DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (cdf352f02ac4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef nsBaseHashtable_h__
#define nsBaseHashtable_h__

#include <utility>

#include "mozilla/MemoryReporting.h"
#include "nsDebug.h"
#include "nsTHashtable.h"

template <class KeyClass, class DataType, class UserDataType, class Converter>
class nsBaseHashtable;  // forward declaration

/**
 * Data type conversion helper that is used to wrap and unwrap the specified
 * DataType.
 */
template <class DataType, class UserDataType>
class nsDefaultConverter {
 public:
  /**
   * Maps the storage DataType to the exposed UserDataType.
   */
  static UserDataType Unwrap(DataType& src) { return UserDataType(src); }

  /**
   * Const ref variant used for example with nsCOMPtr wrappers.
   */
  static DataType Wrap(const UserDataType& src) { return DataType(src); }

  /**
   * Generic conversion, this is useful for things like already_AddRefed.
   */
  template <typename U>
  static DataType Wrap(U&& src) {
    return std::move(src);
  }
};

/**
 * the private nsTHashtable::EntryType class used by nsBaseHashtable
 * @see nsTHashtable for the specification of this class
 * @see nsBaseHashtable for template parameters
 */
template <class KeyClass, class DataType>
class nsBaseHashtableET : public KeyClass {
 public:
  const DataType& GetData() const { return mData; }
  DataType* GetModifiableData() { return &mData; }
  template <typename U>
  void SetData(U&& aData) {
    mData = std::forward<U>(aData);
  }

 private:
  DataType mData;
  friend class nsTHashtable<nsBaseHashtableET<KeyClass, DataType>>;
  template <typename KeyClassX, typename DataTypeX, typename UserDataTypeX,
            typename ConverterX>
  friend class nsBaseHashtable;

  typedef typename KeyClass::KeyType KeyType;
  typedef typename KeyClass::KeyTypePointer KeyTypePointer;

  explicit nsBaseHashtableET(KeyTypePointer aKey);
  nsBaseHashtableET(nsBaseHashtableET<KeyClass, DataType>&& aToMove);
  ~nsBaseHashtableET() = default;
};

/**
 * templated hashtable for simple data types
 * This class manages simple data types that do not need construction or
 * destruction.
 *
 * @param KeyClass a wrapper-class for the hashtable key, see nsHashKeys.h
 *   for a complete specification.
 * @param DataType the datatype stored in the hashtable,
 *   for example, uint32_t or nsCOMPtr.
 * @param UserDataType the user sees, for example uint32_t or nsISupports*
 * @param Converter that can be used to map from DataType to UserDataType. A
 *   default converter is provided that assumes implicit conversion is an
 *   option.
 */
template <class KeyClass, class DataType, class UserDataType,
          class Converter = nsDefaultConverter<DataType, UserDataType>>
class nsBaseHashtable
    : protected nsTHashtable<nsBaseHashtableET<KeyClass, DataType>> {
  typedef mozilla::fallible_t fallible_t;

 public:
  typedef typename KeyClass::KeyType KeyType;
  typedef nsBaseHashtableET<KeyClass, DataType> EntryType;

  using nsTHashtable<EntryType>::Contains;
  using nsTHashtable<EntryType>::GetGeneration;
  using nsTHashtable<EntryType>::SizeOfExcludingThis;
  using nsTHashtable<EntryType>::SizeOfIncludingThis;

  nsBaseHashtable() = default;
  explicit nsBaseHashtable(uint32_t aInitLength)
      : nsTHashtable<EntryType>(aInitLength) {}

  /**
   * Return the number of entries in the table.
   * @return    number of entries
   */
  uint32_t Count() const { return nsTHashtable<EntryType>::Count(); }

  /**
   * Return whether the table is empty.
   * @return    whether empty
   */
  bool IsEmpty() const { return nsTHashtable<EntryType>::IsEmpty(); }

  /**
   * retrieve the value for a key.
   * @param aKey the key to retreive
   * @param aData data associated with this key will be placed at this
   *   pointer.  If you only need to check if the key exists, aData
   *   may be null.
   * @return true if the key exists. If key does not exist, aData is not
   *   modified.
   */
  bool Get(KeyType aKey, UserDataType* aData) const {
    EntryType* ent = this->GetEntry(aKey);
    if (!ent) {
      return false;
    }

    if (aData) {
      *aData = Converter::Unwrap(ent->mData);
    }

    return true;
  }

  /**
   * Get the value, returning a zero-initialized POD or a default-initialized
   * object if the entry is not present in the table.
   *
   * @param aKey the key to retrieve
   * @return The found value, or UserDataType{} if no entry was found with the
   *         given key.
   * @note If zero/default-initialized values are stored in the table, it is
   *       not possible to distinguish between such a value and a missing entry.
   */
  UserDataType Get(KeyType aKey) const {
    EntryType* ent = this->GetEntry(aKey);
    if (!ent) {
      return UserDataType{};
    }

    return Converter::Unwrap(ent->mData);
  }

  /**
   * Add key to the table if not already present, and return a reference to its
   * value.  If key is not already in the table then the value is default
   * constructed.
   */
  DataType& GetOrInsert(const KeyType& aKey) {
    EntryType* ent = this->PutEntry(aKey);
    return ent->mData;
  }

  /**
   * Put a new value for the associated key
   * @param aKey the key to put
   * @param aData the new data
   */
  void Put(KeyType aKey, const UserDataType& aData) {
    if (!Put(aKey, aData, mozilla::fallible)) {
      NS_ABORT_OOM(this->mTable.EntrySize() * this->mTable.EntryCount());
    }
  }

  [[nodiscard]] bool Put(KeyType aKey, const UserDataType& aData,
                         const fallible_t&) {
    EntryType* ent = this->PutEntry(aKey, mozilla::fallible);
    if (!ent) {
      return false;
    }

    ent->mData = Converter::Wrap(aData);

    return true;
  }

  /**
   * Put a new value for the associated key
   * @param aKey the key to put
   * @param aData the new data
   */
  void Put(KeyType aKey, UserDataType&& aData) {
    if (!Put(aKey, std::move(aData), mozilla::fallible)) {
      NS_ABORT_OOM(this->mTable.EntrySize() * this->mTable.EntryCount());
    }
  }

  [[nodiscard]] bool Put(KeyType aKey, UserDataType&& aData,
                         const fallible_t&) {
    EntryType* ent = this->PutEntry(aKey, mozilla::fallible);
    if (!ent) {
      return false;
    }

    ent->mData = Converter::Wrap(std::move(aData));

    return true;
  }

  /**
   * Remove the entry associated with aKey (if any), optionally _moving_ its
   * current value into *aData.  Return true if found.
   * @param aKey the key to remove from the hashtable
   * @param aData where to move the value (if non-null).  If an entry is not
   *              found, *aData will be assigned a default-constructed value
   *              (i.e. reset to zero or nullptr for primitive types).
   * @return true if an entry for aKey was found (and removed)
   */
  bool Remove(KeyType aKey, DataType* aData = nullptr) {
    if (auto* ent = this->GetEntry(aKey)) {
      if (aData) {
        *aData = std::move(ent->mData);
      }
      this->RemoveEntry(ent);
      return true;
    }
    if (aData) {
      *aData = std::move(DataType());
    }
    return false;
  }

  struct LookupResult {
   private:
    EntryType* mEntry;
    nsBaseHashtable& mTable;
#ifdef DEBUG
    uint32_t mTableGeneration;
#endif

   public:
    LookupResult(EntryType* aEntry, nsBaseHashtable& aTable)
        : mEntry(aEntry),
          mTable(aTable)
#ifdef DEBUG
          ,
          mTableGeneration(aTable.GetGeneration())
#endif
    {
    }

    // Is there something stored in the table?
    explicit operator bool() const {
      MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
      return mEntry;
    }

    void Remove() {
      if (!*this) {
        return;
      }
      mTable.RemoveEntry(mEntry);
      mEntry = nullptr;
    }

    [[nodiscard]] DataType& Data() {
      MOZ_ASSERT(!!*this, "must have an entry to access its value");
      return mEntry->mData;
    }
  };

  /**
   * Removes all entries matching a predicate.
   *
   * The predicate must be compatible with signature bool (const Iterator &).
   */
  template <typename Pred>
  void RemoveIf(Pred&& aPred) {
    for (auto iter = Iter(); !iter.Done(); iter.Next()) {
      if (aPred(const_cast<std::add_const_t<decltype(iter)>&>(iter))) {
        iter.Remove();
      }
    }
  }

  /**
   * Looks up aKey in the hashtable and returns an object that allows you to
   * read/modify the value of the entry, or remove the entry (if found).
   *
   * A typical usage of this API looks like this:
   *
   *   if (auto entry = hashtable.Lookup(key)) {
   *     DoSomething(entry.Data());
   *     if (entry.Data() > 42) {
   *       entry.Remove();
   *     }
   *   } // else - an entry with the given key doesn't exist
   *
   * This is useful for cases where you want to read/write the value of an entry
   * and (optionally) remove the entry without having to do multiple hashtable
   * lookups.  If you want to insert a new entry if one does not exist, then use
   * LookupForAdd instead, see below.
   */
  [[nodiscard]] LookupResult Lookup(KeyType aKey) {
    return LookupResult(this->GetEntry(aKey), *this);
  }

  struct EntryPtr {
   private:
    EntryType* mEntry;
    bool mExistingEntry;
    nsBaseHashtable& mTable;
    // For debugging purposes
#ifdef DEBUG
    uint32_t mTableGeneration;
    bool mDidInitNewEntry;
#endif

   public:
    EntryPtr(nsBaseHashtable& aTable, EntryType* aEntry, bool aExistingEntry)
        : mEntry(aEntry),
          mExistingEntry(aExistingEntry),
          mTable(aTable)
#ifdef DEBUG
          ,
          mTableGeneration(aTable.GetGeneration()),
          mDidInitNewEntry(false)
#endif
    {
    }
    ~EntryPtr() {
      MOZ_ASSERT(mExistingEntry || mDidInitNewEntry || !mEntry,
                 "Forgot to call OrInsert() or OrRemove() on a new entry");
    }

    // Is there something stored in the table already?
    explicit operator bool() const {
      MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
      return mExistingEntry;
    }

    template <class F>
    DataType& OrInsert(F func) {
      MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
      MOZ_ASSERT(mEntry);
      if (!mExistingEntry) {
        mEntry->mData = Converter::Wrap(func());
#ifdef DEBUG
        mDidInitNewEntry = true;
#endif
      }
      return mEntry->mData;
    }

    void OrRemove() {
      MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
      MOZ_ASSERT(mEntry);
      mTable.RemoveEntry(mEntry);
      mEntry = nullptr;
    }

    [[nodiscard]] DataType& Data() {
      MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
      MOZ_ASSERT(mEntry);
      return mEntry->mData;
    }
  };

  /**
   * Looks up aKey in the hashtable and returns an object that allows you to
   * insert a new entry into the hashtable for that key if an existing entry
   * isn't found for it.
   *
   * A typical usage of this API looks like this:
   *
   *   auto insertedValue = table.LookupForAdd(key).OrInsert([]() {
   *     return newValue;
   *   });
   *
   *   auto p = table.LookupForAdd(key);
   *   if (p) {
   *     // The entry already existed in the table.
   *     DoSomething(p.Data());
   *   } else {
   *     // An existing entry wasn't found, store a new entry in the hashtable.
   *     p.OrInsert([]() { return newValue; });
   *   }
   *
   * We ensure that the hashtable isn't modified before EntryPtr method calls.
   * This is useful for cases where you want to insert a new entry into the
   * hashtable if one doesn't exist before but would like to avoid two hashtable
   * lookups.
   */
  [[nodiscard]] EntryPtr LookupForAdd(KeyType aKey) {
    auto count = Count();
    EntryType* ent = this->PutEntry(aKey);
    return EntryPtr(*this, ent, count == Count());
  }

  // This is an iterator that also allows entry removal. Example usage:
  //
  //   for (auto iter = table.Iter(); !iter.Done(); iter.Next()) {
  //     const KeyType key = iter.Key();
  //     const UserDataType data = iter.UserData();
  //     // or
  //     const DataType& data = iter.Data();
  //     // ... do stuff with |key| and/or |data| ...
  //     // ... possibly call iter.Remove() once ...
  //   }
  //
  class Iterator : public PLDHashTable::Iterator {
   public:
    typedef PLDHashTable::Iterator Base;

    explicit Iterator(nsBaseHashtable* aTable) : Base(&aTable->mTable) {}
    Iterator(Iterator&& aOther) : Base(aOther.mTable) {}
    ~Iterator() = default;

    KeyType Key() const { return static_cast<EntryType*>(Get())->GetKey(); }
    UserDataType UserData() const {
      return Converter::Unwrap(static_cast<EntryType*>(Get())->mData);
    }
    DataType& Data() const { return static_cast<EntryType*>(Get())->mData; }

   private:
    Iterator() = delete;
    Iterator(const Iterator&) = delete;
    Iterator& operator=(const Iterator&) = delete;
    Iterator& operator=(const Iterator&&) = delete;
  };

  Iterator Iter() { return Iterator(this); }

  Iterator ConstIter() const {
    return Iterator(const_cast<nsBaseHashtable*>(this));
  }

  // STL-style iterators to allow the use in range-based for loops, e.g.
  template <typename T>
  class base_iterator
      : public std::iterator<std::forward_iterator_tag, T, int32_t> {
   public:
    using typename std::iterator<std::forward_iterator_tag, T,
                                 int32_t>::value_type;
    using typename std::iterator<std::forward_iterator_tag, T,
                                 int32_t>::difference_type;

    using iterator_type = base_iterator;
    using const_iterator_type = base_iterator<const T>;

    using EndIteratorTag = PLDHashTable::Iterator::EndIteratorTag;

    base_iterator(base_iterator&& aOther) = default;

    base_iterator& operator=(base_iterator&& aOther) {
      // User-defined because the move assignment operator is deleted in
      // PLDHashtable::Iterator.
      return operator=(static_cast<const base_iterator&>(aOther));
    }

    base_iterator(const base_iterator& aOther)
        : mIterator{aOther.mIterator.Clone()} {}
    base_iterator& operator=(const base_iterator& aOther) {
      // Since PLDHashTable::Iterator has no assignment operator, we destroy and
      // recreate mIterator.
      mIterator.~Iterator();
      new (&mIterator) PLDHashTable::Iterator(aOther.mIterator.Clone());
      return *this;
    }

    explicit base_iterator(PLDHashTable::Iterator aFrom)
        : mIterator{std::move(aFrom)} {}

    explicit base_iterator(const nsBaseHashtable* aTable)
        : mIterator{&const_cast<nsBaseHashtable*>(aTable)->mTable} {}

    base_iterator(const nsBaseHashtable* aTable, EndIteratorTag aTag)
        : mIterator{&const_cast<nsBaseHashtable*>(aTable)->mTable, aTag} {}

    bool operator==(const iterator_type& aRhs) const {
      return mIterator == aRhs.mIterator;
    }
    bool operator!=(const iterator_type& aRhs) const {
      return !(*this == aRhs);
    }

    value_type* operator->() const {
      return static_cast<value_type*>(mIterator.Get());
    }
    value_type& operator*() const {
      return *static_cast<value_type*>(mIterator.Get());
    }

    iterator_type& operator++() {
      mIterator.Next();
      return *this;
    }
    iterator_type operator++(int) {
      iterator_type it = *this;
      ++*this;
      return it;
    }

    operator const_iterator_type() const {
      return const_iterator_type{mIterator.Clone()};
    }

   private:
    PLDHashTable::Iterator mIterator;
  };
  using const_iterator = base_iterator<const EntryType>;
  using iterator = base_iterator<EntryType>;

  iterator begin() { return iterator{this}; }
  const_iterator begin() const { return const_iterator{this}; }
  const_iterator cbegin() const { return begin(); }
  iterator end() { return iterator{this, typename iterator::EndIteratorTag{}}; }
  const_iterator end() const {
    return const_iterator{this, typename const_iterator::EndIteratorTag{}};
  }
  const_iterator cend() const { return end(); }

  /**
   * reset the hashtable, removing all entries
   */
  void Clear() { nsTHashtable<EntryType>::Clear(); }

  /**
   * Measure the size of the table's entry storage. The size of things pointed
   * to by entries must be measured separately; hence the "Shallow" prefix.
   *
   * @param   aMallocSizeOf the function used to measure heap-allocated blocks
   * @return  the summed size of the table's storage
   */
  size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return this->mTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

  /**
   * Like ShallowSizeOfExcludingThis, but includes sizeof(*this).
   */
  size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

  /**
   * Swap the elements in this hashtable with the elements in aOther.
   */
  void SwapElements(nsBaseHashtable& aOther) {
    nsTHashtable<EntryType>::SwapElements(aOther);
  }

  using nsTHashtable<EntryType>::MarkImmutable;
};

//
// nsBaseHashtableET definitions
//

template <class KeyClass, class DataType>
nsBaseHashtableET<KeyClass, DataType>::nsBaseHashtableET(KeyTypePointer aKey)
    : KeyClass(aKey), mData() {}

template <class KeyClass, class DataType>
nsBaseHashtableET<KeyClass, DataType>::nsBaseHashtableET(
    nsBaseHashtableET<KeyClass, DataType>&& aToMove)
    : KeyClass(std::move(aToMove)), mData(std::move(aToMove.mData)) {}

#endif  // nsBaseHashtable_h__