DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (cdf352f02ac4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
//! Everything related to types in our intermediate representation.

use super::comp::CompInfo;
use super::context::{BindgenContext, ItemId, TypeId};
use super::dot::DotAttributes;
use super::enum_ty::Enum;
use super::function::FunctionSig;
use super::int::IntKind;
use super::item::{IsOpaque, Item};
use super::layout::{Layout, Opaque};
use super::objc::ObjCInterface;
use super::template::{
    AsTemplateParam, TemplateInstantiation, TemplateParameters,
};
use super::traversal::{EdgeKind, Trace, Tracer};
use clang::{self, Cursor};
use parse::{ClangItemParser, ParseError, ParseResult};
use std::borrow::Cow;
use std::io;

/// The base representation of a type in bindgen.
///
/// A type has an optional name, which if present cannot be empty, a `layout`
/// (size, alignment and packedness) if known, a `Kind`, which determines which
/// kind of type it is, and whether the type is const.
#[derive(Debug)]
pub struct Type {
    /// The name of the type, or None if it was an unnamed struct or union.
    name: Option<String>,
    /// The layout of the type, if known.
    layout: Option<Layout>,
    /// The inner kind of the type
    kind: TypeKind,
    /// Whether this type is const-qualified.
    is_const: bool,
}

/// The maximum number of items in an array for which Rust implements common
/// traits, and so if we have a type containing an array with more than this
/// many items, we won't be able to derive common traits on that type.
///
/// We need type-level integers yesterday :'(
pub const RUST_DERIVE_IN_ARRAY_LIMIT: usize = 32;

impl Type {
    /// Get the underlying `CompInfo` for this type, or `None` if this is some
    /// other kind of type.
    pub fn as_comp(&self) -> Option<&CompInfo> {
        match self.kind {
            TypeKind::Comp(ref ci) => Some(ci),
            _ => None,
        }
    }

    /// Get the underlying `CompInfo` for this type as a mutable reference, or
    /// `None` if this is some other kind of type.
    pub fn as_comp_mut(&mut self) -> Option<&mut CompInfo> {
        match self.kind {
            TypeKind::Comp(ref mut ci) => Some(ci),
            _ => None,
        }
    }

    /// Construct a new `Type`.
    pub fn new(
        name: Option<String>,
        layout: Option<Layout>,
        kind: TypeKind,
        is_const: bool,
    ) -> Self {
        Type {
            name,
            layout,
            kind,
            is_const,
        }
    }

    /// Which kind of type is this?
    pub fn kind(&self) -> &TypeKind {
        &self.kind
    }

    /// Get a mutable reference to this type's kind.
    pub fn kind_mut(&mut self) -> &mut TypeKind {
        &mut self.kind
    }

    /// Get this type's name.
    pub fn name(&self) -> Option<&str> {
        self.name.as_ref().map(|name| &**name)
    }

    /// Whether this is a block pointer type.
    pub fn is_block_pointer(&self) -> bool {
        match self.kind {
            TypeKind::BlockPointer(..) => true,
            _ => false,
        }
    }

    /// Is this a compound type?
    pub fn is_comp(&self) -> bool {
        match self.kind {
            TypeKind::Comp(..) => true,
            _ => false,
        }
    }

    /// Is this a union?
    pub fn is_union(&self) -> bool {
        match self.kind {
            TypeKind::Comp(ref comp) => comp.is_union(),
            _ => false,
        }
    }

    /// Is this type of kind `TypeKind::TypeParam`?
    pub fn is_type_param(&self) -> bool {
        match self.kind {
            TypeKind::TypeParam => true,
            _ => false,
        }
    }

    /// Is this a template instantiation type?
    pub fn is_template_instantiation(&self) -> bool {
        match self.kind {
            TypeKind::TemplateInstantiation(..) => true,
            _ => false,
        }
    }

    /// Is this a template alias type?
    pub fn is_template_alias(&self) -> bool {
        match self.kind {
            TypeKind::TemplateAlias(..) => true,
            _ => false,
        }
    }

    /// Is this a function type?
    pub fn is_function(&self) -> bool {
        match self.kind {
            TypeKind::Function(..) => true,
            _ => false,
        }
    }

    /// Is this an enum type?
    pub fn is_enum(&self) -> bool {
        match self.kind {
            TypeKind::Enum(..) => true,
            _ => false,
        }
    }

    /// Is this either a builtin or named type?
    pub fn is_builtin_or_type_param(&self) -> bool {
        match self.kind {
            TypeKind::Void |
            TypeKind::NullPtr |
            TypeKind::Function(..) |
            TypeKind::Array(..) |
            TypeKind::Reference(..) |
            TypeKind::Pointer(..) |
            TypeKind::Int(..) |
            TypeKind::Float(..) |
            TypeKind::TypeParam => true,
            _ => false,
        }
    }

    /// Creates a new named type, with name `name`.
    pub fn named(name: String) -> Self {
        let name = if name.is_empty() { None } else { Some(name) };
        Self::new(name, None, TypeKind::TypeParam, false)
    }

    /// Is this a floating point type?
    pub fn is_float(&self) -> bool {
        match self.kind {
            TypeKind::Float(..) => true,
            _ => false,
        }
    }

    /// Is this a boolean type?
    pub fn is_bool(&self) -> bool {
        match self.kind {
            TypeKind::Int(IntKind::Bool) => true,
            _ => false,
        }
    }

    /// Is this an integer type?
    pub fn is_integer(&self) -> bool {
        match self.kind {
            TypeKind::Int(..) => true,
            _ => false,
        }
    }

    /// Cast this type to an integer kind, or `None` if it is not an integer
    /// type.
    pub fn as_integer(&self) -> Option<IntKind> {
        match self.kind {
            TypeKind::Int(int_kind) => Some(int_kind),
            _ => None,
        }
    }

    /// Is this a `const` qualified type?
    pub fn is_const(&self) -> bool {
        self.is_const
    }

    /// Is this a reference to another type?
    pub fn is_type_ref(&self) -> bool {
        match self.kind {
            TypeKind::ResolvedTypeRef(_) |
            TypeKind::UnresolvedTypeRef(_, _, _) => true,
            _ => false,
        }
    }

    /// Is this an unresolved reference?
    pub fn is_unresolved_ref(&self) -> bool {
        match self.kind {
            TypeKind::UnresolvedTypeRef(_, _, _) => true,
            _ => false,
        }
    }

    /// Is this a incomplete array type?
    pub fn is_incomplete_array(&self, ctx: &BindgenContext) -> Option<ItemId> {
        match self.kind {
            TypeKind::Array(item, len) => {
                if len == 0 {
                    Some(item.into())
                } else {
                    None
                }
            }
            TypeKind::ResolvedTypeRef(inner) => {
                ctx.resolve_type(inner).is_incomplete_array(ctx)
            }
            _ => None,
        }
    }

    /// What is the layout of this type?
    pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> {
        self.layout.or_else(|| {
            match self.kind {
                TypeKind::Comp(ref ci) => ci.layout(ctx),
                TypeKind::Array(inner, length) if length == 0 => Some(
                    Layout::new(0, ctx.resolve_type(inner).layout(ctx)?.align),
                ),
                // FIXME(emilio): This is a hack for anonymous union templates.
                // Use the actual pointer size!
                TypeKind::Pointer(..) => Some(Layout::new(
                    ctx.target_pointer_size(),
                    ctx.target_pointer_size(),
                )),
                TypeKind::ResolvedTypeRef(inner) => {
                    ctx.resolve_type(inner).layout(ctx)
                }
                _ => None,
            }
        })
    }

    /// Whether this named type is an invalid C++ identifier. This is done to
    /// avoid generating invalid code with some cases we can't handle, see:
    ///
    /// tests/headers/381-decltype-alias.hpp
    pub fn is_invalid_type_param(&self) -> bool {
        match self.kind {
            TypeKind::TypeParam => {
                let name = self.name().expect("Unnamed named type?");
                !clang::is_valid_identifier(&name)
            }
            _ => false,
        }
    }

    /// Takes `name`, and returns a suitable identifier representation for it.
    fn sanitize_name<'a>(name: &'a str) -> Cow<'a, str> {
        if clang::is_valid_identifier(name) {
            return Cow::Borrowed(name);
        }

        let name = name.replace(|c| c == ' ' || c == ':' || c == '.', "_");
        Cow::Owned(name)
    }

    /// Get this type's santizied name.
    pub fn sanitized_name<'a>(
        &'a self,
        ctx: &BindgenContext,
    ) -> Option<Cow<'a, str>> {
        let name_info = match *self.kind() {
            TypeKind::Pointer(inner) => {
                Some((inner.into(), Cow::Borrowed("ptr")))
            }
            TypeKind::Reference(inner) => {
                Some((inner.into(), Cow::Borrowed("ref")))
            }
            TypeKind::Array(inner, length) => {
                Some((inner, format!("array{}", length).into()))
            }
            _ => None,
        };
        if let Some((inner, prefix)) = name_info {
            ctx.resolve_item(inner)
                .expect_type()
                .sanitized_name(ctx)
                .map(|name| format!("{}_{}", prefix, name).into())
        } else {
            self.name().map(Self::sanitize_name)
        }
    }

    /// See safe_canonical_type.
    pub fn canonical_type<'tr>(
        &'tr self,
        ctx: &'tr BindgenContext,
    ) -> &'tr Type {
        self.safe_canonical_type(ctx)
            .expect("Should have been resolved after parsing!")
    }

    /// Returns the canonical type of this type, that is, the "inner type".
    ///
    /// For example, for a `typedef`, the canonical type would be the
    /// `typedef`ed type, for a template instantiation, would be the template
    /// its specializing, and so on. Return None if the type is unresolved.
    pub fn safe_canonical_type<'tr>(
        &'tr self,
        ctx: &'tr BindgenContext,
    ) -> Option<&'tr Type> {
        match self.kind {
            TypeKind::TypeParam |
            TypeKind::Array(..) |
            TypeKind::Vector(..) |
            TypeKind::Comp(..) |
            TypeKind::Opaque |
            TypeKind::Int(..) |
            TypeKind::Float(..) |
            TypeKind::Complex(..) |
            TypeKind::Function(..) |
            TypeKind::Enum(..) |
            TypeKind::Reference(..) |
            TypeKind::Void |
            TypeKind::NullPtr |
            TypeKind::Pointer(..) |
            TypeKind::BlockPointer(..) |
            TypeKind::ObjCId |
            TypeKind::ObjCSel |
            TypeKind::ObjCInterface(..) => Some(self),

            TypeKind::ResolvedTypeRef(inner) |
            TypeKind::Alias(inner) |
            TypeKind::TemplateAlias(inner, _) => {
                ctx.resolve_type(inner).safe_canonical_type(ctx)
            }
            TypeKind::TemplateInstantiation(ref inst) => ctx
                .resolve_type(inst.template_definition())
                .safe_canonical_type(ctx),

            TypeKind::UnresolvedTypeRef(..) => None,
        }
    }

    /// There are some types we don't want to stop at when finding an opaque
    /// item, so we can arrive to the proper item that needs to be generated.
    pub fn should_be_traced_unconditionally(&self) -> bool {
        match self.kind {
            TypeKind::Comp(..) |
            TypeKind::Function(..) |
            TypeKind::Pointer(..) |
            TypeKind::Array(..) |
            TypeKind::Reference(..) |
            TypeKind::TemplateInstantiation(..) |
            TypeKind::ResolvedTypeRef(..) => true,
            _ => false,
        }
    }
}

impl IsOpaque for Type {
    type Extra = Item;

    fn is_opaque(&self, ctx: &BindgenContext, item: &Item) -> bool {
        match self.kind {
            TypeKind::Opaque => true,
            TypeKind::TemplateInstantiation(ref inst) => {
                inst.is_opaque(ctx, item)
            }
            TypeKind::Comp(ref comp) => comp.is_opaque(ctx, &self.layout),
            TypeKind::ResolvedTypeRef(to) => to.is_opaque(ctx, &()),
            _ => false,
        }
    }
}

impl AsTemplateParam for Type {
    type Extra = Item;

    fn as_template_param(
        &self,
        ctx: &BindgenContext,
        item: &Item,
    ) -> Option<TypeId> {
        self.kind.as_template_param(ctx, item)
    }
}

impl AsTemplateParam for TypeKind {
    type Extra = Item;

    fn as_template_param(
        &self,
        ctx: &BindgenContext,
        item: &Item,
    ) -> Option<TypeId> {
        match *self {
            TypeKind::TypeParam => Some(item.id().expect_type_id(ctx)),
            TypeKind::ResolvedTypeRef(id) => id.as_template_param(ctx, &()),
            _ => None,
        }
    }
}

impl DotAttributes for Type {
    fn dot_attributes<W>(
        &self,
        ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        if let Some(ref layout) = self.layout {
            writeln!(
                out,
                "<tr><td>size</td><td>{}</td></tr>
                           <tr><td>align</td><td>{}</td></tr>",
                layout.size, layout.align
            )?;
            if layout.packed {
                writeln!(out, "<tr><td>packed</td><td>true</td></tr>")?;
            }
        }

        if self.is_const {
            writeln!(out, "<tr><td>const</td><td>true</td></tr>")?;
        }

        self.kind.dot_attributes(ctx, out)
    }
}

impl DotAttributes for TypeKind {
    fn dot_attributes<W>(
        &self,
        ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        writeln!(
            out,
            "<tr><td>type kind</td><td>{}</td></tr>",
            self.kind_name()
        )?;

        if let TypeKind::Comp(ref comp) = *self {
            comp.dot_attributes(ctx, out)?;
        }

        Ok(())
    }
}

impl TypeKind {
    fn kind_name(&self) -> &'static str {
        match *self {
            TypeKind::Void => "Void",
            TypeKind::NullPtr => "NullPtr",
            TypeKind::Comp(..) => "Comp",
            TypeKind::Opaque => "Opaque",
            TypeKind::Int(..) => "Int",
            TypeKind::Float(..) => "Float",
            TypeKind::Complex(..) => "Complex",
            TypeKind::Alias(..) => "Alias",
            TypeKind::TemplateAlias(..) => "TemplateAlias",
            TypeKind::Array(..) => "Array",
            TypeKind::Vector(..) => "Vector",
            TypeKind::Function(..) => "Function",
            TypeKind::Enum(..) => "Enum",
            TypeKind::Pointer(..) => "Pointer",
            TypeKind::BlockPointer(..) => "BlockPointer",
            TypeKind::Reference(..) => "Reference",
            TypeKind::TemplateInstantiation(..) => "TemplateInstantiation",
            TypeKind::UnresolvedTypeRef(..) => "UnresolvedTypeRef",
            TypeKind::ResolvedTypeRef(..) => "ResolvedTypeRef",
            TypeKind::TypeParam => "TypeParam",
            TypeKind::ObjCInterface(..) => "ObjCInterface",
            TypeKind::ObjCId => "ObjCId",
            TypeKind::ObjCSel => "ObjCSel",
        }
    }
}

#[test]
fn is_invalid_type_param_valid() {
    let ty = Type::new(Some("foo".into()), None, TypeKind::TypeParam, false);
    assert!(!ty.is_invalid_type_param())
}

#[test]
fn is_invalid_type_param_valid_underscore_and_numbers() {
    let ty = Type::new(
        Some("_foo123456789_".into()),
        None,
        TypeKind::TypeParam,
        false,
    );
    assert!(!ty.is_invalid_type_param())
}

#[test]
fn is_invalid_type_param_valid_unnamed_kind() {
    let ty = Type::new(Some("foo".into()), None, TypeKind::Void, false);
    assert!(!ty.is_invalid_type_param())
}

#[test]
fn is_invalid_type_param_invalid_start() {
    let ty = Type::new(Some("1foo".into()), None, TypeKind::TypeParam, false);
    assert!(ty.is_invalid_type_param())
}

#[test]
fn is_invalid_type_param_invalid_remaing() {
    let ty = Type::new(Some("foo-".into()), None, TypeKind::TypeParam, false);
    assert!(ty.is_invalid_type_param())
}

#[test]
#[should_panic]
fn is_invalid_type_param_unnamed() {
    let ty = Type::new(None, None, TypeKind::TypeParam, false);
    assert!(ty.is_invalid_type_param())
}

#[test]
fn is_invalid_type_param_empty_name() {
    let ty = Type::new(Some("".into()), None, TypeKind::TypeParam, false);
    assert!(ty.is_invalid_type_param())
}

impl TemplateParameters for Type {
    fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
        self.kind.self_template_params(ctx)
    }
}

impl TemplateParameters for TypeKind {
    fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
        match *self {
            TypeKind::ResolvedTypeRef(id) => {
                ctx.resolve_type(id).self_template_params(ctx)
            }
            TypeKind::Comp(ref comp) => comp.self_template_params(ctx),
            TypeKind::TemplateAlias(_, ref args) => args.clone(),

            TypeKind::Opaque |
            TypeKind::TemplateInstantiation(..) |
            TypeKind::Void |
            TypeKind::NullPtr |
            TypeKind::Int(_) |
            TypeKind::Float(_) |
            TypeKind::Complex(_) |
            TypeKind::Array(..) |
            TypeKind::Vector(..) |
            TypeKind::Function(_) |
            TypeKind::Enum(_) |
            TypeKind::Pointer(_) |
            TypeKind::BlockPointer(_) |
            TypeKind::Reference(_) |
            TypeKind::UnresolvedTypeRef(..) |
            TypeKind::TypeParam |
            TypeKind::Alias(_) |
            TypeKind::ObjCId |
            TypeKind::ObjCSel |
            TypeKind::ObjCInterface(_) => vec![],
        }
    }
}

/// The kind of float this type represents.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum FloatKind {
    /// A `float`.
    Float,
    /// A `double`.
    Double,
    /// A `long double`.
    LongDouble,
    /// A `__float128`.
    Float128,
}

/// The different kinds of types that we can parse.
#[derive(Debug)]
pub enum TypeKind {
    /// The void type.
    Void,

    /// The `nullptr_t` type.
    NullPtr,

    /// A compound type, that is, a class, struct, or union.
    Comp(CompInfo),

    /// An opaque type that we just don't understand. All usage of this shoulf
    /// result in an opaque blob of bytes generated from the containing type's
    /// layout.
    Opaque,

    /// An integer type, of a given kind. `bool` and `char` are also considered
    /// integers.
    Int(IntKind),

    /// A floating point type.
    Float(FloatKind),

    /// A complex floating point type.
    Complex(FloatKind),

    /// A type alias, with a name, that points to another type.
    Alias(TypeId),

    /// A templated alias, pointing to an inner type, just as `Alias`, but with
    /// template parameters.
    TemplateAlias(TypeId, Vec<TypeId>),

    /// A packed vector type: element type, number of elements
    Vector(TypeId, usize),

    /// An array of a type and a length.
    Array(TypeId, usize),

    /// A function type, with a given signature.
    Function(FunctionSig),

    /// An `enum` type.
    Enum(Enum),

    /// A pointer to a type. The bool field represents whether it's const or
    /// not.
    Pointer(TypeId),

    /// A pointer to an Apple block.
    BlockPointer(TypeId),

    /// A reference to a type, as in: int& foo().
    Reference(TypeId),

    /// An instantiation of an abstract template definition with a set of
    /// concrete template arguments.
    TemplateInstantiation(TemplateInstantiation),

    /// A reference to a yet-to-resolve type. This stores the clang cursor
    /// itself, and postpones its resolution.
    ///
    /// These are gone in a phase after parsing where these are mapped to
    /// already known types, and are converted to ResolvedTypeRef.
    ///
    /// see tests/headers/typeref.hpp to see somewhere where this is a problem.
    UnresolvedTypeRef(
        clang::Type,
        clang::Cursor,
        /* parent_id */
        Option<ItemId>,
    ),

    /// An indirection to another type.
    ///
    /// These are generated after we resolve a forward declaration, or when we
    /// replace one type with another.
    ResolvedTypeRef(TypeId),

    /// A named type, that is, a template parameter.
    TypeParam,

    /// Objective C interface. Always referenced through a pointer
    ObjCInterface(ObjCInterface),

    /// Objective C 'id' type, points to any object
    ObjCId,

    /// Objective C selector type
    ObjCSel,
}

impl Type {
    /// This is another of the nasty methods. This one is the one that takes
    /// care of the core logic of converting a clang type to a `Type`.
    ///
    /// It's sort of nasty and full of special-casing, but hopefully the
    /// comments in every special case justify why they're there.
    pub fn from_clang_ty(
        potential_id: ItemId,
        ty: &clang::Type,
        location: Cursor,
        parent_id: Option<ItemId>,
        ctx: &mut BindgenContext,
    ) -> Result<ParseResult<Self>, ParseError> {
        use clang_sys::*;
        {
            let already_resolved = ctx.builtin_or_resolved_ty(
                potential_id,
                parent_id,
                ty,
                Some(location),
            );
            if let Some(ty) = already_resolved {
                debug!("{:?} already resolved: {:?}", ty, location);
                return Ok(ParseResult::AlreadyResolved(ty.into()));
            }
        }

        let layout = ty.fallible_layout(ctx).ok();
        let cursor = ty.declaration();
        let mut name = cursor.spelling();

        debug!(
            "from_clang_ty: {:?}, ty: {:?}, loc: {:?}",
            potential_id, ty, location
        );
        debug!("currently_parsed_types: {:?}", ctx.currently_parsed_types());

        let canonical_ty = ty.canonical_type();

        // Parse objc protocols as if they were interfaces
        let mut ty_kind = ty.kind();
        match location.kind() {
            CXCursor_ObjCProtocolDecl | CXCursor_ObjCCategoryDecl => {
                ty_kind = CXType_ObjCInterface
            }
            _ => {}
        }

        // Objective C template type parameter
        // FIXME: This is probably wrong, we are attempting to find the
        //        objc template params, which seem to manifest as a typedef.
        //        We are rewriting them as id to suppress multiple conflicting
        //        typedefs at root level
        if ty_kind == CXType_Typedef {
            let is_template_type_param =
                ty.declaration().kind() == CXCursor_TemplateTypeParameter;
            let is_canonical_objcpointer =
                canonical_ty.kind() == CXType_ObjCObjectPointer;

            // We have found a template type for objc interface
            if is_canonical_objcpointer && is_template_type_param {
                // Objective-C generics are just ids with fancy name.
                // To keep it simple, just name them ids
                name = "id".to_owned();
            }
        }

        if location.kind() == CXCursor_ClassTemplatePartialSpecialization {
            // Sorry! (Not sorry)
            warn!(
                "Found a partial template specialization; bindgen does not \
                 support partial template specialization! Constructing \
                 opaque type instead."
            );
            return Ok(ParseResult::New(
                Opaque::from_clang_ty(&canonical_ty, ctx),
                None,
            ));
        }

        let kind = if location.kind() == CXCursor_TemplateRef ||
            (ty.template_args().is_some() && ty_kind != CXType_Typedef)
        {
            // This is a template instantiation.
            match TemplateInstantiation::from_ty(&ty, ctx) {
                Some(inst) => TypeKind::TemplateInstantiation(inst),
                None => TypeKind::Opaque,
            }
        } else {
            match ty_kind {
                CXType_Unexposed
                    if *ty != canonical_ty &&
                                    canonical_ty.kind() != CXType_Invalid &&
                                    ty.ret_type().is_none() &&
                                    // Sometime clang desugars some types more than
                                    // what we need, specially with function
                                    // pointers.
                                    //
                                    // We should also try the solution of inverting
                                    // those checks instead of doing this, that is,
                                    // something like:
                                    //
                                    // CXType_Unexposed if ty.ret_type().is_some()
                                    //   => { ... }
                                    //
                                    // etc.
                                    !canonical_ty.spelling().contains("type-parameter") =>
                {
                    debug!("Looking for canonical type: {:?}", canonical_ty);
                    return Self::from_clang_ty(
                        potential_id,
                        &canonical_ty,
                        location,
                        parent_id,
                        ctx,
                    );
                }
                CXType_Unexposed | CXType_Invalid => {
                    // For some reason Clang doesn't give us any hint in some
                    // situations where we should generate a function pointer (see
                    // tests/headers/func_ptr_in_struct.h), so we do a guess here
                    // trying to see if it has a valid return type.
                    if ty.ret_type().is_some() {
                        let signature =
                            FunctionSig::from_ty(ty, &location, ctx)?;
                        TypeKind::Function(signature)
                    // Same here, with template specialisations we can safely
                    // assume this is a Comp(..)
                    } else if ty.is_fully_instantiated_template() {
                        debug!(
                            "Template specialization: {:?}, {:?} {:?}",
                            ty, location, canonical_ty
                        );
                        let complex = CompInfo::from_ty(
                            potential_id,
                            ty,
                            Some(location),
                            ctx,
                        )
                        .expect("C'mon");
                        TypeKind::Comp(complex)
                    } else {
                        match location.kind() {
                            CXCursor_CXXBaseSpecifier |
                            CXCursor_ClassTemplate => {
                                if location.kind() == CXCursor_CXXBaseSpecifier
                                {
                                    // In the case we're parsing a base specifier
                                    // inside an unexposed or invalid type, it means
                                    // that we're parsing one of two things:
                                    //
                                    //  * A template parameter.
                                    //  * A complex class that isn't exposed.
                                    //
                                    // This means, unfortunately, that there's no
                                    // good way to differentiate between them.
                                    //
                                    // Probably we could try to look at the
                                    // declaration and complicate more this logic,
                                    // but we'll keep it simple... if it's a valid
                                    // C++ identifier, we'll consider it as a
                                    // template parameter.
                                    //
                                    // This is because:
                                    //
                                    //  * We expect every other base that is a
                                    //    proper identifier (that is, a simple
                                    //    struct/union declaration), to be exposed,
                                    //    so this path can't be reached in that
                                    //    case.
                                    //
                                    //  * Quite conveniently, complex base
                                    //    specifiers preserve their full names (that
                                    //    is: Foo<T> instead of Foo). We can take
                                    //    advantage of this.
                                    //
                                    // If we find some edge case where this doesn't
                                    // work (which I guess is unlikely, see the
                                    // different test cases[1][2][3][4]), we'd need
                                    // to find more creative ways of differentiating
                                    // these two cases.
                                    //
                                    // [1]: inherit_named.hpp
                                    // [2]: forward-inherit-struct-with-fields.hpp
                                    // [3]: forward-inherit-struct.hpp
                                    // [4]: inherit-namespaced.hpp
                                    if location.spelling().chars().all(|c| {
                                        c.is_alphanumeric() || c == '_'
                                    }) {
                                        return Err(ParseError::Recurse);
                                    }
                                } else {
                                    name = location.spelling();
                                }

                                let complex = CompInfo::from_ty(
                                    potential_id,
                                    ty,
                                    Some(location),
                                    ctx,
                                );
                                match complex {
                                    Ok(complex) => TypeKind::Comp(complex),
                                    Err(_) => {
                                        warn!(
                                            "Could not create complex type \
                                             from class template or base \
                                             specifier, using opaque blob"
                                        );
                                        let opaque =
                                            Opaque::from_clang_ty(ty, ctx);
                                        return Ok(ParseResult::New(
                                            opaque, None,
                                        ));
                                    }
                                }
                            }
                            CXCursor_TypeAliasTemplateDecl => {
                                debug!("TypeAliasTemplateDecl");

                                // We need to manually unwind this one.
                                let mut inner = Err(ParseError::Continue);
                                let mut args = vec![];

                                location.visit(|cur| {
                                    match cur.kind() {
                                        CXCursor_TypeAliasDecl => {
                                            let current = cur.cur_type();

                                            debug_assert_eq!(
                                                current.kind(),
                                                CXType_Typedef
                                            );

                                            name = current.spelling();

                                            let inner_ty = cur
                                                .typedef_type()
                                                .expect("Not valid Type?");
                                            inner = Ok(Item::from_ty_or_ref(
                                                inner_ty,
                                                cur,
                                                Some(potential_id),
                                                ctx,
                                            ));
                                        }
                                        CXCursor_TemplateTypeParameter => {
                                            let param = Item::type_param(
                                                None, cur, ctx,
                                            )
                                            .expect(
                                                "Item::type_param shouldn't \
                                                 ever fail if we are looking \
                                                 at a TemplateTypeParameter",
                                            );
                                            args.push(param);
                                        }
                                        _ => {}
                                    }
                                    CXChildVisit_Continue
                                });

                                let inner_type = match inner {
                                    Ok(inner) => inner,
                                    Err(..) => {
                                        error!(
                                            "Failed to parse template alias \
                                             {:?}",
                                            location
                                        );
                                        return Err(ParseError::Continue);
                                    }
                                };

                                TypeKind::TemplateAlias(inner_type, args)
                            }
                            CXCursor_TemplateRef => {
                                let referenced = location.referenced().unwrap();
                                let referenced_ty = referenced.cur_type();

                                debug!(
                                    "TemplateRef: location = {:?}; referenced = \
                                        {:?}; referenced_ty = {:?}",
                                    location,
                                    referenced,
                                    referenced_ty
                                );

                                return Self::from_clang_ty(
                                    potential_id,
                                    &referenced_ty,
                                    referenced,
                                    parent_id,
                                    ctx,
                                );
                            }
                            CXCursor_TypeRef => {
                                let referenced = location.referenced().unwrap();
                                let referenced_ty = referenced.cur_type();
                                let declaration = referenced_ty.declaration();

                                debug!(
                                    "TypeRef: location = {:?}; referenced = \
                                     {:?}; referenced_ty = {:?}",
                                    location, referenced, referenced_ty
                                );

                                let id = Item::from_ty_or_ref_with_id(
                                    potential_id,
                                    referenced_ty,
                                    declaration,
                                    parent_id,
                                    ctx,
                                );
                                return Ok(ParseResult::AlreadyResolved(
                                    id.into(),
                                ));
                            }
                            CXCursor_NamespaceRef => {
                                return Err(ParseError::Continue);
                            }
                            _ => {
                                if ty.kind() == CXType_Unexposed {
                                    warn!(
                                        "Unexposed type {:?}, recursing inside, \
                                          loc: {:?}",
                                        ty,
                                        location
                                    );
                                    return Err(ParseError::Recurse);
                                }

                                warn!("invalid type {:?}", ty);
                                return Err(ParseError::Continue);
                            }
                        }
                    }
                }
                CXType_Auto => {
                    if canonical_ty == *ty {
                        debug!("Couldn't find deduced type: {:?}", ty);
                        return Err(ParseError::Continue);
                    }

                    return Self::from_clang_ty(
                        potential_id,
                        &canonical_ty,
                        location,
                        parent_id,
                        ctx,
                    );
                }
                // NOTE: We don't resolve pointers eagerly because the pointee type
                // might not have been parsed, and if it contains templates or
                // something else we might get confused, see the comment inside
                // TypeRef.
                //
                // We might need to, though, if the context is already in the
                // process of resolving them.
                CXType_ObjCObjectPointer |
                CXType_MemberPointer |
                CXType_Pointer => {
                    let pointee = ty.pointee_type().unwrap();
                    let inner =
                        Item::from_ty_or_ref(pointee, location, None, ctx);
                    TypeKind::Pointer(inner)
                }
                CXType_BlockPointer => {
                    let pointee = ty.pointee_type().expect("Not valid Type?");
                    let inner =
                        Item::from_ty_or_ref(pointee, location, None, ctx);
                    TypeKind::BlockPointer(inner)
                }
                // XXX: RValueReference is most likely wrong, but I don't think we
                // can even add bindings for that, so huh.
                CXType_RValueReference | CXType_LValueReference => {
                    let inner = Item::from_ty_or_ref(
                        ty.pointee_type().unwrap(),
                        location,
                        None,
                        ctx,
                    );
                    TypeKind::Reference(inner)
                }
                // XXX DependentSizedArray is wrong
                CXType_VariableArray | CXType_DependentSizedArray => {
                    let inner = Item::from_ty(
                        ty.elem_type().as_ref().unwrap(),
                        location,
                        None,
                        ctx,
                    )
                    .expect("Not able to resolve array element?");
                    TypeKind::Pointer(inner)
                }
                CXType_IncompleteArray => {
                    let inner = Item::from_ty(
                        ty.elem_type().as_ref().unwrap(),
                        location,
                        None,
                        ctx,
                    )
                    .expect("Not able to resolve array element?");
                    TypeKind::Array(inner, 0)
                }
                CXType_FunctionNoProto | CXType_FunctionProto => {
                    let signature = FunctionSig::from_ty(ty, &location, ctx)?;
                    TypeKind::Function(signature)
                }
                CXType_Typedef => {
                    let inner = cursor.typedef_type().expect("Not valid Type?");
                    let inner =
                        Item::from_ty_or_ref(inner, location, None, ctx);
                    TypeKind::Alias(inner)
                }
                CXType_Enum => {
                    let enum_ = Enum::from_ty(ty, ctx).expect("Not an enum?");

                    if name.is_empty() {
                        let pretty_name = ty.spelling();
                        if clang::is_valid_identifier(&pretty_name) {
                            name = pretty_name;
                        }
                    }

                    TypeKind::Enum(enum_)
                }
                CXType_Record => {
                    let complex = CompInfo::from_ty(
                        potential_id,
                        ty,
                        Some(location),
                        ctx,
                    )
                    .expect("Not a complex type?");

                    if name.is_empty() {
                        // The pretty-printed name may contain typedefed name,
                        // but may also be "struct (anonymous at .h:1)"
                        let pretty_name = ty.spelling();
                        if clang::is_valid_identifier(&pretty_name) {
                            name = pretty_name;
                        }
                    }

                    TypeKind::Comp(complex)
                }
                CXType_Vector => {
                    let inner = Item::from_ty(
                        ty.elem_type().as_ref().unwrap(),
                        location,
                        None,
                        ctx,
                    )
                    .expect("Not able to resolve vector element?");
                    TypeKind::Vector(inner, ty.num_elements().unwrap())
                }
                CXType_ConstantArray => {
                    let inner = Item::from_ty(
                        ty.elem_type().as_ref().unwrap(),
                        location,
                        None,
                        ctx,
                    )
                    .expect("Not able to resolve array element?");
                    TypeKind::Array(inner, ty.num_elements().unwrap())
                }
                CXType_Elaborated => {
                    return Self::from_clang_ty(
                        potential_id,
                        &ty.named(),
                        location,
                        parent_id,
                        ctx,
                    );
                }
                CXType_ObjCId => TypeKind::ObjCId,
                CXType_ObjCSel => TypeKind::ObjCSel,
                CXType_ObjCClass | CXType_ObjCInterface => {
                    let interface = ObjCInterface::from_ty(&location, ctx)
                        .expect("Not a valid objc interface?");
                    name = interface.rust_name();
                    TypeKind::ObjCInterface(interface)
                }
                CXType_Dependent => {
                    return Err(ParseError::Continue);
                }
                _ => {
                    error!(
                        "unsupported type: kind = {:?}; ty = {:?}; at {:?}",
                        ty.kind(),
                        ty,
                        location
                    );
                    return Err(ParseError::Continue);
                }
            }
        };

        let name = if name.is_empty() { None } else { Some(name) };

        let is_const = ty.is_const();

        let ty = Type::new(name, layout, kind, is_const);
        // TODO: maybe declaration.canonical()?
        Ok(ParseResult::New(ty, Some(cursor.canonical())))
    }
}

impl Trace for Type {
    type Extra = Item;

    fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item)
    where
        T: Tracer,
    {
        match *self.kind() {
            TypeKind::Pointer(inner) |
            TypeKind::Reference(inner) |
            TypeKind::Array(inner, _) |
            TypeKind::Vector(inner, _) |
            TypeKind::BlockPointer(inner) |
            TypeKind::Alias(inner) |
            TypeKind::ResolvedTypeRef(inner) => {
                tracer.visit_kind(inner.into(), EdgeKind::TypeReference);
            }
            TypeKind::TemplateAlias(inner, ref template_params) => {
                tracer.visit_kind(inner.into(), EdgeKind::TypeReference);
                for param in template_params {
                    tracer.visit_kind(
                        param.into(),
                        EdgeKind::TemplateParameterDefinition,
                    );
                }
            }
            TypeKind::TemplateInstantiation(ref inst) => {
                inst.trace(context, tracer, &());
            }
            TypeKind::Comp(ref ci) => ci.trace(context, tracer, item),
            TypeKind::Function(ref sig) => sig.trace(context, tracer, &()),
            TypeKind::Enum(ref en) => {
                if let Some(repr) = en.repr() {
                    tracer.visit(repr.into());
                }
            }
            TypeKind::UnresolvedTypeRef(_, _, Some(id)) => {
                tracer.visit(id);
            }

            TypeKind::ObjCInterface(ref interface) => {
                interface.trace(context, tracer, &());
            }

            // None of these variants have edges to other items and types.
            TypeKind::Opaque |
            TypeKind::UnresolvedTypeRef(_, _, None) |
            TypeKind::TypeParam |
            TypeKind::Void |
            TypeKind::NullPtr |
            TypeKind::Int(_) |
            TypeKind::Float(_) |
            TypeKind::Complex(_) |
            TypeKind::ObjCId |
            TypeKind::ObjCSel => {}
        }
    }
}