DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
;;; ***** BEGIN LICENSE BLOCK *****
;;; Version: MPL 1.1/GPL 2.0/LGPL 2.1
;;;
;;; The contents of this file are subject to the Mozilla Public License Version
;;; 1.1 (the "License"); you may not use this file except in compliance with
;;; the License. You may obtain a copy of the License at
;;; http://www.mozilla.org/MPL/
;;;
;;; Software distributed under the License is distributed on an "AS IS" basis,
;;; WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
;;; for the specific language governing rights and limitations under the
;;; License.
;;;
;;; The Original Code is the Language Design and Prototyping Environment.
;;;
;;; The Initial Developer of the Original Code is
;;; Netscape Communications Corporation.
;;; Portions created by the Initial Developer are Copyright (C) 1999-2002
;;; the Initial Developer. All Rights Reserved.
;;;
;;; Contributor(s):
;;;   Waldemar Horwat <waldemar@acm.org>
;;;
;;; Alternatively, the contents of this file may be used under the terms of
;;; either the GNU General Public License Version 2 or later (the "GPL"), or
;;; the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
;;; in which case the provisions of the GPL or the LGPL are applicable instead
;;; of those above. If you wish to allow use of your version of this file only
;;; under the terms of either the GPL or the LGPL, and not to allow others to
;;; use your version of this file under the terms of the MPL, indicate your
;;; decision by deleting the provisions above and replace them with the notice
;;; and other provisions required by the GPL or the LGPL. If you do not delete
;;; the provisions above, a recipient may use your version of this file under
;;; the terms of any one of the MPL, the GPL or the LGPL.
;;;
;;; ***** END LICENSE BLOCK *****

;;;
;;; LALR(1) and LR(1) grammar generator
;;;
;;; Waldemar Horwat (waldemar@acm.org)
;;;


;;; ------------------------------------------------------------------------------------------------------

; kernel-item-alist is a list of pairs (item . prev), where item is a kernel item
; and prev is either nil or a laitem.  kernel is a list of the kernel items in a canonical order.
; Return a new state with the given list of kernel items and state number.
; If mode is :lalr-1, for each non-null prev in kernel-item-alist, update
; (laitem-propagates prev) to include the corresponding laitem in the new state.  Do this anyway
; for internal lookaheads, regardless of mode.
;
; If mode is :canonical-lr-1, kernel-item-alist is a list of pairs (item . lookaheads), where
; lookaheads is a terminalset of lookaheads for that item.  Use these lookaheads instead of
; initial-lookaheads.
(defun make-state (grammar kernel kernel-item-alist mode number initial-lookaheads)
  (let ((laitems nil)
        (laitems-hash (make-hash-table :test #'eq))
        (laitems-maybe-forbidden nil)) ;Association list of:  laitem -> terminalset of potentially forbidden terminals; missing means *empty-terminalset*
    (labels
      ;Create a laitem for this item and add the association item->laitem to the laitems-hash
      ;hash table if it's not there already.  Regardless of whether a new laitem was created,
      ;update the laitem's lookaheads to also include the given lookaheads.
      ;forbidden is a terminalset of terminals that must not occur immediately after the dot in this
      ;laitem.  The forbidden set is inherited from constraints in parent laitems in the same state.
      ;maybe-forbidden is an upper bounds on the forbidden lookaheads in this laitem.
      ;If prev is non-null, update (laitem-propagates prev) to include the laitem and the given
      ;passthrough terminalset if it's not already included there.
      ;If a new laitem was created and its first symbol after the dot exists and is a
      ;nonterminal A, recursively close items A->.rhs corresponding to all rhs's in the
      ;grammar's rule for A.
      ((close-item (item forbidden maybe-forbidden lookaheads prev passthroughs)
         (let ((production (item-production item))
               (dot (item-dot item))
               (laitem (gethash item laitems-hash)))
           (let ((extra-forbidden (terminalset-complement (general-production-constraint production dot))))
             (terminalset-union-f forbidden extra-forbidden)
             (terminalset-union-f maybe-forbidden extra-forbidden))
           (unless (terminalset-empty? forbidden)
             (multiple-value-bind (dot-lookaheads dot-passthroughs)
                                  (string-initial-terminals grammar (item-unseen item) (production-constraints production) (item-dot item) t)
               (let ((dot-initial (terminalset-union dot-lookaheads dot-passthroughs)))
                 ;Check whether any terminal can start this item.  If not, skip this item altogether.
                 (when (terminalset-empty? (terminalset-difference dot-initial forbidden))
                   ;Mark skipped items in the laitems-hash table.
                   (when (and laitem (not (eq laitem 'forbidden)))
                     (error "Two laitems in the same state differing only in forbidden initial terminal constraints: ~S" laitem))
                   (setf (gethash item laitems-hash) 'forbidden)
                   (return-from close-item))
                 ;Convert forbidden into a canonical format by removing terminals that cannot begin this item's expansion anyway.
                 (terminalset-intersection-f forbidden dot-initial))))
           (if laitem
             (let ((laitem-maybe-forbidden-entry (assoc laitem laitems-maybe-forbidden))
                   (new-forbidden (terminalset-union forbidden (laitem-forbidden laitem))))
               (when laitem-maybe-forbidden-entry
                 (terminalset-intersection-f (cdr laitem-maybe-forbidden-entry) maybe-forbidden))
               (unless (terminalset-<= new-forbidden (or (cdr laitem-maybe-forbidden-entry) *empty-terminalset*))
                 (error "Two laitems in the same state differing only in forbidden initial terminal constraints: ~S ~%old forbidden: ~S ~%new forbidden: ~S~%maybe forbidden: ~S"
                        laitem
                        (terminalset-list grammar (laitem-forbidden laitem))
                        (terminalset-list grammar forbidden)
                        (and laitem-maybe-forbidden-entry (terminalset-list grammar (cdr laitem-maybe-forbidden-entry)))))
               (setf (laitem-forbidden laitem) new-forbidden)
               (terminalset-union-f (laitem-lookaheads laitem) lookaheads))
             (let ((item-next-symbol (item-next-symbol item)))
               (setq laitem (allocate-laitem grammar item forbidden lookaheads))
               (push laitem laitems)
               (setf (gethash item laitems-hash) laitem)
               (unless (terminalset-empty? maybe-forbidden)
                 (push (cons laitem maybe-forbidden) laitems-maybe-forbidden))
               (when (nonterminal? item-next-symbol)
                 (multiple-value-bind (next-lookaheads next-passthroughs)
                                      (string-initial-terminals grammar (rest (item-unseen item)) (production-constraints production) (1+ dot) nil)
                   (let ((next-prev (and (not (terminalset-empty? next-passthroughs)) laitem)))
                     (dolist (production (rule-productions (grammar-rule grammar item-next-symbol)))
                       (close-item (make-item grammar production 0) forbidden maybe-forbidden next-lookaheads next-prev next-passthroughs)))))))
           (when prev
             (laitem-add-propagation prev laitem passthroughs)))))
      
      (dolist (acons kernel-item-alist)
        (close-item (car acons) 
                    *empty-terminalset*
                    *empty-terminalset*
                    (if (eq mode :canonical-lr-1) (cdr acons) initial-lookaheads)
                    (and (eq mode :lalr-1) (cdr acons))
                    *full-terminalset*))
      (allocate-state number kernel (nreverse laitems)))))


; f is a function that takes three arguments:
;   a grammar symbol;
;   a list of kernel items in order of increasing item number [list of (item . lookahead) when mode is :canonical-lr-1];
;   a list of pairs (item . prev), where item is a kernel item and prev is a laitem.
; For each possible symbol X that can be shifted while in the given state S, call
; f giving it S and the list of items that constitute the kernel of that shift's destination
; state.  The prev's are the sources of the corresponding shifted items.
(defun state-each-shift-item-alist (f state mode)
  (let ((shift-symbols-hash (make-hash-table :test *grammar-symbol-=*)))
    (dolist (source-laitem (state-laitems state))
      (let* ((source-item (laitem-item source-laitem))
             (shift-symbol (item-next-symbol source-item)))
        (when shift-symbol
          (push (cons (item-next source-item) source-laitem)
                (gethash shift-symbol shift-symbols-hash)))))
    ;Use dolist/gethash instead of maphash to make state assignments deterministic.
    (dolist (shift-symbol (sorted-hash-table-keys shift-symbols-hash))
      (let* ((kernel-item-alist (gethash shift-symbol shift-symbols-hash))
             (kernel (if (eq mode :canonical-lr-1)
                       (sort (mapcar #'(lambda (acons)
                                         (cons (car acons) (laitem-lookaheads (cdr acons))))
                                     kernel-item-alist)
                             #'<
                             :key #'(lambda (acons) (item-number (car acons))))
                       (sort (mapcar #'car kernel-item-alist) #'< :key #'item-number))))
        (funcall f shift-symbol kernel kernel-item-alist)))))


; f is a function that takes a terminal variant as an argument.
; For each variant of the given terminal (which, along with kernel-item-alist, was obtained from
; state-each-shift-item-alist's callback), determine whether that variant can actually occur at the
; current position or whether it is forbidden by constraints.  If it can occur, call f with that variant.
; Signal an error if some laitems in kernel-item-alist indicate that a variant can occur while others
; indicate that the same variant cannot occur.  Also signal an internal error if no variant can occur, as
; make-state should have filtered such shift items out.
(defun each-shift-symbol-variant (f grammar terminal kernel-item-alist)
  (let ((n-applicable-variants 0))
    (dolist (variant (terminal-variants grammar terminal))
      (let ((allowed nil)
            (forbidden nil))
        (dolist (acons kernel-item-alist)
          (if (terminal-in-terminalset grammar variant (laitem-forbidden (cdr acons)))
            (setq forbidden t)
            (setq allowed t)))
        (when (eq allowed forbidden)
          (error "Symbol ~S ~A" variant
                 (if allowed "both allowed and forbidden" "neither allowed nor forbidden")))
        (unless forbidden
          (incf n-applicable-variants)
          (funcall f variant))))
    (when (zerop n-applicable-variants)
      (error "Internal parser error"))))


;;; ------------------------------------------------------------------------------------------------------
;;; CANONICAL LR(1)
;;;
;;; Canonical LR(1) is accepts the same set of languages as LR(1) except that it produces vastly larger,
;;; unoptimizied state tables.  The only advantage to using Canonical LR(1) instead of LR(1) is that
;;; a Canonical LR(1) parser will not make any reductions from an error state, whereas a LR(1) or LALR(1)
;;; parser might make reductions (but not shifts).  In other words, a Canonical LR(1) parser's shift and
;;; reduce tables are fully accurate rather than conservative approximations based on merged states.


; Make all states in the grammar and return the initial state.
; Initialize the grammar's list of states.
; Initialize the states' gotos lists.
; Initialize the states' shift (but not reduce or accept) transitions in the transitions lists.
(defun add-all-canonical-lr-states (grammar)
  (let* ((initial-item (make-item grammar (grammar-start-production grammar) 0))
         (lr-states-hash (make-hash-table :test #'equal))  ;canonical kernel -> state
         (initial-kernel (list (cons initial-item (make-terminalset grammar *end-marker*))))
         (initial-state (make-state grammar initial-kernel initial-kernel :canonical-lr-1 0 nil))
         (states (list initial-state))
         (next-state-number 1))
    (setf (gethash initial-kernel lr-states-hash) initial-state)
    (do ((source-states (list initial-state)))
        ((endp source-states))
      (let ((source-state (pop source-states)))
        ;Propagate the source state's internal lookaheads and then erase the propagates chains.
        (propagate-internal-lookaheads source-state)
        (dolist (laitem (state-laitems source-state))
          (setf (laitem-propagates laitem) nil))
        
        (state-each-shift-item-alist
         #'(lambda (shift-symbol kernel kernel-item-alist)
             (let ((destination-state (gethash kernel lr-states-hash)))
               (unless destination-state
                 (setq destination-state (make-state grammar kernel kernel :canonical-lr-1 next-state-number nil))
                 (setf (gethash kernel lr-states-hash) destination-state)
                 (incf next-state-number)
                 (push destination-state states)
                 (push destination-state source-states))
               (if (nonterminal? shift-symbol)
                 (push (cons shift-symbol destination-state)
                       (state-gotos source-state))
                 (each-shift-symbol-variant
                  #'(lambda (shift-symbol-variant)
                      (push (cons shift-symbol-variant (make-shift-transition destination-state))
                            (state-transitions source-state)))
                  grammar shift-symbol kernel-item-alist))))
         source-state :canonical-lr-1)))
    (setf (grammar-states grammar) (nreverse states))
    initial-state))


;;; ------------------------------------------------------------------------------------------------------
;;; LR(1)


; kernel-item-alist should have the same kernel items as state.
; Return true if the prev lookaheads in kernel-item-alist are the same as or subsets of
; the corresponding lookaheads in the state's kernel laitems.
(defun state-subsumes-lookaheads (state kernel-item-alist)
  (every
   #'(lambda (acons)
       (terminalset-<= (laitem-lookaheads (cdr acons))
                       (laitem-lookaheads (state-laitem state (car acons)))))
   kernel-item-alist))


; kernel-item-alist should have the same kernel items as state.
; Return true if the prev lookaheads in kernel-item-alist are weakly compatible
; with the lookaheads in the state's kernel laitems.
(defun state-weakly-compatible (state kernel-item-alist)
  (labels
    ((lookahead-weakly-compatible (lookahead1a lookahead1b lookahead2a lookahead2b)
       (or (and (terminalsets-disjoint lookahead1a lookahead2b)
                (terminalsets-disjoint lookahead1b lookahead2a))
           (not (terminalsets-disjoint lookahead1a lookahead1b))
           (not (terminalsets-disjoint lookahead2a lookahead2b))))
     
     (lookahead-list-weakly-compatible (lookahead1a lookaheads1 lookahead2a lookaheads2)
       (or (endp lookaheads1)
           (and (lookahead-weakly-compatible lookahead1a (first lookaheads1) lookahead2a (first lookaheads2))
                (lookahead-list-weakly-compatible lookahead1a (rest lookaheads1) lookahead2a (rest lookaheads2)))))
     
     (lookahead-lists-weakly-compatible (lookaheads1 lookaheads2)
       (or (endp lookaheads1)
           (and (lookahead-list-weakly-compatible (first lookaheads1) (rest lookaheads1) (first lookaheads2) (rest lookaheads2))
                (lookahead-lists-weakly-compatible (rest lookaheads1) (rest lookaheads2))))))
    
    (or (= (length kernel-item-alist) 1)
        (lookahead-lists-weakly-compatible
         (mapcar #'(lambda (acons) (laitem-lookaheads (state-laitem state (car acons)))) kernel-item-alist)
         (mapcar #'(lambda (acons) (laitem-lookaheads (cdr acons))) kernel-item-alist)))))


; Propagate all lookaheads in the state.
(defun propagate-internal-lookaheads (state)
  (do ((changed t))
      ((not changed))
    (setq changed nil)
    (dolist (src-laitem (state-laitems state))
      (let ((src-lookaheads (laitem-lookaheads src-laitem)))
        (dolist (propagation (laitem-propagates src-laitem))
          (let* ((dst-laitem (car propagation))
                 (mask (cdr propagation))
                 (old-dst-lookaheads (laitem-lookaheads dst-laitem))
                 (new-dst-lookaheads (terminalset-union old-dst-lookaheads (terminalset-intersection src-lookaheads mask))))
            (setf (laitem-lookaheads dst-laitem) new-dst-lookaheads)
            (unless (terminalset-= old-dst-lookaheads new-dst-lookaheads)
              (setq changed t))))))))


; Propagate all lookaheads in kernel-item-alist, which must target destination-state.
; Mark destination-state as dirty in the dirty-states hash table.
(defun propagate-external-lookaheads (kernel-item-alist destination-state dirty-states)
  (dolist (acons kernel-item-alist)
    (let ((dest-laitem (state-laitem destination-state (car acons)))
          (src-laitem (cdr acons)))
      (terminalset-union-f (laitem-lookaheads dest-laitem) (laitem-lookaheads src-laitem))))
  (setf (gethash destination-state dirty-states) t))


; Make all states in the grammar and return the initial state.
; Initialize the grammar's list of states.
; Initialize the states' gotos lists.
; Initialize the states' shift (but not reduce or accept) transitions in the transitions lists.
(defun add-all-lr-states (grammar)
  (let* ((initial-item (make-item grammar (grammar-start-production grammar) 0))
         (lr-states-hash (make-hash-table :test #'equal))  ;kernel -> list of states with that kernel
         (initial-kernel (list initial-item))
         (initial-state (make-state grammar initial-kernel (list (cons initial-item nil)) :lr-1 0 (make-terminalset grammar *end-marker*)))
         (states (list initial-state))
         (next-state-number 1))
    (setf (gethash initial-kernel lr-states-hash) (list initial-state))
    (do ((source-states (list initial-state))
         (dirty-states (make-hash-table :test #'eq)))      ;Set of states whose kernel lookaheads changed and haven't been propagated yet
        ((and (endp source-states) (zerop (hash-table-count dirty-states))))
      (labels
        ((make-destination-state (kernel kernel-item-alist)
           (let* ((possible-destination-states (gethash kernel lr-states-hash))
                  (destination-state (find-if #'(lambda (possible-destination-state)
                                                  (state-subsumes-lookaheads possible-destination-state kernel-item-alist))
                                              possible-destination-states)))
             (cond
              (destination-state)
              ((setq destination-state (find-if #'(lambda (possible-destination-state)
                                                    (state-weakly-compatible possible-destination-state kernel-item-alist))
                                                possible-destination-states))
               (propagate-external-lookaheads kernel-item-alist destination-state dirty-states))
              (t
               (setq destination-state (make-state grammar kernel kernel-item-alist :lr-1 next-state-number *empty-terminalset*))
               (propagate-external-lookaheads kernel-item-alist destination-state dirty-states)
               (push destination-state (gethash kernel lr-states-hash))
               (incf next-state-number)
               (push destination-state states)
               (push destination-state source-states)))
             destination-state))
         
         (update-destination-state (destination-state kernel-item-alist)
           (cond
            ((state-subsumes-lookaheads destination-state kernel-item-alist)
             destination-state)
            ((state-weakly-compatible destination-state kernel-item-alist)
             (propagate-external-lookaheads kernel-item-alist destination-state dirty-states)
             destination-state)
            (t (make-destination-state (state-kernel destination-state) kernel-item-alist)))))
        
        (if source-states
          (let ((source-state (pop source-states)))
            (remhash source-state dirty-states)
            (propagate-internal-lookaheads source-state)
            (state-each-shift-item-alist
             #'(lambda (shift-symbol kernel kernel-item-alist)
                 (let ((destination-state (make-destination-state kernel kernel-item-alist)))
                   (if (nonterminal? shift-symbol)
                     (push (cons shift-symbol destination-state)
                           (state-gotos source-state))
                     (each-shift-symbol-variant
                      #'(lambda (shift-symbol-variant)
                          (push (cons shift-symbol-variant (make-shift-transition destination-state))
                                (state-transitions source-state)))
                      grammar shift-symbol kernel-item-alist))))
             source-state :lr-1))
          (dolist (dirty-state (sort (hash-table-keys dirty-states) #'< :key #'state-number))
            (when (remhash dirty-state dirty-states)
              (propagate-internal-lookaheads dirty-state)
              (state-each-shift-item-alist
               #'(lambda (shift-symbol kernel kernel-item-alist)
                   (declare (ignore kernel))
                   (if (nonterminal? shift-symbol)
                     (let* ((destination-binding (assoc shift-symbol (state-gotos dirty-state) :test *grammar-symbol-=*))
                            (destination-state (assert-non-null (cdr destination-binding))))
                       (setf (cdr destination-binding) (update-destination-state destination-state kernel-item-alist)))
                     (each-shift-symbol-variant
                      #'(lambda (shift-symbol-variant)
                          (let* ((destination-transition (state-transition dirty-state shift-symbol-variant))
                                 (destination-state (assert-non-null (transition-state destination-transition))))
                            (setf (transition-state destination-transition)
                                  (update-destination-state destination-state kernel-item-alist))))
                      grammar shift-symbol kernel-item-alist)))
               dirty-state :lr-1))))))
    (setf (grammar-states grammar) (nreverse states))
    initial-state))


;;; ------------------------------------------------------------------------------------------------------
;;; LALR(1)


; Make all states in the grammar and return the initial state.
; Initialize the grammar's list of states.
; Set up the laitems' propagate lists but do not propagate lookaheads yet.
; Initialize the states' gotos lists.
; Initialize the states' shift (but not reduce or accept) transitions in the transitions lists.
(defun add-all-lalr-states (grammar)
  (let* ((initial-item (make-item grammar (grammar-start-production grammar) 0))
         (lalr-states-hash (make-hash-table :test #'equal))  ;kernel -> state
         (initial-kernel (list initial-item))
         (initial-state (make-state grammar initial-kernel (list (cons initial-item nil)) :lalr-1 0 (make-terminalset grammar *end-marker*)))
         (states (list initial-state))
         (next-state-number 1))
    (setf (gethash initial-kernel lalr-states-hash) initial-state)
    (do ((source-states (list initial-state)))
        ((endp source-states))
      (let ((source-state (pop source-states)))
        (state-each-shift-item-alist
         #'(lambda (shift-symbol kernel kernel-item-alist)
             (let ((destination-state (gethash kernel lalr-states-hash)))
               (if destination-state
                 (dolist (acons kernel-item-alist)
                   (laitem-add-propagation (cdr acons) (state-laitem destination-state (car acons)) *full-terminalset*))
                 (progn
                   (setq destination-state (make-state grammar kernel kernel-item-alist :lalr-1 next-state-number *empty-terminalset*))
                   (setf (gethash kernel lalr-states-hash) destination-state)
                   (incf next-state-number)
                   (push destination-state states)
                   (push destination-state source-states)))
               (if (nonterminal? shift-symbol)
                 (push (cons shift-symbol destination-state)
                       (state-gotos source-state))
                 (each-shift-symbol-variant
                  #'(lambda (shift-symbol-variant)
                      (push (cons shift-symbol-variant (make-shift-transition destination-state))
                            (state-transitions source-state)))
                  grammar shift-symbol kernel-item-alist))))
         source-state :lalr-1)))
    (setf (grammar-states grammar) (nreverse states))
    initial-state))


; Propagate the lookaheads in the LALR(1) grammar.
(defun propagate-lalr-lookaheads (grammar)
  (let ((dirty-laitems (make-hash-table :test #'eq)))
    (dolist (state (grammar-states grammar))
      (dolist (laitem (state-laitems state))
        (when (and (laitem-propagates laitem) (not (terminalset-empty? (laitem-lookaheads laitem))))
          (setf (gethash laitem dirty-laitems) t))))
    (do ()
        ((zerop (hash-table-count dirty-laitems)))
      (dolist (dirty-laitem (hash-table-keys dirty-laitems))
        (remhash dirty-laitem dirty-laitems)
        (let ((src-lookaheads (laitem-lookaheads dirty-laitem)))
          (dolist (propagation (laitem-propagates dirty-laitem))
            (let ((dst-laitem (car propagation))
                  (mask (cdr propagation)))
              (let* ((old-dst-lookaheads (laitem-lookaheads dst-laitem))
                     (new-dst-lookaheads (terminalset-union old-dst-lookaheads (terminalset-intersection src-lookaheads mask))))
                (unless (terminalset-= old-dst-lookaheads new-dst-lookaheads)
                  (setf (laitem-lookaheads dst-laitem) new-dst-lookaheads)
                  (setf (gethash dst-laitem dirty-laitems) t))))))))
    
    ;Erase the propagates chains in all laitems.
    (dolist (state (grammar-states grammar))
      (dolist (laitem (state-laitems state))
        (setf (laitem-propagates laitem) nil)))))


;;; ------------------------------------------------------------------------------------------------------


; Calculate the reduce and accept transitions in the grammar.
; Also sort all transitions by their terminal numbers and gotos by their nonterminal numbers.
; Conflicting transitions are sorted as follows:
;    shifts come before reduces and accepts
;    accepts come before reduces
;    reduces with lower production numbers come before reduces with higher production numbers
; Disambiguation will choose the first member of a sorted list of conflicting transitions.
(defun finish-transitions (grammar)
  (dolist (state (grammar-states grammar))
    (dolist (laitem (state-laitems state))
      (let ((item (laitem-item laitem)))
        (unless (item-next-symbol item)
          (let ((lookaheads (terminalset-difference
                             (terminalset-intersection
                              (laitem-lookaheads laitem)
                              (general-production-constraint (item-production item) (item-dot item)))
                             (laitem-forbidden laitem))))
            (if (grammar-symbol-= (item-lhs item) *start-nonterminal*)
              (when (terminal-in-terminalset grammar *end-marker* lookaheads)
                (push (cons *end-marker* (make-accept-transition))
                      (state-transitions state)))
              (map-terminalset-reverse
               #'(lambda (lookahead)
                   (push (cons lookahead (make-reduce-transition (item-production item)))
                         (state-transitions state)))
               grammar
               lookaheads))))))
    (setf (state-gotos state)
          (sort (state-gotos state) #'< :key #'(lambda (goto-cons) (state-number (cdr goto-cons)))))
    (setf (state-transitions state)
          (sort (state-transitions state)
                #'(lambda (transition-cons-1 transition-cons-2)
                    (let ((terminal-number-1 (terminal-number grammar (car transition-cons-1)))
                          (terminal-number-2 (terminal-number grammar (car transition-cons-2))))
                      (cond
                       ((< terminal-number-1 terminal-number-2) t)
                       ((> terminal-number-1 terminal-number-2) nil)
                       (t (let* ((transition1 (cdr transition-cons-1))
                                 (transition2 (cdr transition-cons-2))
                                 (transition-kind-1 (transition-kind transition1))
                                 (transition-kind-2 (transition-kind transition2)))
                            (cond
                             ((eq transition-kind-2 :shift) nil)
                             ((eq transition-kind-1 :shift) t)
                             ((eq transition-kind-2 :accept) nil)
                             ((eq transition-kind-1 :accept) t)
                             (t (let ((production-number-1 (production-number (transition-production transition1)))
                                      (production-number-2 (production-number (transition-production transition2))))
                                  (< production-number-1 production-number-2)))))))))))))


; Find ambiguities, if any, in the grammar.  Report them on the given stream.
; Fix all ambiguities in favor of the first transition listed
; (the transitions were ordered by finish-transitions).
; Return true if ambiguities were found.
(defun report-and-fix-ambiguities (grammar stream)
  (let ((found-ambiguities nil))
    (dolist (state (grammar-states grammar))
      (labels
        
        ((report-ambiguity (transition-cons other-transition-conses)
           (unless found-ambiguities
             (setq found-ambiguities t)
             (format stream "~&Ambiguities:"))
           (write-char #\newline stream)
           (pprint-logical-block (stream nil)
             (format stream "S~D: ~W => " (state-number state) (car transition-cons))
             (pprint-logical-block (stream nil)
               (dolist (a (cons transition-cons other-transition-conses))
                 (print-transition (cdr a) stream)
                 (format stream "   ~:_")))))
         
         ; Check the list of transition-conses and report ambiguities.
         ; start is the start of a possibly larger list of transition-conses whose tail
         ; is the given list.  If ambiguities exist, return a copy of start up to the
         ; position of list in it followed by list with ambiguities removed.  If not,
         ; return start unchanged.
         (check (transition-conses start)
           (if transition-conses
             (let* ((transition-cons (first transition-conses))
                    (transition-terminal (car transition-cons))
                    (transition-conses-rest (rest transition-conses)))
               (if transition-conses-rest
                 (if (grammar-symbol-= transition-terminal (car (first transition-conses-rest)))
                   (let ((unrelated-transitions
                          (member-if #'(lambda (a) (not (grammar-symbol-= transition-terminal (car a))))
                                     transition-conses-rest)))
                     (report-ambiguity transition-cons (ldiff transition-conses-rest unrelated-transitions))
                     (check unrelated-transitions (append (ldiff start transition-conses-rest) unrelated-transitions)))
                   (check transition-conses-rest start))
                 start))
             start)))
        
        (let ((transition-conses (state-transitions state)))
          (setf (state-transitions state) (check transition-conses transition-conses)))))
    (when found-ambiguities
      (write-char #\newline stream))
    found-ambiguities))


; Remove the temporary item and laitem lists from the grammar's states.  This reduces the grammar's lisp
; heap usage but prevents it from being printed.
(defun clean-grammar (grammar)
  (when (grammar-items-hash grammar)
    (setf (grammar-items-hash grammar) nil)
    (dolist (state (grammar-states grammar))
      (setf (state-kernel state) nil)
      (setf (state-laitems state) nil))))


; Erase the existing parser, if any, for the given grammar.
(defun clear-parser (grammar)
  (setf (grammar-items-hash grammar) nil)
  (setf (grammar-states grammar) nil))


; Construct a LR or LALR parser in the given grammar.  kind should be :lalr-1, :lr-1, or :canonical-lr-1.
; Return true if ambiguities were found.
(defun compile-parser (grammar kind)
  (clear-parser grammar)
  (setf (grammar-items-hash grammar) (make-hash-table :test #'equal))
  (ecase kind
    (:lalr-1
     (add-all-lalr-states grammar)
     (propagate-lalr-lookaheads grammar))
    (:lr-1
     (add-all-lr-states grammar))
    (:canonical-lr-1
     (add-all-canonical-lr-states grammar)))
  (finish-transitions grammar)
  (report-and-fix-ambiguities grammar *error-output*))



; (cons (list <kind> <start-symbol> <grammar-source> <grammar-options>) <grammar>)
(defvar *make-and-compile-grammar-cache* (cons nil nil))

; Make the grammar and compile its parser.  kind should be :lalr-1, :lr-1, or :canonical-lr-1.
(defun make-and-compile-grammar (kind parametrization start-symbol grammar-source &rest grammar-options)
  (let ((key (list kind start-symbol grammar-source grammar-options))
        (cached-grammar (cdr *make-and-compile-grammar-cache*)))
    (if (and (equal key (car *make-and-compile-grammar-cache*))
             (grammar-parametrization-= parametrization cached-grammar))
      (progn
        (format *trace-output* "Re-using grammar ~S ~S ~S~%" kind start-symbol grammar-options)
        cached-grammar)
      (let* ((grammar (apply #'make-grammar parametrization start-symbol grammar-source grammar-options))
             (found-ambiguities (compile-parser grammar kind)))
        (setq *make-and-compile-grammar-cache*
              (if found-ambiguities
                (cons nil nil)
                (cons key grammar)))
        grammar))))


; Collapse states that have at most one possible reduction into forwarding states.
; DON'T DO THIS ON GRAMMARS THAT HAVE CONSTRAINTS AT THE TAIL END OF A PRODUCTION.
; Return the number of states optimized.
(defun forward-parser-states (grammar)
  (let ((n-forwarded-states 0))
    (dolist (state (grammar-states grammar))
      (let ((production (forwarding-state-production state)))
        (when production
          (setf (state-transitions state) (list (cons nil (make-reduce-transition production))))
          (incf n-forwarded-states))))
    n-forwarded-states))


;;; ------------------------------------------------------------------------------------------------------

(define-condition syntax-error (error)
                  ((message :reader syntax-error-message :initarg :message))
  (:report
   (lambda (condition stream)
     (format stream "Syntax error: ~A" (syntax-error-message condition)))))


(defun syntax-error (control-string &rest args)
  (error 'syntax-error :message (apply #'format nil control-string args)))


; Parse the input list of tokens to produce a parse tree.
; token-terminal is a function that returns a terminal symbol when given an input token.
(defun parse (grammar token-terminal input)
  (labels
    (;Continue the parse with the given parser stack and remainder of input.
     (parse-step (stack input)
       (if (endp input)
         (parse-step-1 stack *end-marker* nil nil)
         (let ((token (first input)))
           (parse-step-1 stack (funcall token-terminal token) token (rest input)))))
     
     ;Same as parse-step except that the next input terminal has been determined already.
     ;input-rest contains the input tokens after the next token.
     (parse-step-1 (stack terminal token input-rest)
       (let* ((state (caar stack))
              (transition (state-transition state terminal)))
         (if transition
           (case (transition-kind transition)
             (:shift (parse-step (acons (transition-state transition) token stack) input-rest))
             (:reduce (let ((production (transition-production transition))
                            (expansion nil))
                        (dotimes (i (production-rhs-length production))
                          (push (cdr (pop stack)) expansion))
                        (let* ((state (caar stack))
                               (dst-state (assert-non-null
                                           (cdr (assoc (production-lhs production) (state-gotos state) :test *grammar-symbol-=*))))
                               (named-expansion (cons (production-name production) expansion)))
                          (parse-step-1 (acons dst-state named-expansion stack) terminal token input-rest))))
             (:accept (cdar stack))
             (t (error "Bad transition: ~S" transition)))
           (syntax-error "Parse error on ~S followed by ~S ..." token (ldiff input-rest (nthcdr 10 input-rest)))))))
    
    (parse-step (list (cons (grammar-start-state grammar) nil)) input)))


;;; ------------------------------------------------------------------------------------------------------
;;; ACTIONS

; Initialize the action-signatures hash table, setting each grammar symbol's signature
; to null for now.  Also clear all production actions in the grammar.
(defun clear-actions (grammar)
  (let ((action-signatures (make-hash-table :test *grammar-symbol-=*))
        (terminals (grammar-terminals grammar))
        (nonterminals (grammar-nonterminals grammar)))
    (dotimes (i (length terminals))
      (setf (gethash (svref terminals i) action-signatures) nil))
    (dotimes (i (length nonterminals))
      (setf (gethash (svref nonterminals i) action-signatures) nil))
    (setf (grammar-action-signatures grammar) action-signatures)
    (each-grammar-production
     grammar
     #'(lambda (production)
         (setf (production-actions production) nil)
         (setf (production-n-action-args production) nil)
         (setf (production-evaluator production) nil)))
    (clrhash (grammar-terminal-actions grammar))))


; Declare the type of action action-symbol, when called on general-grammar-symbol, to be type-expr.
; Signal an error on duplicate actions.
; It's OK if some of the symbol instances don't exist, as long as at least one does.
(defun declare-action (grammar general-grammar-symbol action-symbol type-expr)
  (unless (and action-symbol (symbolp action-symbol))
    (error "Bad action name ~S" action-symbol))
  (let ((action-signatures (grammar-action-signatures grammar))
        (grammar-symbols (general-grammar-symbol-instances grammar general-grammar-symbol))
        (symbol-exists nil))
    (flet ((add-signature (variant)
             (let ((signature (gethash variant action-signatures :undefined)))
               (unless (eq signature :undefined)
                 (setq symbol-exists t)
                 (when (assoc action-symbol signature :test #'eq)
                   (error "Attempt to redefine the type of action ~S on ~S" action-symbol variant))
                 (setf (gethash variant action-signatures)
                       (nconc signature (list (cons action-symbol type-expr))))))))
      (dolist (grammar-symbol grammar-symbols)
        (if (nonterminal? grammar-symbol)
          (progn
            (add-signature grammar-symbol)
            (dolist (production (rule-productions (grammar-rule grammar grammar-symbol)))
              (setf (production-actions production)
                    (nconc (production-actions production) (list (cons action-symbol nil))))))
          (let ((terminal-actions (grammar-terminal-actions grammar)))
            (assert-type grammar-symbol terminal)
            (dolist (variant (terminal-variants grammar grammar-symbol))
              (add-signature variant)
              (setf (gethash variant terminal-actions)
                    (nconc (gethash variant terminal-actions) (list (cons action-symbol nil)))))))))
    (unless symbol-exists
      (error "Bad action grammar symbol ~S" grammar-symbols))))


; Return the list of pairs (action-symbol . type-or-type-expr) for this grammar-symbol.
; The pairs are in order from oldest to newest action-symbols added to this grammar-symbol.
(declaim (inline grammar-symbol-signature))
(defun grammar-symbol-signature (grammar grammar-symbol)
  (gethash grammar-symbol (grammar-action-signatures grammar)))


; Return the list of action types of the grammar's user start-symbol.
(defun grammar-user-start-action-types (grammar)
  (mapcar #'cdr (grammar-symbol-signature grammar (gramar-user-start-symbol grammar))))


; If action action-symbol is declared on grammar-symbol, return two values:
;   t, and
;   the action's type-expr;
; If not, return nil.
(defun action-declaration (grammar grammar-symbol action-symbol)
  (let ((declaration (assoc action-symbol (grammar-symbol-signature grammar grammar-symbol) :test #'eq)))
    (and declaration
         (values t (cdr declaration)))))


; Call f on every action declaration, passing it two arguments:
;   the grammar-symbol;
;   a pair (action-symbol . type-expr).
; f may modify the action's type-expr.
(defun each-action-declaration (grammar f)
  (maphash #'(lambda (grammar-symbol signature)
               (dolist (action-declaration signature)
                 (funcall f grammar-symbol action-declaration)))
           (grammar-action-signatures grammar)))


; Define action action-symbol, when called on the production with the given name,
; to be action-expr.  The action should have been declared already.
(defun define-action (grammar production-name action-symbol type action-expr)
  (dolist (production (general-production-productions (grammar-general-production grammar production-name)))
    (let ((definition (assoc action-symbol (production-actions production) :test #'eq)))
      (cond
       ((null definition)
        (error "Attempt to define action ~S on ~S, which hasn't been declared yet" action-symbol production-name))
       ((cdr definition)
        (error "Duplicate definition of action ~S on ~S" action-symbol production-name))
       (t (setf (cdr definition) (make-action type action-expr)))))))


; Define action action-symbol, when called on the given terminal,
; to execute the given function, which should take a token as an input and
; produce a value of the proper type as output.
; The action should have been declared already.
(defun define-terminal-action (grammar terminal action-symbol action-function)
  (assert-type action-function function)
  (dolist (variant (terminal-variants grammar terminal))
    (let ((definition (assoc action-symbol (gethash variant (grammar-terminal-actions grammar)) :test #'eq)))
      (cond
       ((null definition)
        (error "Attempt to define action ~S on ~S, which hasn't been declared yet" action-symbol variant))
       ((cdr definition)
        (error "Duplicate definition of action ~S on ~S" action-symbol variant))
       (t (setf (cdr definition) action-function))))))



; Parse the input list of tokens to produce a list of action results.
; token-terminal is a function that returns a terminal symbol when given an input token.
; If trace is:
;   nil,     don't print trace information
;   :code,   print trace information, including action code
;   other    print trace information
; Return two values:
;   the list of action results;
;   the list of action results' types.
(defun action-parse (grammar token-terminal input &key trace)
  (labels
    (;Continue the parse with the given stacks and remainder of input.
     ;When trace is non-null, type-stack contains the types of corresponding value-stack entries.
     (parse-step (state-stack value-stack type-stack input)
       (if (endp input)
         (parse-step-1 state-stack value-stack type-stack *end-marker* nil nil)
         (let ((token (first input)))
           (parse-step-1 state-stack value-stack type-stack (funcall token-terminal token) token (rest input)))))
     
     ;Same as parse-step except that the next input terminal has been determined already.
     ;input-rest contains the input tokens after the next token.
     (parse-step-1 (state-stack value-stack type-stack terminal token input-rest)
       (let* ((state (car state-stack))
              (transition (state-transition state terminal)))
         (when trace
           (format *trace-output* "S~D: ~@_" (state-number state))
           (print-values (reverse value-stack) (reverse type-stack) *trace-output*)
           (pprint-newline :mandatory *trace-output*))
         (if transition
           (case (transition-kind transition)
             (:shift
              (when trace
                (format *trace-output* "  shift ~W~:@_" terminal)
                (dolist (action-signature (grammar-symbol-signature grammar terminal))
                  (push (cdr action-signature) type-stack)))
              (dolist (action-function-binding (gethash terminal (grammar-terminal-actions grammar)))
                (push (funcall (cdr action-function-binding) token) value-stack))
              (parse-step (cons (transition-state transition) state-stack) value-stack type-stack input-rest))
             
             (:reduce
              (let ((production (transition-production transition)))
                (when trace
                  (write-string "  reduce " *trace-output*)
                  (if (eq trace :code)
                    (write production :stream *trace-output* :pretty t)
                    (print-production production *trace-output*))
                  (pprint-newline :mandatory *trace-output*))
                (let* ((state-stack (nthcdr (production-rhs-length production) state-stack))
                       (state (car state-stack))
                       (dst-state (assert-non-null
                                   (cdr (assoc (production-lhs production) (state-gotos state) :test *grammar-symbol-=*))))
                       (value-stack (funcall (production-evaluator production) value-stack)))
                  (when trace
                    (setq type-stack (nthcdr (production-n-action-args production) type-stack))
                    (dolist (action-signature (grammar-symbol-signature grammar (production-lhs production)))
                      (push (cdr action-signature) type-stack)))
                  (parse-step-1 (cons dst-state state-stack) value-stack type-stack terminal token input-rest))))
             
             (:accept
              (when trace
                (format *trace-output* "  accept~:@_"))
              (values
               (nreverse value-stack)
               (if trace
                 (nreverse type-stack)
                 (grammar-user-start-action-types grammar))))
             
             (t (error "Bad transition: ~S" transition)))
           (syntax-error "Parse error on ~S followed by ~S ..." token (ldiff input-rest (nthcdr 10 input-rest)))))))
    
    (parse-step (list (grammar-start-state grammar)) nil nil input)))