;

    if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;

    dL = fabs(Lab1 ->L - Lab2 ->L);

    cmsLab2LCh(&LCh1, Lab1);
    cmsLab2LCh(&LCh2, Lab2);

    dC  = fabs(LCh1.C - LCh2.C);
    dE  = cmsDeltaE(Lab1, Lab2);
    
    dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
    if (dhsq < 0)
        dh = 0;
    else
        dh = pow(dhsq, 0.5);

    c12 = sqrt(LCh1.C * LCh2.C);

    sc = 1.0 + (0.048 * c12);
    sh = 1.0 + (0.014 * c12);
            
    return sqrt(Sqr(dL)  + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
}


// Auxiliary

static
double ComputeLBFD(LPcmsCIELab Lab)
{
  double yt;

  if (Lab->L > 7.996969)
        yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
  else
        yt = 100 * (Lab->L / 903.3);

  return (54.6 * (LOGE * (log(yt + 1.5))) - 9.6);
}



// bfd - gets BFD(1:1) difference between Lab1, Lab2
double LCMSEXPORT cmsBFDdeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
    double lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
        deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
    cmsCIELCh LCh1, LCh2;
    
    
    if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
    
    lbfd1 = ComputeLBFD(Lab1);
    lbfd2 = ComputeLBFD(Lab2);
    deltaL = lbfd2 - lbfd1;
    
    cmsLab2LCh(&LCh1, Lab1);
    cmsLab2LCh(&LCh2, Lab2);
    
    deltaC = LCh2.C - LCh1.C;
    AveC = (LCh1.C+LCh2.C)/2;
    Aveh = (LCh1.h+LCh2.h)/2;
    
    dE = cmsDeltaE(Lab1, Lab2);
    
    if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
        deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
    else
        deltah =0;
    
    
    dc   = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
    g    = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
    t    = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-       
        0.040*cos((2*Aveh-136)/(180/M_PI))+
        0.070*cos((3*Aveh-31)/(180/M_PI))+
        0.049*cos((4*Aveh+114)/(180/M_PI))-
        0.015*cos((5*Aveh-103)/(180/M_PI)));
    
    dh    = dc*(g*t+1-g);
    rh    = -0.260*cos((Aveh-308)/(180/M_PI))-
        0.379*cos((2*Aveh-160)/(180/M_PI))-
        0.636*cos((3*Aveh+254)/(180/M_PI))+
        0.226*cos((4*Aveh+140)/(180/M_PI))-
        0.194*cos((5*Aveh+280)/(180/M_PI));
    
    rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
    rt = rh*rc;
    
    bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
    
    return bfd;
}


//  cmc - CMC(1:1) difference between Lab1, Lab2
double LCMSEXPORT cmsCMCdeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
  double dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
  cmsCIELCh LCh1, LCh2;

  if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;

  cmsLab2LCh(&LCh1, Lab1);
  cmsLab2LCh(&LCh2, Lab2);

  
  dL = Lab2->L-Lab1->L;
  dC = LCh2.C-LCh1.C;

  dE = cmsDeltaE(Lab1, Lab2);
  if (Sqr(dE)>(Sqr(dL)+Sqr(dC))) 
            dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
  else
            dh =0;

  if ((LCh1.h > 164) && (LCh1.h<345)) 
      t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
  else 
      t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));

   sc  = 0.0638   * LCh1.C / (1 + 0.0131  * LCh1.C) + 0.638;
   sl  = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
   
   if (Lab1->L<16)
         sl = 0.511; 

   f   = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
   sh  = sc*(t*f+1-f);
   cmc = sqrt(Sqr(dL/sl)+Sqr(dC/sc)+Sqr(dh/sh));

   return cmc;
}



static
double atan2deg(double b, double a)
{
   double h;

   if (a == 0 && b == 0)
            h   = 0;
    else
            h = atan2(a, b);
   
    h *= (180. / M_PI);
    
    while (h > 360.)         
        h -= 360.;
    
    while ( h < 0)
        h += 360.;
    
    return h;

}


static
double RADIANES(double deg)
{
    return (deg * M_PI) / 180.;
}


// dE2000 The weightings KL, KC and KH can be modified to reflect the relative 
// importance of lightness, chroma and hue in different industrial applications

double LCMSEXPORT cmsCIE2000DeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2,
                                  double Kl, double Kc, double Kh)
{
    double L1  = Lab1->L;
    double a1  = Lab1->a;
    double b1  = Lab1->b;
    double C   = sqrt( Sqr(a1) + Sqr(b1) );

    double Ls = Lab2 ->L;
    double as = Lab2 ->a;
    double bs = Lab2 ->b;
    double Cs = sqrt( Sqr(as) + Sqr(bs) );

    double G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));

    double a_p = (1 + G ) * a1;
    double b_p = b1;
    double C_p = sqrt( Sqr(a_p) + Sqr(b_p));
    double h_p = atan2deg(a_p, b_p); 
                

    double a_ps = (1 + G) * as;
    double b_ps = bs;
    double C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
    double h_ps = atan2deg(a_ps, b_ps);
              
    double meanC_p =(C_p + C_ps) / 2;

    double hps_plus_hp  = h_ps + h_p;
    double hps_minus_hp = h_ps - h_p;

    double meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 : 
                            (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 : 
                                                 (hps_plus_hp - 360)/2;

    double delta_h = (hps_minus_hp) <= -180.000001 ?  (hps_minus_hp + 360) :
                            (hps_minus_hp) > 180 ? (hps_minus_hp - 360) : 
                                                    (hps_minus_hp);
    double delta_L = (Ls - L1);
    double delta_C = (C_ps - C_p );


    double delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANES(delta_h) / 2);

    double T = 1 - 0.17 * cos(RADIANES(meanh_p-30)) 
                 + 0.24 * cos(RADIANES(2*meanh_p))  
                 + 0.32 * cos(RADIANES(3*meanh_p + 6)) 
                 - 0.2  * cos(RADIANES(4*meanh_p - 63));

    double Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );

    double Sc = 1 + 0.045 * (C_p + C_ps)/2;
    double Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;

    double delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));

    double Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));

    double Rt = -sin(2 * RADIANES(delta_ro)) * Rc;

    double deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) + 
                            Sqr(delta_C/(Sc * Kc))  + 
                            Sqr(delta_H/(Sh * Kh))  + 
                            Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));

    return deltaE00;
}

   

// Carefully,  clamp on CIELab space.

void LCMSEXPORT cmsClampLab(LPcmsCIELab Lab, double amax, double amin,
                                   double bmax, double bmin)
{

            // Whole Luma surface to zero

        if (Lab -> L < 0) {

                Lab-> L = Lab->a = Lab-> b = 0.0;
                return;
            }

            // Clamp white, DISCARD HIGHLIGHTS. This is done
            // in such way because icc spec doesn't allow the
            // use of L>100 as a highlight means.

            if (Lab->L > 100)
                        Lab -> L = 100;

            // Check out gamut prism, on a, b faces

            if (Lab -> a < amin || Lab->a > amax||
                Lab -> b < bmin || Lab->b > bmax) {

                 cmsCIELCh LCh;
                 double h, slope;

                 // Falls outside a, b limits. Transports to LCh space,
                 // and then do the clipping


                 if (Lab -> a == 0.0) { // Is hue exactly 90?

                        // atan will not work, so clamp here
                        Lab -> b = Lab->b < 0 ? bmin : bmax;
                        return;
                 }

                 cmsLab2LCh(&LCh, Lab);

                 slope = Lab -> b / Lab -> a;
                 h = LCh.h;

                 // There are 4 zones

                 if ((h >= 0. && h < 45.) ||
                     (h >= 315 && h <= 360.)) {

                     // clip by amax
                     Lab -> a = amax;
                     Lab -> b = amax * slope;
                 }
                 else
                 if (h >= 45. && h < 135)
                 {
                        // clip by bmax
                        Lab -> b = bmax;
                        Lab -> a = bmax / slope;
                 }
                 else
                 if (h >= 135 && h < 225) {
                        // clip by amin
                        Lab -> a = amin;
                        Lab -> b = amin * slope;

                 }
                 else
                 if (h >= 225 && h < 315) {
                        // clip by bmin
                        Lab -> b = bmin;
                        Lab -> a = bmin / slope;
                 }
                 else
                        cmsSignalError(LCMS_ERRC_ABORTED, "Invalid angle");

        }
}

// Several utilities -------------------------------------------------------

// Translate from our colorspace to ICC representation

icColorSpaceSignature LCMSEXPORT _cmsICCcolorSpace(int OurNotation)
{
       switch (OurNotation) {

       case 1:
       case PT_GRAY: return  icSigGrayData;

       case 2:
       case PT_RGB:  return  icSigRgbData;

       case PT_CMY:  return  icSigCmyData;
       case PT_CMYK: return  icSigCmykData;
       case PT_YCbCr:return  icSigYCbCrData;
       case PT_YUV:  return  icSigLuvData;
       case PT_XYZ:  return  icSigXYZData;
       case PT_Lab:  return  icSigLabData;
       case PT_YUVK: return  icSigLuvKData;
       case PT_HSV:  return  icSigHsvData;
       case PT_HLS:  return  icSigHlsData;
       case PT_Yxy:  return  icSigYxyData;
       case PT_HiFi: return  icSigHexachromeData;
       case PT_HiFi7: return icSigHeptachromeData;
       case PT_HiFi8: return icSigOctachromeData;

       case PT_HiFi9:  return icSigMCH9Data;
       case PT_HiFi10: return icSigMCHAData;
       case PT_HiFi11: return icSigMCHBData;
       case PT_HiFi12: return icSigMCHCData;
       case PT_HiFi13: return icSigMCHDData;
       case PT_HiFi14: return icSigMCHEData;
       case PT_HiFi15: return icSigMCHFData;

       default:  return icMaxEnumData;
       }
}


int LCMSEXPORT _cmsLCMScolorSpace(icColorSpaceSignature ProfileSpace)
{    
    switch (ProfileSpace) {
        
    case icSigGrayData: return  PT_GRAY;
    case icSigRgbData:  return  PT_RGB;
    case icSigCmyData:  return  PT_CMY;
    case icSigCmykData: return  PT_CMYK;
    case icSigYCbCrData:return  PT_YCbCr;
    case icSigLuvData:  return  PT_YUV;
    case icSigXYZData:  return  PT_XYZ;
    case icSigLabData:  return  PT_Lab;
    case icSigLuvKData: return  PT_YUVK;
    case icSigHsvData:  return  PT_HSV;
    case icSigHlsData:  return  PT_HLS;
    case icSigYxyData:  return  PT_Yxy;
        
    case icSig6colorData:
    case icSigHexachromeData: return PT_HiFi;
        
    case icSigHeptachromeData:
    case icSig7colorData:     return PT_HiFi7;
        
    case icSigOctachromeData:
    case icSig8colorData:     return PT_HiFi8;
        
    case icSigMCH9Data:
    case icSig9colorData:     return PT_HiFi9;
        
    case icSigMCHAData:
    case icSig10colorData:     return PT_HiFi10;
        
    case icSigMCHBData:
    case icSig11colorData:     return PT_HiFi11;
        
    case icSigMCHCData:
    case icSig12colorData:     return PT_HiFi12;
        
    case icSigMCHDData:
    case icSig13colorData:     return PT_HiFi13;
        
    case icSigMCHEData:
    case icSig14colorData:     return PT_HiFi14;
        
    case icSigMCHFData:
    case icSig15colorData:     return PT_HiFi15;
                
    default:  return icMaxEnumData;
    }
}


int LCMSEXPORT _cmsChannelsOf(icColorSpaceSignature ColorSpace)
{

    switch (ColorSpace) {

    case icSigGrayData: return 1;

    case icSig2colorData:  return 2;
        
    case icSigXYZData:
    case icSigLabData:
    case icSigLuvData:
    case icSigYCbCrData:
    case icSigYxyData:
    case icSigRgbData:   
    case icSigHsvData:
    case icSigHlsData:
    case icSigCmyData: 
    case icSig3colorData:  return 3;
                   
    case icSigLuvKData:
    case icSigCmykData:
    case icSig4colorData:  return 4;

    case icSigMCH5Data:
    case icSig5colorData:  return 5;  

    case icSigHexachromeData:   
    case icSig6colorData:  return 6;
        
    case icSigHeptachromeData:
    case icSig7colorData:  return  7;

    case icSigOctachromeData:
    case icSig8colorData:  return  8;

    case icSigMCH9Data:
    case icSig9colorData:  return  9;

    case icSigMCHAData:
    case icSig10colorData: return 10;

    case icSigMCHBData:
    case icSig11colorData: return 11;
    
    case icSigMCHCData:
    case icSig12colorData: return 12;

    case icSigMCHDData:
    case icSig13colorData: return 13;

    case icSigMCHEData:
    case icSig14colorData: return 14;

    case icSigMCHFData:
    case icSig15colorData: return 15;

    default: return 3;
    }

}


// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable 
// number of gridpoints that would make exact match. However, a 
// prelinearization of 258 entries, would map 0xFF00 on entry 257. 
// This is almost what we need, unfortunately, the rest of entries 
// should be scaled by (255*257/256) and this is not exact.
// 
// An intermediate solution would be to use 257 entries. This does not
// map 0xFF00 exactly on a node, but so close that the dE induced is
// negligible. AND the rest of curve is exact.

static
void CreateLabPrelinearization(LPGAMMATABLE LabTable[])
{
    int i;

    LabTable[0] = cmsAllocGamma(257);
    LabTable[1] = cmsBuildGamma(257, 1.0);
    LabTable[2] = cmsBuildGamma(257, 1.0);

    // L* uses 257 entries. Entry 256 holds 0xFFFF, so, the effective range
    // is 0..0xFF00. Last entry (257) is also collapsed to 0xFFFF

    // From 0 to 0xFF00
    for (i=0; i < 256; i++) 
        LabTable[0]->GammaTable[i] = RGB_8_TO_16(i);

    // Repeat last for 0xFFFF
    LabTable[0] ->GammaTable[256] = 0xFFFF;        
}


// Used by gamut & softproofing

typedef struct {

    cmsHTRANSFORM hInput;               // From whatever input color space. NULL for Lab
    cmsHTRANSFORM hForward, hReverse;   // Transforms going from Lab to colorant and back
    double Thereshold;                  // The thereshold after which is considered out of gamut
    
    } GAMUTCHAIN,FAR* LPGAMUTCHAIN;

// This sampler does compute gamut boundaries by comparing original
// values with a transform going back and forth. Values above ERR_THERESHOLD 
// of maximum are considered out of gamut.


#define ERR_THERESHOLD      5 


static
int GamutSampler(register WORD In[], register WORD Out[], register LPVOID Cargo)
{
    LPGAMUTCHAIN t = (LPGAMUTCHAIN) Cargo;
    WORD Proof[MAXCHANNELS], Check[MAXCHANNELS];
    WORD Proof2[MAXCHANNELS], Check2[MAXCHANNELS];
    cmsCIELab LabIn1, LabOut1;  
    cmsCIELab LabIn2, LabOut2;  
    double dE1, dE2, ErrorRatio;
    
    // Assume in-gamut by default.
    dE1 = 0.;
    dE2 = 0;
    ErrorRatio = 1.0;
    

    // Any input space? I can use In[] no matter channels 
    // because is just one pixel

    if (t -> hInput != NULL) cmsDoTransform(t -> hInput, In, In, 1);

    // converts from PCS to colorant. This always
    // does return in-gamut values, 
    cmsDoTransform(t -> hForward, In, Proof, 1);
    
    // Now, do the inverse, from colorant to PCS.
    cmsDoTransform(t -> hReverse, Proof, Check, 1);
    
    
    // Try again, but this time taking Check as input
    cmsDoTransform(t -> hForward, Check, Proof2,  1);
    cmsDoTransform(t -> hReverse, Proof2, Check2, 1);
    
    
    
    // Does the transform returns out-of-gamut?
    if (Check[0] == 0xFFFF && 
        Check[1] == 0xFFFF && 
        Check[2] == 0xFFFF) 
        
        Out[0] = 0xFF00;            // Out of gamut!
    else {
        
        // Transport encoded values
        cmsLabEncoded2Float(&LabIn1,  In);
        cmsLabEncoded2Float(&LabOut1, Check);
        
        // Take difference of direct value
        dE1 = cmsDeltaE(&LabIn1, &LabOut1);        
                
        cmsLabEncoded2Float(&LabIn2,  Check);
        cmsLabEncoded2Float(&LabOut2, Check2);
        
        // Take difference of converted value
        dE2 = cmsDeltaE(&LabIn2, &LabOut2);                 
               
        
        // if dE1 is small and dE2 is small, value is likely to be in gamut
        if (dE1 < t->Thereshold && dE2 < t->Thereshold) 
            Out[0] = 0;
        else
            // if dE1 is small and dE2 is big, undefined. Assume in gamut
            if (dE1 < t->Thereshold && dE2 > t->Thereshold)
                Out[0] = 0;
            else
                // dE1 is big and dE2 is small, clearly out of gamut
                if (dE1 > t->Thereshold && dE2 < t->Thereshold)
                    Out[0] = (WORD) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
                else  {
                    
                    // dE1 is big and dE2 is also big, could be due to perceptual mapping
                    // so take error ratio
                    if (dE2 == 0.0)
                        ErrorRatio = dE1;
                    else
                        ErrorRatio = dE1 / dE2;
                    
                    if (ErrorRatio > t->Thereshold) 
                        Out[0] = (WORD)  _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
                    else
                        Out[0] = 0;
                }
            
    }    
    
    return TRUE;
}


// Does compute a gamut LUT going back and forth across 
// pcs -> relativ. colorimetric intent -> pcs
// the dE obtained is then annotated on the LUT.
// values truely out of gamut, are clipped to dE = 0xFFFE
// and values changed are supposed to be handled by
// any gamut remapping, so, are out of gamut as well.
//
// **WARNING: This algorithm does assume that gamut
// remapping algorithms does NOT move in-gamut colors,
// of course, many perceptual and saturation intents does
// not work in such way, but relativ. ones should.

static
LPLUT ComputeGamutWithInput(cmsHPROFILE hInput, cmsHPROFILE hProfile, int Intent)
{
    cmsHPROFILE hLab;
    LPLUT Gamut;
    DWORD dwFormat;
    GAMUTCHAIN Chain;
    int nErrState, nChannels, nGridpoints;
    LPGAMMATABLE Trans[3];
    icColorSpaceSignature ColorSpace;
            
    
    ZeroMemory(&Chain, sizeof(GAMUTCHAIN)); 
       
    hLab = cmsCreateLabProfile(NULL);
    
    // Safeguard against early abortion
    nErrState = cmsErrorAction(LCMS_ERROR_IGNORE);

    // The figure of merit. On matrix-shaper profiles, should be almost zero as
    // the conversion is pretty exact. On LUT based profiles, different resolutions
    // of input and output CLUT may result in differences. 

    if (!cmsIsIntentSupported(hProfile, Intent, LCMS_USED_AS_INPUT) &&
        !cmsIsIntentSupported(hProfile, Intent, LCMS_USED_AS_OUTPUT))

        Chain.Thereshold = 1.0;
    else
        Chain.Thereshold = ERR_THERESHOLD;
   
    ColorSpace  = cmsGetColorSpace(hProfile);  

    // If input profile specified, create a transform from such profile to Lab
    if (hInput != NULL) {
          
        nChannels   = _cmsChannelsOf(ColorSpace);     
        nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
        dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));

        Chain.hInput = cmsCreateTransform(hInput, dwFormat, 
                                          hLab,   TYPE_Lab_16, 
                                          Intent, 
                                          cmsFLAGS_NOTPRECALC);
    }
    else  {
        // Input transform=NULL (Lab) Used to compute the gamut tag
        // This table will take 53 points to give some accurancy, 
        // 53 * 53 * 53 * 2 = 291K

        nChannels    = 3;      // For Lab
        nGridpoints  = 53;
        Chain.hInput = NULL;
        dwFormat = (CHANNELS_SH(_cmsChannelsOf(ColorSpace))|BYTES_SH(2)); 
    }

   
    // Does create the forward step
    Chain.hForward = cmsCreateTransform(hLab, TYPE_Lab_16, 
                                        hProfile, dwFormat, 
                                        INTENT_RELATIVE_COLORIMETRIC,
                                        cmsFLAGS_NOTPRECALC);

    // Does create the backwards step
    Chain.hReverse = cmsCreateTransform(hProfile, dwFormat, 
                                        hLab, TYPE_Lab_16,                                      
                                        INTENT_RELATIVE_COLORIMETRIC,
                                        cmsFLAGS_NOTPRECALC);

    // Restores error handler previous state
    cmsErrorAction(nErrState);

   
    // All ok?
    if (Chain.hForward && Chain.hReverse) {
           
    // Go on, try to compute gamut LUT from PCS.
    // This consist on a single channel containing 
    // dE when doing a transform back and forth on
    // the colorimetric intent. 

    Gamut = cmsAllocLUT();
    Gamut = cmsAlloc3DGrid(Gamut, nGridpoints, nChannels, 1);
     
    // If no input, then this is a gamut tag operated by Lab,
    // so include pertinent prelinearization
    if (hInput == NULL) {
       
        CreateLabPrelinearization(Trans);               
        cmsAllocLinearTable(Gamut, Trans, 1);              
        cmsFreeGammaTriple(Trans);
    }

   
    cmsSample3DGrid(Gamut, GamutSampler, (LPVOID) &Chain, Gamut ->wFlags);          
    }
    else 
        Gamut = NULL;   // Didn't work...

    // Free all needed stuff.
    if (Chain.hInput)   cmsDeleteTransform(Chain.hInput);
    if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
    if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);

    cmsCloseProfile(hLab);
    
    // And return computed hull
    return Gamut;
}


// Wrapper

LPLUT _cmsComputeGamutLUT(cmsHPROFILE hProfile, int Intent)
{    
    return ComputeGamutWithInput(NULL, hProfile, Intent);
}


// This routine does compute the gamut check CLUT. This CLUT goes from whatever 
// input space to the 0 or != 0 gamut check.

LPLUT _cmsPrecalculateGamutCheck(cmsHTRANSFORM h)
{
       _LPcmsTRANSFORM p = (_LPcmsTRANSFORM) h;
       
       return ComputeGamutWithInput(p->InputProfile, p ->PreviewProfile, p->Intent);
}


// SoftProofing. Convert from Lab to device, then back to Lab, 
// any gamut remapping is applied

static
int SoftProofSampler(register WORD In[], register WORD Out[], register LPVOID Cargo)
{
        LPGAMUTCHAIN t = (LPGAMUTCHAIN) Cargo;
        WORD Colorant[MAXCHANNELS];
                
        // From pcs to colorant
        cmsDoTransform(t -> hForward, In, Colorant, 1);

        // Now, do the inverse, from colorant to pcs.
        cmsDoTransform(t -> hReverse, Colorant, Out, 1);
                
        return TRUE;
}

// Does return Softproofing LUT on desired intent

LPLUT _cmsComputeSoftProofLUT(cmsHPROFILE hProfile, int nIntent)
{
    cmsHPROFILE hLab;
    LPLUT SoftProof;
    DWORD dwFormat;
    GAMUTCHAIN Chain;
    int nErrState;
    LPGAMMATABLE Trans[3];
        

    // LUTs are never abs. colorimetric, is the transform who
    // is responsible of generating white point displacement
    if (nIntent == INTENT_ABSOLUTE_COLORIMETRIC)
        nIntent = INTENT_RELATIVE_COLORIMETRIC;

    ZeroMemory(&Chain, sizeof(GAMUTCHAIN));

    hLab = cmsCreateLabProfile(NULL);

    // ONLY 4 channels  
    dwFormat = (CHANNELS_SH(4)|BYTES_SH(2));
    
    // Safeguard against early abortion
    nErrState = cmsErrorAction(LCMS_ERROR_IGNORE);

    // Does create the first step
    Chain.hForward = cmsCreateTransform(hLab, TYPE_Lab_16, 
                                        hProfile, dwFormat, 
                                        nIntent,
                                        cmsFLAGS_NOTPRECALC);

    // Does create the last step
    Chain.hReverse = cmsCreateTransform(hProfile, dwFormat, 
                                        hLab, TYPE_Lab_16,                                      
                                        INTENT_RELATIVE_COLORIMETRIC, 
                                        cmsFLAGS_NOTPRECALC);

    // Restores error handler previous state
    cmsErrorAction(nErrState);

    // All ok?
    if (Chain.hForward && Chain.hReverse) {
                
    // This is Lab -> Lab, so 33 point should hold anything
    SoftProof = cmsAllocLUT();
    SoftProof = cmsAlloc3DGrid(SoftProof, 33, 3, 3);

    CreateLabPrelinearization(Trans);
    cmsAllocLinearTable(SoftProof, Trans, 1);
    cmsFreeGammaTriple(Trans);

    cmsSample3DGrid(SoftProof, SoftProofSampler, (LPVOID) &Chain, SoftProof->wFlags);
    }
    else 
        SoftProof = NULL;   // Didn't work...

    // Free all needed stuff.
    if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
    if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);

    cmsCloseProfile(hLab);

    return SoftProof;
}


static
int MostlyLinear(WORD Table[], int nEntries)
{
       register int i;
       int diff;

       for (i=5; i < nEntries; i++) {

           diff = abs((int) Table[i] - (int) _cmsQuantizeVal(i, nEntries));              
           if (diff > 0x0300)
                     return 0;
       }

       return 1;
}


static
void SlopeLimiting(WORD Table[], int nEntries)
{
    int At = (int) floor((double) nEntries * 0.02 + 0.5);   // Cutoff at 2%
    double Val, Slope;
    int i;

    Val   = Table[At];
    Slope = Val / At;

    for (i=0; i < At; i++)
        Table[i] = (WORD) floor(i * Slope + 0.5);

}


// Check for monotonicity.

static
LCMSBOOL IsMonotonic(LPGAMMATABLE t)
{
    int n = t -> nEntries;
    int i, last;

    last = t ->GammaTable[n-1];

    for (i = n-2; i >= 0; --i) {
        
        if (t ->GammaTable[i] > last)

               return FALSE;
        else
                last = t ->GammaTable[i];

    }

    return TRUE;
}

// Check for endpoints

static
LCMSBOOL HasProperEndpoints(LPGAMMATABLE t)
{
    if (t ->GammaTable[0] != 0) return FALSE;
    if (t ->GammaTable[t ->nEntries-1] != 0xFFFF) return FALSE;

    return TRUE;
}



#define PRELINEARIZATION_POINTS 4096

// Fixes the gamma balancing of transform. Thanks to Mike Chaney
// for pointing this subtle bug.

void _cmsComputePrelinearizationTablesFromXFORM(cmsHTRANSFORM h[], int nTransforms, LPLUT Grid)
{
    LPGAMMATABLE Trans[MAXCHANNELS];
    unsigned int t, i, v;  
    int j;
    WORD In[MAXCHANNELS], Out[MAXCHANNELS];
    LCMSBOOL lIsSuitable;
    _LPcmsTRANSFORM InputXForm   = (_LPcmsTRANSFORM) h[0];   
    _LPcmsTRANSFORM OutputXForm  = (_LPcmsTRANSFORM) h[nTransforms-1];   

    
    // First space is *Lab, use our specialized curves for v2 Lab
    
    if (InputXForm ->EntryColorSpace == icSigLabData && 
        OutputXForm->ExitColorSpace != icSigLabData) {
    
                CreateLabPrelinearization(Trans);
                cmsAllocLinearTable(Grid, Trans, 1);
                cmsFreeGammaTriple(Trans);
                return;
    }
              

    // Do nothing on all but Gray/RGB to Gray/RGB transforms

    if (((InputXForm ->EntryColorSpace != icSigRgbData) && (InputXForm ->EntryColorSpace != icSigGrayData)) || 
        ((OutputXForm->ExitColorSpace  != icSigRgbData) && (OutputXForm->ExitColorSpace  != icSigGrayData))) return;
    

    for (t = 0; t < Grid -> InputChan; t++) 
            Trans[t] = cmsAllocGamma(PRELINEARIZATION_POINTS);

    for (i=0; i < PRELINEARIZATION_POINTS; i++) {

                v = _cmsQuantizeVal(i, PRELINEARIZATION_POINTS);

                for (t=0; t < Grid -> InputChan; t++)
                        In[t] = (WORD) v;

                cmsDoTransform(h[0], In, Out, 1);
                for (j=1; j < nTransforms; j++)
                        cmsDoTransform(h[j], Out, Out, 1);

                for (t=0; t < Grid -> InputChan; t++)
                        Trans[t] ->GammaTable[i] = Out[t];

    }
    

    // Check transfer curves
    lIsSuitable = TRUE;
    for (t=0; (lIsSuitable && (t < Grid->InputChan)); t++) {

    
        // Exclude if already linear
        if (MostlyLinear(Trans[t]->GammaTable, PRELINEARIZATION_POINTS))
                    lIsSuitable = FALSE;

        // Exclude if non-monotonic
        if (!IsMonotonic(Trans[t]))
                    lIsSuitable = FALSE;        
        
        // Exclude if weird endpoints
        if (!HasProperEndpoints(Trans[t]))
                    lIsSuitable = FALSE;

        /*
        // Exclude if transfer function is not smooth enough
        // to be modelled as a gamma function, or the gamma is reversed
        
        if (cmsEstimateGamma(Trans[t]) < 1.0)
                    lIsSuitable = FALSE;
        */
              
    }

    if (lIsSuitable) {
    
            for (t = 0; t < Grid ->InputChan; t++) 
                SlopeLimiting(Trans[t]->GammaTable, Trans[t]->nEntries);
    }
      
    if (lIsSuitable) cmsAllocLinearTable(Grid, Trans, 1);


    for (t = 0; t < Grid ->InputChan; t++) 
                        cmsFreeGamma(Trans[t]);

    
}


// Compute K -> L* relationship. Flags may include black point compensation. In this case, 
// the relationship is assumed from the profile with BPC to a black point zero.
static
LPGAMMATABLE ComputeKToLstar(cmsHPROFILE hProfile, int nPoints, int Intent, DWORD dwFlags)
{
    LPGAMMATABLE out;   
    int i;
    WORD cmyk[4], wLab[3];
    cmsHPROFILE   hLab  = cmsCreateLabProfile(NULL);
    cmsHTRANSFORM xform = cmsCreateTransform(hProfile, TYPE_CMYK_16,
                                             hLab, TYPE_Lab_16, 
                                             Intent, (dwFlags|cmsFLAGS_NOTPRECALC));


    out = cmsAllocGamma(nPoints);
    for (i=0; i < nPoints; i++) {

        cmyk[0] = 0;
        cmyk[1] = 0;
        cmyk[2] = 0;
        cmyk[3] = _cmsQuantizeVal(i, nPoints);

        cmsDoTransform(xform, cmyk, wLab, 1);
        out->GammaTable[i] = (WORD) (0xFFFF - wLab[0]);
    }

    cmsDeleteTransform(xform);
    cmsCloseProfile(hLab);

    return out;
}



// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
// using the proof direction on both profiles to find K->L* relationship
// then joining both curves. dwFlags may include black point compensation.

LPGAMMATABLE _cmsBuildKToneCurve(cmsHTRANSFORM hCMYK2CMYK, int nPoints)
{
    LPGAMMATABLE in, out;   
    LPGAMMATABLE KTone; 
    _LPcmsTRANSFORM p = (_LPcmsTRANSFORM) hCMYK2CMYK;


    // Make sure CMYK -> CMYK
    if (p -> EntryColorSpace != icSigCmykData ||
        p -> ExitColorSpace  != icSigCmykData) return NULL;

    // Create individual curves. BPC works also as each K to L* is
    // computed as a BPC to zero black point in case of L*
    in  = ComputeKToLstar(p ->InputProfile,  nPoints, p->Intent, p -> dwOriginalFlags);
    out = ComputeKToLstar(p ->OutputProfile, nPoints, p->Intent, p -> dwOriginalFlags);

    // Build the relationship
    KTone = cmsJoinGamma(in, out);
            
    cmsFreeGamma(in); cmsFreeGamma(out);

    // Make sure it is monotonic
    
    if (!IsMonotonic(KTone)) {

        cmsFreeGamma(KTone);
        return NULL;
    }
    

    return KTone;
}