DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
//
//  Little cms
//  Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining 
// a copy of this software and associated documentation files (the "Software"), 
// to deal in the Software without restriction, including without limitation 
// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
// and/or sell copies of the Software, and to permit persons to whom the Software 
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in 
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


#include "lcms.h"


/*
typedef struct {
               double J;
               double C;
               double h;

               } cmsJCh, FAR* LPcmsJCh;


#define AVG_SURROUND_4     0
#define AVG_SURROUND       1
#define DIM_SURROUND       2
#define DARK_SURROUND      3
#define CUTSHEET_SURROUND  4


typedef struct {

              cmsCIEXYZ whitePoint;
              double    Yb;
              double    La;
              int       surround;
              double    D_value;

              } cmsViewingConditions, FAR* LPcmsViewingConditions;



LCMSAPI LCMSHANDLE LCMSEXPORT cmsCIECAM97sInit(LPcmsViewingConditions pVC);
LCMSAPI void   LCMSEXPORT cmsCIECAM97sDone(LCMSHANDLE hModel);
LCMSAPI void   LCMSEXPORT cmsCIECAM97sForward(LCMSHANDLE hModel, LPcmsCIEXYZ pIn, LPcmsJCh pOut);
LCMSAPI void   LCMSEXPORT cmsCIECAM97sReverse(LCMSHANDLE hModel, LPcmsJCh pIn,    LPcmsCIEXYZ pOut);

*/

// ---------- Implementation --------------------------------------------

// #define USE_CIECAM97s2  1

#ifdef USE_CIECAM97s2

#       define NOISE_CONSTANT   3.05              
#else
#       define NOISE_CONSTANT   2.05
#endif


/*
  The model input data are the adapting field luminance in cd/m2
  (normally taken to be 20% of the luminance of white in the adapting field),
  LA , the relative tristimulus values of the stimulus, XYZ, the relative
  tristimulus values of white in the same viewing conditions, Xw Yw Zw ,
  and the relative luminance of the background, Yb . Relative tristimulus
  values should be expressed on a scale from Y = 0 for a perfect black
  to Y = 100 for a perfect reflecting diffuser. Additionally, the
  parameters c, for the impact of surround, Nc , a chromatic induction factor,
  and F, a factor for degree of adaptation, must be selected according to the
  guidelines in table

  All CIE tristimulus values are obtained using the CIE 1931
  Standard Colorimetric Observer (2°).

*/

typedef struct {

    cmsCIEXYZ WP;
    int surround;
    int calculate_D;

    double  Yb;         // rel. luminance of background

    cmsCIEXYZ RefWhite;

    double La;    // The adapting field luminance in cd/m2

    double c;     // Impact of surround
    double Nc;    // Chromatic induction factor
    double Fll;   // Lightness contrast factor (Removed on rev 2)
    double F;     // Degree of adaptation


    double k;
    double Fl;

    double Nbb;  // The background and chromatic brightness induction factors.
    double Ncb;
    double z;    // base exponential nonlinearity
    double n;    // background induction factor
    double D;

    MAT3 MlamRigg;
    MAT3 MlamRigg_1;

    MAT3 Mhunt;
    MAT3 Mhunt_1;

    MAT3 Mhunt_x_MlamRigg_1;
    MAT3 MlamRigg_x_Mhunt_1;


    VEC3 RGB_subw;
    VEC3 RGB_subw_prime;

    double p;

    VEC3 RGB_subwc;

    VEC3 RGB_subaw_prime;
    double A_subw;
    double Q_subw;

    } cmsCIECAM97s,FAR *LPcmsCIECAM97s;



// Free model structure

LCMSAPI void LCMSEXPORT cmsCIECAM97sDone(LCMSHANDLE hModel)
{
    LPcmsCIECAM97s lpMod = (LPcmsCIECAM97s) (LPSTR) hModel;
    if (lpMod) _cmsFree(lpMod);
}

// Partial discounting for adaptation degree computation

static
double discount(double d, double chan)
{
    return (d * chan + 1 - d);
}


// This routine does model exponential nonlinearity on the short wavelenght
// sensitive channel. On CIECAM97s rev 2 this has been reverted to linear.

static
void FwAdaptationDegree(LPcmsCIECAM97s lpMod, LPVEC3 RGBc, LPVEC3 RGB)
{


#ifdef USE_CIECAM97s2
    RGBc->n[0] = RGB->n[0]* discount(lpMod->D, 100.0/lpMod->RGB_subw.n[0]);
    RGBc->n[1] = RGB->n[1]* discount(lpMod->D, 100.0/lpMod->RGB_subw.n[1]);
    RGBc->n[2] = RGB->n[2]* discount(lpMod->D, 100.0/lpMod->RGB_subw.n[2]);
#else

    RGBc->n[0] = RGB->n[0]* discount(lpMod->D, 1.0/lpMod->RGB_subw.n[0]);
    RGBc->n[1] = RGB->n[1]* discount(lpMod->D, 1.0/lpMod->RGB_subw.n[1]);

    RGBc->n[2] = pow(fabs(RGB->n[2]), lpMod ->p) * discount(lpMod->D, (1.0/pow(lpMod->RGB_subw.n[2], lpMod->p)));

    // If B happens to be negative, Then Bc is also set to be negative

    if (RGB->n[2] < 0)
           RGBc->n[2] = -RGBc->n[2];
#endif
}


static
void RvAdaptationDegree(LPcmsCIECAM97s lpMod, LPVEC3 RGBc, LPVEC3 RGB)
{


#ifdef USE_CIECAM97s2
    RGBc->n[0] = RGB->n[0]/discount(lpMod->D, 100.0/lpMod->RGB_subw.n[0]);
    RGBc->n[1] = RGB->n[1]/discount(lpMod->D, 100.0/lpMod->RGB_subw.n[1]);
    RGBc->n[2] = RGB->n[2]/discount(lpMod->D, 100.0/lpMod->RGB_subw.n[2]);
#else

    RGBc->n[0] = RGB->n[0]/discount(lpMod->D, 1.0/lpMod->RGB_subw.n[0]);
    RGBc->n[1] = RGB->n[1]/discount(lpMod->D, 1.0/lpMod->RGB_subw.n[1]);
    RGBc->n[2] = pow(fabs(RGB->n[2]), 1.0/lpMod->p)/pow(discount(lpMod->D, 1.0/pow(lpMod->RGB_subw.n[2], lpMod->p)), 1.0/lpMod->p);
    if (RGB->n[2] < 0)
           RGBc->n[2] = -RGBc->n[2];
#endif
}



static
void PostAdaptationConeResponses(LPcmsCIECAM97s lpMod, LPVEC3 RGBa_prime, LPVEC3 RGBprime)
{
     if (RGBprime->n[0]>=0.0) {

            RGBa_prime->n[0]=((40.0*pow(lpMod -> Fl * RGBprime->n[0]/100.0, 0.73))/(pow(lpMod -> Fl * RGBprime->n[0]/100.0, 0.73)+2))+1;
     }
     else
     {
            RGBa_prime->n[0]=((-40.0*pow((-lpMod -> Fl * RGBprime->n[0])/100.0, 0.73))/(pow((-lpMod -> Fl * RGBprime->n[0])/100.0, 0.73)+2))+1;
     }

     if (RGBprime->n[1]>=0.0)
     {
            RGBa_prime->n[1]=((40.0*pow(lpMod -> Fl * RGBprime->n[1]/100.0, 0.73))/(pow(lpMod -> Fl * RGBprime->n[1]/100.0, 0.73)+2))+1;
     }
     else
     {
            RGBa_prime->n[1]=((-40.0*pow((-lpMod -> Fl * RGBprime->n[1])/100.0, 0.73))/(pow((-lpMod -> Fl * RGBprime->n[1])/100.0, 0.73)+2))+1;
     }

     if (RGBprime->n[2]>=0.0)
     {
            RGBa_prime->n[2]=((40.0*pow(lpMod -> Fl * RGBprime->n[2]/100.0, 0.73))/(pow(lpMod -> Fl * RGBprime->n[2]/100.0, 0.73)+2))+1;
     }
     else
     {
            RGBa_prime->n[2]=((-40.0*pow((-lpMod -> Fl * RGBprime->n[2])/100.0, 0.73))/(pow((-lpMod -> Fl * RGBprime->n[2])/100.0, 0.73)+2))+1;
     }
}


// Compute hue quadrature, eccentricity factor, e

static
void ComputeHueQuadrature(double h, double* H, double* e)
{


#define IRED    0
#define IYELLOW 1
#define IGREEN  2
#define IBLUE   3

      double e_tab[] = {0.8, 0.7, 1.0, 1.2};
      double H_tab[] = {  0, 100, 200, 300};
      int p1, p2;
      double e1, e2, h1, h2;


       if (h >= 20.14 && h < 90.0) { // Red

                        p1 = IRED;
                        p2 = IYELLOW;
       }
       else
       if (h >= 90.0 && h < 164.25) { // Yellow

                        p1 = IYELLOW;
                        p2 = IGREEN;
       }
       else
       if (h >= 164.25 && h < 237.53) { // Green

                        p1 = IGREEN;
                        p2 = IBLUE;       }
       else {                         // Blue

                        p1 = IBLUE;
                        p2 = IRED;
       }

       e1 = e_tab[p1]; e2 = e_tab[p2];
       h1 = H_tab[p1]; h2 = H_tab[p2];



       *e = e1 + ((e2-e1)*(h-h1)/(h2 - h1));
       *H = h1 + (100. * (h - h1) / e1) / ((h - h1)/e1 + (h2 - h) / e2);

#undef IRED
#undef IYELLOW
#undef IGREEN
#undef IBLUE

}






LCMSAPI LCMSHANDLE LCMSEXPORT cmsCIECAM97sInit(LPcmsViewingConditions pVC)
{
    LPcmsCIECAM97s lpMod;
    VEC3 tmp;

    if((lpMod = (LPcmsCIECAM97s) _cmsMalloc(sizeof(cmsCIECAM97s))) == NULL) {
        return (LCMSHANDLE) NULL;
    }


    lpMod->WP.X = pVC->whitePoint.X;
    lpMod->WP.Y = pVC->whitePoint.Y;
    lpMod->WP.Z = pVC->whitePoint.Z;

    lpMod->Yb   = pVC->Yb;
    lpMod->La   = pVC->La;

    lpMod->surround = pVC->surround;

    lpMod->RefWhite.X = 100.0;
    lpMod->RefWhite.Y = 100.0;
    lpMod->RefWhite.Z = 100.0;

#ifdef USE_CIECAM97s2

    VEC3init(&lpMod->MlamRigg.v[0],  0.8562, 0.3372, -0.1934);
    VEC3init(&lpMod->MlamRigg.v[1], -0.8360, 1.8327,  0.0033);
    VEC3init(&lpMod->MlamRigg.v[2],  0.0357,-0.0469,  1.0112);

    VEC3init(&lpMod->MlamRigg_1.v[0], 0.9874, -0.1768, 0.1894);
    VEC3init(&lpMod->MlamRigg_1.v[1], 0.4504,  0.4649, 0.0846);
    VEC3init(&lpMod->MlamRigg_1.v[2],-0.0139,  0.0278, 0.9861);

#else
    // Bradford transform: Lam-Rigg cone responses
    VEC3init(&lpMod->MlamRigg.v[0],  0.8951,  0.2664, -0.1614);
    VEC3init(&lpMod->MlamRigg.v[1], -0.7502,  1.7135,  0.0367);
    VEC3init(&lpMod->MlamRigg.v[2],  0.0389, -0.0685,  1.0296);


    // Inverse of Lam-Rigg
    VEC3init(&lpMod->MlamRigg_1.v[0],  0.98699, -0.14705,  0.15996);
    VEC3init(&lpMod->MlamRigg_1.v[1],  0.43231,  0.51836,  0.04929);
    VEC3init(&lpMod->MlamRigg_1.v[2], -0.00853,  0.04004,  0.96849);

#endif

    // Hunt-Pointer-Estevez cone responses
    VEC3init(&lpMod->Mhunt.v[0],   0.38971,  0.68898, -0.07868);
    VEC3init(&lpMod->Mhunt.v[1],  -0.22981,  1.18340,  0.04641);
    VEC3init(&lpMod->Mhunt.v[2],   0.0,      0.0,      1.0);

    // Inverse of Hunt-Pointer-Estevez
    VEC3init(&lpMod->Mhunt_1.v[0],     1.91019, -1.11214, 0.20195);
    VEC3init(&lpMod->Mhunt_1.v[1],     0.37095,  0.62905, 0.0);
    VEC3init(&lpMod->Mhunt_1.v[2],     0.0,      0.0,     1.0);


    if (pVC->D_value == -1.0)
          lpMod->calculate_D = 1;
    else
    if (pVC->D_value == -2.0)
           lpMod->calculate_D = 2;
    else {
        lpMod->calculate_D = 0;
        lpMod->D = pVC->D_value;
    }

   // Table I (revised)

   switch (lpMod->surround) {

    case AVG_SURROUND_4:
       lpMod->F = 1.0;
       lpMod->c = 0.69;
       lpMod->Fll = 0.0;    // Not included on Rev 2
       lpMod->Nc = 1.0;
       break;
    case AVG_SURROUND:
       lpMod->F = 1.0;
       lpMod->c = 0.69;
       lpMod->Fll = 1.0;
       lpMod->Nc = 1.0;
       break;
    case DIM_SURROUND:
       lpMod->F = 0.99;
       lpMod->c = 0.59;
       lpMod->Fll = 1.0;
       lpMod->Nc = 0.95;
       break;
    case DARK_SURROUND:
       lpMod->F = 0.9;
       lpMod->c = 0.525;
       lpMod->Fll = 1.0;
       lpMod->Nc = 0.8;
       break;
    case CUTSHEET_SURROUND:
       lpMod->F = 0.9;
       lpMod->c = 0.41;
       lpMod->Fll = 1.0;
       lpMod->Nc = 0.8;
       break;
    default:
       lpMod->F = 1.0;
       lpMod->c = 0.69;
       lpMod->Fll = 1.0;
       lpMod->Nc = 1.0;
       break;
    }

    lpMod->k = 1 / (5 * lpMod->La  + 1);
    lpMod->Fl = lpMod->La * pow(lpMod->k, 4) + 0.1*pow(1 - pow(lpMod->k, 4), 2.0) * pow(5*lpMod->La, 1.0/3.0);

    if (lpMod->calculate_D > 0) {

       lpMod->D = lpMod->F * (1 - 1 / (1 + 2*pow(lpMod->La, 0.25) + pow(lpMod->La, 2)/300.0));
       if (lpMod->calculate_D > 1)
           lpMod->D = (lpMod->D + 1.0) / 2;
    }


    // RGB_subw = [MlamRigg][WP/YWp]
#ifdef USE_CIECAM97s2
    MAT3eval(&lpMod -> RGB_subw, &lpMod -> MlamRigg, &lpMod -> WP);
#else
    VEC3divK(&tmp, (LPVEC3) &lpMod -> WP, lpMod->WP.Y);
    MAT3eval(&lpMod -> RGB_subw, &lpMod -> MlamRigg, &tmp);
#endif



    MAT3per(&lpMod -> Mhunt_x_MlamRigg_1,   &lpMod -> Mhunt,   &lpMod->MlamRigg_1  );
    MAT3per(&lpMod -> MlamRigg_x_Mhunt_1,   &lpMod -> MlamRigg, &lpMod -> Mhunt_1  );

    // p is used on forward model
    lpMod->p = pow(lpMod->RGB_subw.n[2], 0.0834);

    FwAdaptationDegree(lpMod, &lpMod->RGB_subwc, &lpMod->RGB_subw);

#if USE_CIECAM97s2
    MAT3eval(&lpMod->RGB_subw_prime, &lpMod->Mhunt_x_MlamRigg_1, &lpMod -> RGB_subwc);
#else
    VEC3perK(&tmp, &lpMod -> RGB_subwc, lpMod->WP.Y);
    MAT3eval(&lpMod->RGB_subw_prime, &lpMod->Mhunt_x_MlamRigg_1, &tmp);
#endif

    lpMod->n = lpMod-> Yb / lpMod-> WP.Y;

    lpMod->z = 1 + lpMod->Fll * sqrt(lpMod->n);
    lpMod->Nbb = lpMod->Ncb = 0.725 / pow(lpMod->n, 0.2);

    PostAdaptationConeResponses(lpMod, &lpMod->RGB_subaw_prime, &lpMod->RGB_subw_prime);

    lpMod->A_subw=lpMod->Nbb*(2.0*lpMod->RGB_subaw_prime.n[0]+lpMod->RGB_subaw_prime.n[1]+lpMod->RGB_subaw_prime.n[2]/20.0-NOISE_CONSTANT);

    return (LCMSHANDLE) lpMod;
}




//
// The forward model: XYZ -> JCh
//

LCMSAPI void LCMSEXPORT cmsCIECAM97sForward(LCMSHANDLE hModel, LPcmsCIEXYZ inPtr, LPcmsJCh outPtr)
{

        LPcmsCIECAM97s lpMod = (LPcmsCIECAM97s) (LPSTR) hModel;
        double a, b, h, s, H1val, es, A;
        VEC3 In, RGB, RGBc, RGBprime, RGBa_prime;

        if (inPtr -> Y <= 0.0) {

      outPtr -> J = outPtr -> C = outPtr -> h = 0.0;
          return;
        }

       // An initial chromatic adaptation transform is used to go from the source
       // viewing conditions to corresponding colours under the equal-energy-illuminant
       // reference viewing conditions. This is handled differently on rev 2

       VEC3init(&In, inPtr -> X, inPtr -> Y, inPtr -> Z);    // 2.1

#ifdef USE_CIECAM97s2
       // Since the chromatic adaptation transform has been linearized, it
       // is no longer required to divide the stimulus tristimulus values
       // by their own Y tristimulus value prior to the chromatic adaptation.
#else
       VEC3divK(&In, &In, inPtr -> Y);
#endif

       MAT3eval(&RGB, &lpMod -> MlamRigg, &In);              // 2.2

       FwAdaptationDegree(lpMod, &RGBc, &RGB);

       // The post-adaptation signals for both the sample and the white are then
       // transformed from the sharpened cone responses to the Hunt-Pointer-Estevez
       // cone responses.
#ifdef USE_CIECAM97s2
#else
       VEC3perK(&RGBc, &RGBc, inPtr->Y);
#endif

       MAT3eval(&RGBprime, &lpMod->Mhunt_x_MlamRigg_1, &RGBc);

       // The post-adaptation cone responses (for both the stimulus and the white)
       // are then calculated.

       PostAdaptationConeResponses(lpMod, &RGBa_prime, &RGBprime);

       // Preliminary red-green and yellow-blue opponent dimensions are calculated

       a = RGBa_prime.n[0] - (12.0 * RGBa_prime.n[1] / 11.0) + RGBa_prime.n[2]/11.0;
       b = (RGBa_prime.n[0] + RGBa_prime.n[1] - 2.0 * RGBa_prime.n[2]) / 9.0;


       // The CIECAM97s hue angle, h, is then calculated
       h = (180.0/M_PI)*(atan2(b, a));


       while (h < 0)
              h += 360.0;

       outPtr->h = h;

       // hue quadrature and eccentricity factors, e, are calculated

       ComputeHueQuadrature(h, &H1val, &es);

       // ComputeHueQuadrature(h, &H1val, &h1, &e1, &h2, &e2, &es);


      // The achromatic response A
      A = lpMod->Nbb * (2.0 * RGBa_prime.n[0] + RGBa_prime.n[1] + RGBa_prime.n[2]/20.0 - NOISE_CONSTANT);

      // CIECAM97s Lightness J
      outPtr -> J = 100.0 * pow(A / lpMod->A_subw, lpMod->c * lpMod->z);

      // CIECAM97s saturation s
      s =  (50 * hypot (a, b) * 100 * es * (10.0/13.0) * lpMod-> Nc * lpMod->Ncb) / (RGBa_prime.n[0] + RGBa_prime.n[1] + 1.05 * RGBa_prime.n[2]);

      // CIECAM97s Chroma C

#ifdef USE_CIECAM97s2
      // Eq. 26 has been modified to allow accurate prediction of the Munsell chroma scales.
      outPtr->C = 0.7487 * pow(s, 0.973) * pow(outPtr->J/100.0, 0.945 * lpMod->n) * (1.64 - pow(0.29, lpMod->n));

#else
      outPtr->C = 2.44 * pow(s, 0.69) * pow(outPtr->J/100.0, 0.67 * lpMod->n) * (1.64 - pow(0.29, lpMod->n));
#endif
}


//
// The reverse model JCh -> XYZ
//


LCMSAPI void LCMSEXPORT cmsCIECAM97sReverse(LCMSHANDLE hModel, LPcmsJCh inPtr, LPcmsCIEXYZ outPtr)
{
    LPcmsCIECAM97s lpMod = (LPcmsCIECAM97s) (LPSTR) hModel;
    double J, C, h, A, H1val, es, s, a, b;
    double tan_h, sec_h;
    double R_suba_prime, G_suba_prime, B_suba_prime;
    double R_prime, G_prime, B_prime;
    double Y_subc, Y_prime, B_term;
    VEC3 tmp;    
    VEC3 RGB_prime, RGB_subc_Y;
    VEC3 Y_over_Y_subc_RGB;
    VEC3 XYZ_primeprime_over_Y_subc;
#ifdef USE_CIECAM92s2
    VEC3 RGBY;
    VEC3 Out;
#endif

    J = inPtr->J;
    h = inPtr->h;
    C = inPtr->C;

    if (J <= 0) {

        outPtr->X =  0.0;
        outPtr->Y =  0.0;
        outPtr->Z =  0.0;
        return;
    }



    // (2) From J Obtain A

    A =  pow(J/100.0, 1/(lpMod->c * lpMod->z)) * lpMod->A_subw;


    // (3), (4), (5) Using H Determine h1, h2, e1, e2
    // e1 and h1 are the values  of e and h for the unique hue having the
    // nearest lower valur of h and e2 and h2 are the values of e and h for
    // the unique hue having the nearest higher value of h.


    ComputeHueQuadrature(h, &H1val, &es);
    
    // (7) Calculate s

    s = pow(C / (2.44 * pow(J/100.0, 0.67*lpMod->n) * (1.64 - pow(0.29, lpMod->n))) , (1./0.69));


    // (8) Calculate a and b.
    // NOTE: sqrt(1 + tan^2) == sec(h)

    tan_h = tan ((M_PI/180.)*(h));
    sec_h = sqrt(1 + tan_h * tan_h);

    if ((h > 90) && (h < 270))
            sec_h = -sec_h;

    a = s * ( A/lpMod->Nbb + NOISE_CONSTANT) / ( sec_h * 50000.0 * es * lpMod->Nc * lpMod->Ncb/ 13.0 +
           s * (11.0 / 23.0 + (108.0/23.0) * tan_h));

    b = a * tan_h;

    //(9) Calculate R'a G'a and B'a

    R_suba_prime = (20.0/61.0) * (A/lpMod->Nbb + NOISE_CONSTANT) + (41.0/61.0) * (11.0/23.0) * a + (288.0/61.0) / 23.0 * b;
    G_suba_prime = (20.0/61.0) * (A/lpMod->Nbb + NOISE_CONSTANT) - (81.0/61.0) * (11.0/23.0) * a - (261.0/61.0) / 23.0 * b;
    B_suba_prime = (20.0/61.0) * (A/lpMod->Nbb + NOISE_CONSTANT) - (20.0/61.0) * (11.0/23.0) * a - (20.0/61.0) * (315.0/23.0) * b;

    // (10) Calculate R', G' and B'

    if ((R_suba_prime - 1) < 0) {

         R_prime = -100.0 * pow((2.0 - 2.0 * R_suba_prime) /
                            (39.0 + R_suba_prime), 1.0/0.73);
    }
    else
    {
         R_prime = 100.0 * pow((2.0 * R_suba_prime - 2.0) /
                            (41.0 - R_suba_prime), 1.0/0.73);
    }

    if ((G_suba_prime - 1) < 0)
    {
         G_prime = -100.0 * pow((2.0 - 2.0 * G_suba_prime) /
                            (39.0 + G_suba_prime), 1.0/0.73);
    }
    else
    {
         G_prime = 100.0 * pow((2.0 * G_suba_prime - 2.0) /
                            (41.0 - G_suba_prime), 1.0/0.73);
    }

    if ((B_suba_prime - 1) < 0)
    {
         B_prime = -100.0 * pow((2.0 - 2.0 * B_suba_prime) /
                            (39.0 + B_suba_prime), 1.0/0.73);
    }
    else
    {
         B_prime = 100.0 * pow((2.0 * B_suba_prime - 2.0) /
                            (41.0 - B_suba_prime), 1.0/0.73);
    }


    // (11) Calculate RcY, GcY and BcY

    VEC3init(&RGB_prime, R_prime, G_prime, B_prime);
    VEC3divK(&tmp, &RGB_prime, lpMod -> Fl);

    MAT3eval(&RGB_subc_Y, &lpMod->MlamRigg_x_Mhunt_1, &tmp);




#ifdef USE_CIECAM97s2

       // (12)


           RvAdaptationDegree(lpMod, &RGBY, &RGB_subc_Y);
           MAT3eval(&Out, &lpMod->MlamRigg_1, &RGBY);

           outPtr -> X = Out.n[0];
           outPtr -> Y = Out.n[1];
           outPtr -> Z = Out.n[2];

#else

           // (12) Calculate Yc

       Y_subc = 0.43231*RGB_subc_Y.n[0]+0.51836*RGB_subc_Y.n[1]+0.04929*RGB_subc_Y.n[2];

           // (13) Calculate (Y/Yc)R, (Y/Yc)G and (Y/Yc)B

           VEC3divK(&RGB_subc_Y, &RGB_subc_Y, Y_subc);
           RvAdaptationDegree(lpMod, &Y_over_Y_subc_RGB, &RGB_subc_Y);

           // (14) Calculate Y'
       Y_prime = 0.43231*(Y_over_Y_subc_RGB.n[0]*Y_subc) + 0.51836*(Y_over_Y_subc_RGB.n[1]*Y_subc) + 0.04929 * (Y_over_Y_subc_RGB.n[2]*Y_subc);

           if (Y_prime < 0 || Y_subc < 0)
           {
                // Discard to near black point
               
                outPtr -> X = 0;
                outPtr -> Y = 0;
                outPtr -> Z = 0;
                return;
           }

       B_term = pow(Y_prime / Y_subc, (1.0 / lpMod->p) - 1);

          // (15) Calculate X'', Y'' and Z''
           Y_over_Y_subc_RGB.n[2] /= B_term;
           MAT3eval(&XYZ_primeprime_over_Y_subc, &lpMod->MlamRigg_1, &Y_over_Y_subc_RGB);

           outPtr->X =  XYZ_primeprime_over_Y_subc.n[0] * Y_subc;
           outPtr->Y =  XYZ_primeprime_over_Y_subc.n[1] * Y_subc;
           outPtr->Z =  XYZ_primeprime_over_Y_subc.n[2] * Y_subc;
#endif

}