DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (cdf352f02ac4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
//! Common context that is passed around during parsing and codegen.

use super::super::time::Timer;
use super::analysis::{
    analyze, as_cannot_derive_set, CannotDerive, DeriveTrait,
    HasDestructorAnalysis, HasFloat, HasTypeParameterInArray,
    HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult,
    UsedTemplateParameters,
};
use super::derive::{
    CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq,
    CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd,
};
use super::function::Function;
use super::int::IntKind;
use super::item::{IsOpaque, Item, ItemAncestors, ItemSet};
use super::item_kind::ItemKind;
use super::module::{Module, ModuleKind};
use super::template::{TemplateInstantiation, TemplateParameters};
use super::traversal::{self, Edge, ItemTraversal};
use super::ty::{FloatKind, Type, TypeKind};
use callbacks::ParseCallbacks;
use cexpr;
use clang::{self, Cursor};
use clang_sys;
use parse::ClangItemParser;
use proc_macro2::{Ident, Span};
use std::borrow::Cow;
use std::cell::Cell;
use std::collections::HashMap as StdHashMap;
use std::iter::IntoIterator;
use std::mem;
use BindgenOptions;
use {Entry, HashMap, HashSet};

/// An identifier for some kind of IR item.
#[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)]
pub struct ItemId(usize);

macro_rules! item_id_newtype {
    (
        $( #[$attr:meta] )*
        pub struct $name:ident(ItemId)
        where
            $( #[$checked_attr:meta] )*
            checked = $checked:ident with $check_method:ident,
            $( #[$expected_attr:meta] )*
            expected = $expected:ident,
            $( #[$unchecked_attr:meta] )*
            unchecked = $unchecked:ident;
    ) => {
        $( #[$attr] )*
        #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)]
        pub struct $name(ItemId);

        impl $name {
            /// Create an `ItemResolver` from this id.
            pub fn into_resolver(self) -> ItemResolver {
                let id: ItemId = self.into();
                id.into()
            }
        }

        impl<T> ::std::cmp::PartialEq<T> for $name
        where
            T: Copy + Into<ItemId>
        {
            fn eq(&self, rhs: &T) -> bool {
                let rhs: ItemId = (*rhs).into();
                self.0 == rhs
            }
        }

        impl From<$name> for ItemId {
            fn from(id: $name) -> ItemId {
                id.0
            }
        }

        impl<'a> From<&'a $name> for ItemId {
            fn from(id: &'a $name) -> ItemId {
                id.0
            }
        }

        impl ItemId {
            $( #[$checked_attr] )*
            pub fn $checked(&self, ctx: &BindgenContext) -> Option<$name> {
                if ctx.resolve_item(*self).kind().$check_method() {
                    Some($name(*self))
                } else {
                    None
                }
            }

            $( #[$expected_attr] )*
            pub fn $expected(&self, ctx: &BindgenContext) -> $name {
                self.$checked(ctx)
                    .expect(concat!(
                        stringify!($expected),
                        " called with ItemId that points to the wrong ItemKind"
                    ))
            }

            $( #[$unchecked_attr] )*
            pub fn $unchecked(&self) -> $name {
                $name(*self)
            }
        }
    }
}

item_id_newtype! {
    /// An identifier for an `Item` whose `ItemKind` is known to be
    /// `ItemKind::Type`.
    pub struct TypeId(ItemId)
    where
        /// Convert this `ItemId` into a `TypeId` if its associated item is a type,
        /// otherwise return `None`.
        checked = as_type_id with is_type,

        /// Convert this `ItemId` into a `TypeId`.
        ///
        /// If this `ItemId` does not point to a type, then panic.
        expected = expect_type_id,

        /// Convert this `ItemId` into a `TypeId` without actually checking whether
        /// this id actually points to a `Type`.
        unchecked = as_type_id_unchecked;
}

item_id_newtype! {
    /// An identifier for an `Item` whose `ItemKind` is known to be
    /// `ItemKind::Module`.
    pub struct ModuleId(ItemId)
    where
        /// Convert this `ItemId` into a `ModuleId` if its associated item is a
        /// module, otherwise return `None`.
        checked = as_module_id with is_module,

        /// Convert this `ItemId` into a `ModuleId`.
        ///
        /// If this `ItemId` does not point to a module, then panic.
        expected = expect_module_id,

        /// Convert this `ItemId` into a `ModuleId` without actually checking
        /// whether this id actually points to a `Module`.
        unchecked = as_module_id_unchecked;
}

item_id_newtype! {
    /// An identifier for an `Item` whose `ItemKind` is known to be
    /// `ItemKind::Var`.
    pub struct VarId(ItemId)
    where
        /// Convert this `ItemId` into a `VarId` if its associated item is a var,
        /// otherwise return `None`.
        checked = as_var_id with is_var,

        /// Convert this `ItemId` into a `VarId`.
        ///
        /// If this `ItemId` does not point to a var, then panic.
        expected = expect_var_id,

        /// Convert this `ItemId` into a `VarId` without actually checking whether
        /// this id actually points to a `Var`.
        unchecked = as_var_id_unchecked;
}

item_id_newtype! {
    /// An identifier for an `Item` whose `ItemKind` is known to be
    /// `ItemKind::Function`.
    pub struct FunctionId(ItemId)
    where
        /// Convert this `ItemId` into a `FunctionId` if its associated item is a function,
        /// otherwise return `None`.
        checked = as_function_id with is_function,

        /// Convert this `ItemId` into a `FunctionId`.
        ///
        /// If this `ItemId` does not point to a function, then panic.
        expected = expect_function_id,

        /// Convert this `ItemId` into a `FunctionId` without actually checking whether
        /// this id actually points to a `Function`.
        unchecked = as_function_id_unchecked;
}

impl From<ItemId> for usize {
    fn from(id: ItemId) -> usize {
        id.0
    }
}

impl ItemId {
    /// Get a numeric representation of this id.
    pub fn as_usize(&self) -> usize {
        (*self).into()
    }
}

impl<T> ::std::cmp::PartialEq<T> for ItemId
where
    T: Copy + Into<ItemId>,
{
    fn eq(&self, rhs: &T) -> bool {
        let rhs: ItemId = (*rhs).into();
        self.0 == rhs.0
    }
}

impl<T> CanDeriveDebug for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_debug(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self)
    }
}

impl<T> CanDeriveDefault for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_default(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_default && ctx.lookup_can_derive_default(*self)
    }
}

impl<T> CanDeriveCopy for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_copy(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self)
    }
}

impl<T> CanDeriveHash for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_hash(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self)
    }
}

impl<T> CanDerivePartialOrd for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_partialord &&
            ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
                CanDerive::Yes
    }
}

impl<T> CanDerivePartialEq for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_partialeq &&
            ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
                CanDerive::Yes
    }
}

impl<T> CanDeriveEq for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_eq(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_eq &&
            ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
                CanDerive::Yes &&
            !ctx.lookup_has_float(*self)
    }
}

impl<T> CanDeriveOrd for T
where
    T: Copy + Into<ItemId>,
{
    fn can_derive_ord(&self, ctx: &BindgenContext) -> bool {
        ctx.options().derive_ord &&
            ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
                CanDerive::Yes &&
            !ctx.lookup_has_float(*self)
    }
}

/// A key used to index a resolved type, so we only process it once.
///
/// This is almost always a USR string (an unique identifier generated by
/// clang), but it can also be the canonical declaration if the type is unnamed,
/// in which case clang may generate the same USR for multiple nested unnamed
/// types.
#[derive(Eq, PartialEq, Hash, Debug)]
enum TypeKey {
    USR(String),
    Declaration(Cursor),
}

/// A context used during parsing and generation of structs.
#[derive(Debug)]
pub struct BindgenContext {
    /// The map of all the items parsed so far, keyed off ItemId.
    items: Vec<Option<Item>>,

    /// Clang USR to type map. This is needed to be able to associate types with
    /// item ids during parsing.
    types: HashMap<TypeKey, TypeId>,

    /// Maps from a cursor to the item id of the named template type parameter
    /// for that cursor.
    type_params: HashMap<clang::Cursor, TypeId>,

    /// A cursor to module map. Similar reason than above.
    modules: HashMap<Cursor, ModuleId>,

    /// The root module, this is guaranteed to be an item of kind Module.
    root_module: ModuleId,

    /// Current module being traversed.
    current_module: ModuleId,

    /// A HashMap keyed on a type definition, and whose value is the parent id
    /// of the declaration.
    ///
    /// This is used to handle the cases where the semantic and the lexical
    /// parents of the cursor differ, like when a nested class is defined
    /// outside of the parent class.
    semantic_parents: HashMap<clang::Cursor, ItemId>,

    /// A stack with the current type declarations and types we're parsing. This
    /// is needed to avoid infinite recursion when parsing a type like:
    ///
    /// struct c { struct c* next; };
    ///
    /// This means effectively, that a type has a potential ID before knowing if
    /// it's a correct type. But that's not important in practice.
    ///
    /// We could also use the `types` HashMap, but my intention with it is that
    /// only valid types and declarations end up there, and this could
    /// potentially break that assumption.
    currently_parsed_types: Vec<PartialType>,

    /// A map with all the already parsed macro names. This is done to avoid
    /// hard errors while parsing duplicated macros, as well to allow macro
    /// expression parsing.
    ///
    /// This needs to be an std::HashMap because the cexpr API requires it.
    parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>,

    /// The active replacements collected from replaces="xxx" annotations.
    replacements: HashMap<Vec<String>, ItemId>,

    collected_typerefs: bool,

    in_codegen: bool,

    /// The clang index for parsing.
    index: clang::Index,

    /// The translation unit for parsing.
    translation_unit: clang::TranslationUnit,

    /// Target information that can be useful for some stuff.
    target_info: Option<clang::TargetInfo>,

    /// The options given by the user via cli or other medium.
    options: BindgenOptions,

    /// Whether a bindgen complex was generated
    generated_bindgen_complex: Cell<bool>,

    /// The set of `ItemId`s that are whitelisted. This the very first thing
    /// computed after parsing our IR, and before running any of our analyses.
    whitelisted: Option<ItemSet>,

    /// The set of `ItemId`s that are whitelisted for code generation _and_ that
    /// we should generate accounting for the codegen options.
    ///
    /// It's computed right after computing the whitelisted items.
    codegen_items: Option<ItemSet>,

    /// Map from an item's id to the set of template parameter items that it
    /// uses. See `ir::named` for more details. Always `Some` during the codegen
    /// phase.
    used_template_parameters: Option<HashMap<ItemId, ItemSet>>,

    /// The set of `TypeKind::Comp` items found during parsing that need their
    /// bitfield allocation units computed. Drained in `compute_bitfield_units`.
    need_bitfield_allocation: Vec<ItemId>,

    /// The set of (`ItemId`s of) types that can't derive debug.
    ///
    /// This is populated when we enter codegen by `compute_cannot_derive_debug`
    /// and is always `None` before that and `Some` after.
    cannot_derive_debug: Option<HashSet<ItemId>>,

    /// The set of (`ItemId`s of) types that can't derive default.
    ///
    /// This is populated when we enter codegen by `compute_cannot_derive_default`
    /// and is always `None` before that and `Some` after.
    cannot_derive_default: Option<HashSet<ItemId>>,

    /// The set of (`ItemId`s of) types that can't derive copy.
    ///
    /// This is populated when we enter codegen by `compute_cannot_derive_copy`
    /// and is always `None` before that and `Some` after.
    cannot_derive_copy: Option<HashSet<ItemId>>,

    /// The set of (`ItemId`s of) types that can't derive copy in array.
    ///
    /// This is populated when we enter codegen by `compute_cannot_derive_copy`
    /// and is always `None` before that and `Some` after.
    cannot_derive_copy_in_array: Option<HashSet<ItemId>>,

    /// The set of (`ItemId`s of) types that can't derive hash.
    ///
    /// This is populated when we enter codegen by `compute_can_derive_hash`
    /// and is always `None` before that and `Some` after.
    cannot_derive_hash: Option<HashSet<ItemId>>,

    /// The map why specified `ItemId`s of) types that can't derive hash.
    ///
    /// This is populated when we enter codegen by
    /// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None`
    /// before that and `Some` after.
    cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>,

    /// The sizedness of types.
    ///
    /// This is populated by `compute_sizedness` and is always `None` before
    /// that function is invoked and `Some` afterwards.
    sizedness: Option<HashMap<TypeId, SizednessResult>>,

    /// The set of (`ItemId's of`) types that has vtable.
    ///
    /// Populated when we enter codegen by `compute_has_vtable`; always `None`
    /// before that and `Some` after.
    have_vtable: Option<HashMap<ItemId, HasVtableResult>>,

    /// The set of (`ItemId's of`) types that has destructor.
    ///
    /// Populated when we enter codegen by `compute_has_destructor`; always `None`
    /// before that and `Some` after.
    have_destructor: Option<HashSet<ItemId>>,

    /// The set of (`ItemId's of`) types that has array.
    ///
    /// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None`
    /// before that and `Some` after.
    has_type_param_in_array: Option<HashSet<ItemId>>,

    /// The set of (`ItemId's of`) types that has float.
    ///
    /// Populated when we enter codegen by `compute_has_float`; always `None`
    /// before that and `Some` after.
    has_float: Option<HashSet<ItemId>>,
}

/// A traversal of whitelisted items.
struct WhitelistedItemsTraversal<'ctx> {
    ctx: &'ctx BindgenContext,
    traversal: ItemTraversal<
        'ctx,
        ItemSet,
        Vec<ItemId>,
        for<'a> fn(&'a BindgenContext, Edge) -> bool,
    >,
}

impl<'ctx> Iterator for WhitelistedItemsTraversal<'ctx> {
    type Item = ItemId;

    fn next(&mut self) -> Option<ItemId> {
        loop {
            let id = self.traversal.next()?;

            if self.ctx.resolve_item(id).is_blacklisted(self.ctx) {
                continue;
            }

            return Some(id);
        }
    }
}

impl<'ctx> WhitelistedItemsTraversal<'ctx> {
    /// Construct a new whitelisted items traversal.
    pub fn new<R>(
        ctx: &'ctx BindgenContext,
        roots: R,
        predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool,
    ) -> Self
    where
        R: IntoIterator<Item = ItemId>,
    {
        WhitelistedItemsTraversal {
            ctx,
            traversal: ItemTraversal::new(ctx, roots, predicate),
        }
    }
}

const HOST_TARGET: &'static str =
    include_str!(concat!(env!("OUT_DIR"), "/host-target.txt"));

/// Returns the effective target, and whether it was explicitly specified on the
/// clang flags.
fn find_effective_target(clang_args: &[String]) -> (String, bool) {
    use std::env;

    let mut args = clang_args.iter();
    while let Some(opt) = args.next() {
        if opt.starts_with("--target=") {
            let mut split = opt.split('=');
            split.next();
            return (split.next().unwrap().to_owned(), true);
        }

        if opt == "-target" {
            if let Some(target) = args.next() {
                return (target.clone(), true);
            }
        }
    }

    // If we're running from a build script, try to find the cargo target.
    if let Ok(t) = env::var("TARGET") {
        return (t, false);
    }

    (HOST_TARGET.to_owned(), false)
}

impl BindgenContext {
    /// Construct the context for the given `options`.
    pub(crate) fn new(options: BindgenOptions) -> Self {
        // TODO(emilio): Use the CXTargetInfo here when available.
        //
        // see: https://reviews.llvm.org/D32389
        let (effective_target, explicit_target) =
            find_effective_target(&options.clang_args);

        let index = clang::Index::new(false, true);

        let parse_options =
            clang_sys::CXTranslationUnit_DetailedPreprocessingRecord;

        let translation_unit = {
            let _t =
                Timer::new("translation_unit").with_output(options.time_phases);
            let clang_args = if explicit_target {
                Cow::Borrowed(&options.clang_args)
            } else {
                let mut args = Vec::with_capacity(options.clang_args.len() + 1);
                args.push(format!("--target={}", effective_target));
                args.extend_from_slice(&options.clang_args);
                Cow::Owned(args)
            };

            clang::TranslationUnit::parse(
                &index,
                "",
                &clang_args,
                &options.input_unsaved_files,
                parse_options,
            ).expect("libclang error; possible causes include:
- Invalid flag syntax
- Unrecognized flags
- Invalid flag arguments
- File I/O errors
- Host vs. target architecture mismatch
If you encounter an error missing from this list, please file an issue or a PR!")
        };

        let target_info = clang::TargetInfo::new(&translation_unit);

        #[cfg(debug_assertions)]
        {
            if let Some(ref ti) = target_info {
                if effective_target == HOST_TARGET {
                    assert_eq!(
                        ti.pointer_width / 8,
                        mem::size_of::<*mut ()>(),
                        "{:?} {:?}",
                        effective_target,
                        HOST_TARGET
                    );
                }
            }
        }

        let root_module = Self::build_root_module(ItemId(0));
        let root_module_id = root_module.id().as_module_id_unchecked();

        BindgenContext {
            items: vec![Some(root_module)],
            types: Default::default(),
            type_params: Default::default(),
            modules: Default::default(),
            root_module: root_module_id,
            current_module: root_module_id,
            semantic_parents: Default::default(),
            currently_parsed_types: vec![],
            parsed_macros: Default::default(),
            replacements: Default::default(),
            collected_typerefs: false,
            in_codegen: false,
            index,
            translation_unit,
            target_info,
            options,
            generated_bindgen_complex: Cell::new(false),
            whitelisted: None,
            codegen_items: None,
            used_template_parameters: None,
            need_bitfield_allocation: Default::default(),
            cannot_derive_debug: None,
            cannot_derive_default: None,
            cannot_derive_copy: None,
            cannot_derive_copy_in_array: None,
            cannot_derive_hash: None,
            cannot_derive_partialeq_or_partialord: None,
            sizedness: None,
            have_vtable: None,
            have_destructor: None,
            has_type_param_in_array: None,
            has_float: None,
        }
    }

    /// Creates a timer for the current bindgen phase. If time_phases is `true`,
    /// the timer will print to stderr when it is dropped, otherwise it will do
    /// nothing.
    pub fn timer<'a>(&self, name: &'a str) -> Timer<'a> {
        Timer::new(name).with_output(self.options.time_phases)
    }

    /// Returns the pointer width to use for the target for the current
    /// translation.
    pub fn target_pointer_size(&self) -> usize {
        if let Some(ref ti) = self.target_info {
            return ti.pointer_width / 8;
        }
        mem::size_of::<*mut ()>()
    }

    /// Get the stack of partially parsed types that we are in the middle of
    /// parsing.
    pub fn currently_parsed_types(&self) -> &[PartialType] {
        &self.currently_parsed_types[..]
    }

    /// Begin parsing the given partial type, and push it onto the
    /// `currently_parsed_types` stack so that we won't infinite recurse if we
    /// run into a reference to it while parsing it.
    pub fn begin_parsing(&mut self, partial_ty: PartialType) {
        self.currently_parsed_types.push(partial_ty);
    }

    /// Finish parsing the current partial type, pop it off the
    /// `currently_parsed_types` stack, and return it.
    pub fn finish_parsing(&mut self) -> PartialType {
        self.currently_parsed_types.pop().expect(
            "should have been parsing a type, if we finished parsing a type",
        )
    }

    /// Get the user-provided callbacks by reference, if any.
    pub fn parse_callbacks(&self) -> Option<&dyn ParseCallbacks> {
        self.options().parse_callbacks.as_ref().map(|t| &**t)
    }

    /// Define a new item.
    ///
    /// This inserts it into the internal items set, and its type into the
    /// internal types set.
    pub fn add_item(
        &mut self,
        item: Item,
        declaration: Option<Cursor>,
        location: Option<Cursor>,
    ) {
        debug!(
            "BindgenContext::add_item({:?}, declaration: {:?}, loc: {:?}",
            item, declaration, location
        );
        debug_assert!(
            declaration.is_some() ||
                !item.kind().is_type() ||
                item.kind().expect_type().is_builtin_or_type_param() ||
                item.kind().expect_type().is_opaque(self, &item) ||
                item.kind().expect_type().is_unresolved_ref(),
            "Adding a type without declaration?"
        );

        let id = item.id();
        let is_type = item.kind().is_type();
        let is_unnamed = is_type && item.expect_type().name().is_none();
        let is_template_instantiation =
            is_type && item.expect_type().is_template_instantiation();

        if item.id() != self.root_module {
            self.add_item_to_module(&item);
        }

        if is_type && item.expect_type().is_comp() {
            self.need_bitfield_allocation.push(id);
        }

        let old_item = mem::replace(&mut self.items[id.0], Some(item));
        assert!(
            old_item.is_none(),
            "should not have already associated an item with the given id"
        );

        // Unnamed items can have an USR, but they can't be referenced from
        // other sites explicitly and the USR can match if the unnamed items are
        // nested, so don't bother tracking them.
        if is_type && !is_template_instantiation && declaration.is_some() {
            let mut declaration = declaration.unwrap();
            if !declaration.is_valid() {
                if let Some(location) = location {
                    if location.is_template_like() {
                        declaration = location;
                    }
                }
            }
            declaration = declaration.canonical();
            if !declaration.is_valid() {
                // This could happen, for example, with types like `int*` or
                // similar.
                //
                // Fortunately, we don't care about those types being
                // duplicated, so we can just ignore them.
                debug!(
                    "Invalid declaration {:?} found for type {:?}",
                    declaration,
                    self.resolve_item_fallible(id)
                        .unwrap()
                        .kind()
                        .expect_type()
                );
                return;
            }

            let key = if is_unnamed {
                TypeKey::Declaration(declaration)
            } else if let Some(usr) = declaration.usr() {
                TypeKey::USR(usr)
            } else {
                warn!(
                    "Valid declaration with no USR: {:?}, {:?}",
                    declaration, location
                );
                TypeKey::Declaration(declaration)
            };

            let old = self.types.insert(key, id.as_type_id_unchecked());
            debug_assert_eq!(old, None);
        }
    }

    /// Ensure that every item (other than the root module) is in a module's
    /// children list. This is to make sure that every whitelisted item get's
    /// codegen'd, even if its parent is not whitelisted. See issue #769 for
    /// details.
    fn add_item_to_module(&mut self, item: &Item) {
        assert!(item.id() != self.root_module);
        assert!(self.resolve_item_fallible(item.id()).is_none());

        if let Some(ref mut parent) = self.items[item.parent_id().0] {
            if let Some(module) = parent.as_module_mut() {
                debug!(
                    "add_item_to_module: adding {:?} as child of parent module {:?}",
                    item.id(),
                    item.parent_id()
                );

                module.children_mut().insert(item.id());
                return;
            }
        }

        debug!(
            "add_item_to_module: adding {:?} as child of current module {:?}",
            item.id(),
            self.current_module
        );

        self.items[(self.current_module.0).0]
            .as_mut()
            .expect("Should always have an item for self.current_module")
            .as_module_mut()
            .expect("self.current_module should always be a module")
            .children_mut()
            .insert(item.id());
    }

    /// Add a new named template type parameter to this context's item set.
    pub fn add_type_param(&mut self, item: Item, definition: clang::Cursor) {
        debug!(
            "BindgenContext::add_type_param: item = {:?}; definition = {:?}",
            item, definition
        );

        assert!(
            item.expect_type().is_type_param(),
            "Should directly be a named type, not a resolved reference or anything"
        );
        assert_eq!(
            definition.kind(),
            clang_sys::CXCursor_TemplateTypeParameter
        );

        self.add_item_to_module(&item);

        let id = item.id();
        let old_item = mem::replace(&mut self.items[id.0], Some(item));
        assert!(
            old_item.is_none(),
            "should not have already associated an item with the given id"
        );

        let old_named_ty = self
            .type_params
            .insert(definition, id.as_type_id_unchecked());
        assert!(
            old_named_ty.is_none(),
            "should not have already associated a named type with this id"
        );
    }

    /// Get the named type defined at the given cursor location, if we've
    /// already added one.
    pub fn get_type_param(&self, definition: &clang::Cursor) -> Option<TypeId> {
        assert_eq!(
            definition.kind(),
            clang_sys::CXCursor_TemplateTypeParameter
        );
        self.type_params.get(definition).cloned()
    }

    // TODO: Move all this syntax crap to other part of the code.

    /// Mangles a name so it doesn't conflict with any keyword.
    pub fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> {
        if name.contains("@") ||
            name.contains("?") ||
            name.contains("$") ||
            match name {
                "abstract" | "alignof" | "as" | "async" | "become" |
                "box" | "break" | "const" | "continue" | "crate" | "do" |
                "else" | "enum" | "extern" | "false" | "final" | "fn" |
                "for" | "if" | "impl" | "in" | "let" | "loop" | "macro" |
                "match" | "mod" | "move" | "mut" | "offsetof" |
                "override" | "priv" | "proc" | "pub" | "pure" | "ref" |
                "return" | "Self" | "self" | "sizeof" | "static" |
                "struct" | "super" | "trait" | "true" | "type" | "typeof" |
                "unsafe" | "unsized" | "use" | "virtual" | "where" |
                "while" | "yield" | "bool" | "_" => true,
                _ => false,
            }
        {
            let mut s = name.to_owned();
            s = s.replace("@", "_");
            s = s.replace("?", "_");
            s = s.replace("$", "_");
            s.push_str("_");
            return Cow::Owned(s);
        }
        Cow::Borrowed(name)
    }

    /// Returns a mangled name as a rust identifier.
    pub fn rust_ident<S>(&self, name: S) -> Ident
    where
        S: AsRef<str>,
    {
        self.rust_ident_raw(self.rust_mangle(name.as_ref()))
    }

    /// Returns a mangled name as a rust identifier.
    pub fn rust_ident_raw<T>(&self, name: T) -> Ident
    where
        T: AsRef<str>,
    {
        Ident::new(name.as_ref(), Span::call_site())
    }

    /// Iterate over all items that have been defined.
    pub fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> {
        self.items.iter().enumerate().filter_map(|(index, item)| {
            let item = item.as_ref()?;
            Some((ItemId(index), item))
        })
    }

    /// Have we collected all unresolved type references yet?
    pub fn collected_typerefs(&self) -> bool {
        self.collected_typerefs
    }

    /// Gather all the unresolved type references.
    fn collect_typerefs(
        &mut self,
    ) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> {
        debug_assert!(!self.collected_typerefs);
        self.collected_typerefs = true;
        let mut typerefs = vec![];

        for (id, item) in self.items() {
            let kind = item.kind();
            let ty = match kind.as_type() {
                Some(ty) => ty,
                None => continue,
            };

            match *ty.kind() {
                TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) => {
                    typerefs.push((id, ty.clone(), loc, parent_id));
                }
                _ => {}
            };
        }
        typerefs
    }

    /// Collect all of our unresolved type references and resolve them.
    fn resolve_typerefs(&mut self) {
        let _t = self.timer("resolve_typerefs");

        let typerefs = self.collect_typerefs();

        for (id, ty, loc, parent_id) in typerefs {
            let _resolved =
                {
                    let resolved = Item::from_ty(&ty, loc, parent_id, self)
                    .unwrap_or_else(|_| {
                        warn!("Could not resolve type reference, falling back \
                               to opaque blob");
                        Item::new_opaque_type(self.next_item_id(), &ty, self)
                    });

                    let item = self.items[id.0].as_mut().unwrap();
                    *item.kind_mut().as_type_mut().unwrap().kind_mut() =
                        TypeKind::ResolvedTypeRef(resolved);
                    resolved
                };

            // Something in the STL is trolling me. I don't need this assertion
            // right now, but worth investigating properly once this lands.
            //
            // debug_assert!(self.items.get(&resolved).is_some(), "How?");
            //
            // if let Some(parent_id) = parent_id {
            //     assert_eq!(self.items[&resolved].parent_id(), parent_id);
            // }
        }
    }

    /// Temporarily loan `Item` with the given `ItemId`. This provides means to
    /// mutably borrow `Item` while having a reference to `BindgenContext`.
    ///
    /// `Item` with the given `ItemId` is removed from the context, given
    /// closure is executed and then `Item` is placed back.
    ///
    /// # Panics
    ///
    /// Panics if attempt to resolve given `ItemId` inside the given
    /// closure is made.
    fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T
    where
        F: (FnOnce(&BindgenContext, &mut Item) -> T),
    {
        let mut item = self.items[id.0].take().unwrap();

        let result = f(self, &mut item);

        let existing = mem::replace(&mut self.items[id.0], Some(item));
        assert!(existing.is_none());

        result
    }

    /// Compute the bitfield allocation units for all `TypeKind::Comp` items we
    /// parsed.
    fn compute_bitfield_units(&mut self) {
        let _t = self.timer("compute_bitfield_units");

        assert!(self.collected_typerefs());

        let need_bitfield_allocation =
            mem::replace(&mut self.need_bitfield_allocation, vec![]);
        for id in need_bitfield_allocation {
            self.with_loaned_item(id, |ctx, item| {
                item.kind_mut()
                    .as_type_mut()
                    .unwrap()
                    .as_comp_mut()
                    .unwrap()
                    .compute_bitfield_units(ctx);
            });
        }
    }

    /// Assign a new generated name for each anonymous field.
    fn deanonymize_fields(&mut self) {
        let _t = self.timer("deanonymize_fields");

        let comp_item_ids: Vec<ItemId> = self
            .items()
            .filter_map(|(id, item)| {
                if item.kind().as_type()?.is_comp() {
                    return Some(id);
                }
                None
            })
            .collect();

        for id in comp_item_ids {
            self.with_loaned_item(id, |ctx, item| {
                item.kind_mut()
                    .as_type_mut()
                    .unwrap()
                    .as_comp_mut()
                    .unwrap()
                    .deanonymize_fields(ctx);
            });
        }
    }

    /// Iterate over all items and replace any item that has been named in a
    /// `replaces="SomeType"` annotation with the replacement type.
    fn process_replacements(&mut self) {
        let _t = self.timer("process_replacements");
        if self.replacements.is_empty() {
            debug!("No replacements to process");
            return;
        }

        // FIXME: This is linear, but the replaces="xxx" annotation was already
        // there, and for better or worse it's useful, sigh...
        //
        // We leverage the ResolvedTypeRef thing, though, which is cool :P.

        let mut replacements = vec![];

        for (id, item) in self.items() {
            if item.annotations().use_instead_of().is_some() {
                continue;
            }

            // Calls to `canonical_name` are expensive, so eagerly filter out
            // items that cannot be replaced.
            let ty = match item.kind().as_type() {
                Some(ty) => ty,
                None => continue,
            };

            match *ty.kind() {
                TypeKind::Comp(..) |
                TypeKind::TemplateAlias(..) |
                TypeKind::Enum(..) |
                TypeKind::Alias(..) => {}
                _ => continue,
            }

            let path = item.path_for_whitelisting(self);
            let replacement = self.replacements.get(&path[1..]);

            if let Some(replacement) = replacement {
                if *replacement != id {
                    // We set this just after parsing the annotation. It's
                    // very unlikely, but this can happen.
                    if self.resolve_item_fallible(*replacement).is_some() {
                        replacements.push((
                            id.expect_type_id(self),
                            replacement.expect_type_id(self),
                        ));
                    }
                }
            }
        }

        for (id, replacement_id) in replacements {
            debug!("Replacing {:?} with {:?}", id, replacement_id);
            let new_parent = {
                let item_id: ItemId = id.into();
                let item = self.items[item_id.0].as_mut().unwrap();
                *item.kind_mut().as_type_mut().unwrap().kind_mut() =
                    TypeKind::ResolvedTypeRef(replacement_id);
                item.parent_id()
            };

            // Relocate the replacement item from where it was declared, to
            // where the thing it is replacing was declared.
            //
            // First, we'll make sure that its parent id is correct.

            let old_parent = self.resolve_item(replacement_id).parent_id();
            if new_parent == old_parent {
                // Same parent and therefore also same containing
                // module. Nothing to do here.
                continue;
            }

            let replacement_item_id: ItemId = replacement_id.into();
            self.items[replacement_item_id.0]
                .as_mut()
                .unwrap()
                .set_parent_for_replacement(new_parent);

            // Second, make sure that it is in the correct module's children
            // set.

            let old_module = {
                let immut_self = &*self;
                old_parent
                    .ancestors(immut_self)
                    .chain(Some(immut_self.root_module.into()))
                    .find(|id| {
                        let item = immut_self.resolve_item(*id);
                        item.as_module().map_or(false, |m| {
                            m.children().contains(&replacement_id.into())
                        })
                    })
            };
            let old_module = old_module
                .expect("Every replacement item should be in a module");

            let new_module = {
                let immut_self = &*self;
                new_parent
                    .ancestors(immut_self)
                    .find(|id| immut_self.resolve_item(*id).is_module())
            };
            let new_module = new_module.unwrap_or(self.root_module.into());

            if new_module == old_module {
                // Already in the correct module.
                continue;
            }

            self.items[old_module.0]
                .as_mut()
                .unwrap()
                .as_module_mut()
                .unwrap()
                .children_mut()
                .remove(&replacement_id.into());

            self.items[new_module.0]
                .as_mut()
                .unwrap()
                .as_module_mut()
                .unwrap()
                .children_mut()
                .insert(replacement_id.into());
        }
    }

    /// Enter the code generation phase, invoke the given callback `cb`, and
    /// leave the code generation phase.
    pub(crate) fn gen<F, Out>(mut self, cb: F) -> (Out, BindgenOptions)
    where
        F: FnOnce(&Self) -> Out,
    {
        self.in_codegen = true;

        self.resolve_typerefs();
        self.compute_bitfield_units();
        self.process_replacements();

        self.deanonymize_fields();

        self.assert_no_dangling_references();

        // Compute the whitelisted set after processing replacements and
        // resolving type refs, as those are the final mutations of the IR
        // graph, and their completion means that the IR graph is now frozen.
        self.compute_whitelisted_and_codegen_items();

        // Make sure to do this after processing replacements, since that messes
        // with the parentage and module children, and we want to assert that it
        // messes with them correctly.
        self.assert_every_item_in_a_module();

        self.compute_has_vtable();
        self.compute_sizedness();
        self.compute_has_destructor();
        self.find_used_template_parameters();
        self.compute_cannot_derive_debug();
        self.compute_cannot_derive_default();
        self.compute_cannot_derive_copy();
        self.compute_has_type_param_in_array();
        self.compute_has_float();
        self.compute_cannot_derive_hash();
        self.compute_cannot_derive_partialord_partialeq_or_eq();

        let ret = cb(&self);
        (ret, self.options)
    }

    /// When the `testing_only_extra_assertions` feature is enabled, this
    /// function walks the IR graph and asserts that we do not have any edges
    /// referencing an ItemId for which we do not have an associated IR item.
    fn assert_no_dangling_references(&self) {
        if cfg!(feature = "testing_only_extra_assertions") {
            for _ in self.assert_no_dangling_item_traversal() {
                // The iterator's next method does the asserting for us.
            }
        }
    }

    fn assert_no_dangling_item_traversal(
        &self,
    ) -> traversal::AssertNoDanglingItemsTraversal {
        assert!(self.in_codegen_phase());
        assert!(self.current_module == self.root_module);

        let roots = self.items().map(|(id, _)| id);
        traversal::AssertNoDanglingItemsTraversal::new(
            self,
            roots,
            traversal::all_edges,
        )
    }

    /// When the `testing_only_extra_assertions` feature is enabled, walk over
    /// every item and ensure that it is in the children set of one of its
    /// module ancestors.
    fn assert_every_item_in_a_module(&self) {
        if cfg!(feature = "testing_only_extra_assertions") {
            assert!(self.in_codegen_phase());
            assert!(self.current_module == self.root_module);

            for (id, _item) in self.items() {
                if id == self.root_module {
                    continue;
                }

                assert!(
                    {
                        let id = id
                            .into_resolver()
                            .through_type_refs()
                            .through_type_aliases()
                            .resolve(self)
                            .id();
                        id.ancestors(self)
                            .chain(Some(self.root_module.into()))
                            .any(|ancestor| {
                                debug!(
                                    "Checking if {:?} is a child of {:?}",
                                    id, ancestor
                                );
                                self.resolve_item(ancestor)
                                    .as_module()
                                    .map_or(false, |m| {
                                        m.children().contains(&id)
                                    })
                            })
                    },
                    "{:?} should be in some ancestor module's children set",
                    id
                );
            }
        }
    }

    /// Compute for every type whether it is sized or not, and whether it is
    /// sized or not as a base class.
    fn compute_sizedness(&mut self) {
        let _t = self.timer("compute_sizedness");
        assert!(self.sizedness.is_none());
        self.sizedness = Some(analyze::<SizednessAnalysis>(self));
    }

    /// Look up whether the type with the given id is sized or not.
    pub fn lookup_sizedness(&self, id: TypeId) -> SizednessResult {
        assert!(
            self.in_codegen_phase(),
            "We only compute sizedness after we've entered codegen"
        );

        self.sizedness
            .as_ref()
            .unwrap()
            .get(&id)
            .cloned()
            .unwrap_or(SizednessResult::ZeroSized)
    }

    /// Compute whether the type has vtable.
    fn compute_has_vtable(&mut self) {
        let _t = self.timer("compute_has_vtable");
        assert!(self.have_vtable.is_none());
        self.have_vtable = Some(analyze::<HasVtableAnalysis>(self));
    }

    /// Look up whether the item with `id` has vtable or not.
    pub fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult {
        assert!(
            self.in_codegen_phase(),
            "We only compute vtables when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` has a
        // vtable or not.
        self.have_vtable
            .as_ref()
            .unwrap()
            .get(&id.into())
            .cloned()
            .unwrap_or(HasVtableResult::No)
    }

    /// Compute whether the type has a destructor.
    fn compute_has_destructor(&mut self) {
        let _t = self.timer("compute_has_destructor");
        assert!(self.have_destructor.is_none());
        self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self));
    }

    /// Look up whether the item with `id` has a destructor.
    pub fn lookup_has_destructor(&self, id: TypeId) -> bool {
        assert!(
            self.in_codegen_phase(),
            "We only compute destructors when we enter codegen"
        );

        self.have_destructor.as_ref().unwrap().contains(&id.into())
    }

    fn find_used_template_parameters(&mut self) {
        let _t = self.timer("find_used_template_parameters");
        if self.options.whitelist_recursively {
            let used_params = analyze::<UsedTemplateParameters>(self);
            self.used_template_parameters = Some(used_params);
        } else {
            // If you aren't recursively whitelisting, then we can't really make
            // any sense of template parameter usage, and you're on your own.
            let mut used_params = HashMap::default();
            for &id in self.whitelisted_items() {
                used_params.entry(id).or_insert(
                    id.self_template_params(self)
                        .into_iter()
                        .map(|p| p.into())
                        .collect(),
                );
            }
            self.used_template_parameters = Some(used_params);
        }
    }

    /// Return `true` if `item` uses the given `template_param`, `false`
    /// otherwise.
    ///
    /// This method may only be called during the codegen phase, because the
    /// template usage information is only computed as we enter the codegen
    /// phase.
    ///
    /// If the item is blacklisted, then we say that it always uses the template
    /// parameter. This is a little subtle. The template parameter usage
    /// analysis only considers whitelisted items, and if any blacklisted item
    /// shows up in the generated bindings, it is the user's responsibility to
    /// manually provide a definition for them. To give them the most
    /// flexibility when doing that, we assume that they use every template
    /// parameter and always pass template arguments through in instantiations.
    pub fn uses_template_parameter(
        &self,
        item: ItemId,
        template_param: TypeId,
    ) -> bool {
        assert!(
            self.in_codegen_phase(),
            "We only compute template parameter usage as we enter codegen"
        );

        if self.resolve_item(item).is_blacklisted(self) {
            return true;
        }

        let template_param = template_param
            .into_resolver()
            .through_type_refs()
            .through_type_aliases()
            .resolve(self)
            .id();

        self.used_template_parameters
            .as_ref()
            .expect("should have found template parameter usage if we're in codegen")
            .get(&item)
            .map_or(false, |items_used_params| items_used_params.contains(&template_param))
    }

    /// Return `true` if `item` uses any unbound, generic template parameters,
    /// `false` otherwise.
    ///
    /// Has the same restrictions that `uses_template_parameter` has.
    pub fn uses_any_template_parameters(&self, item: ItemId) -> bool {
        assert!(
            self.in_codegen_phase(),
            "We only compute template parameter usage as we enter codegen"
        );

        self.used_template_parameters
            .as_ref()
            .expect(
                "should have template parameter usage info in codegen phase",
            )
            .get(&item)
            .map_or(false, |used| !used.is_empty())
    }

    // This deserves a comment. Builtin types don't get a valid declaration, so
    // we can't add it to the cursor->type map.
    //
    // That being said, they're not generated anyway, and are few, so the
    // duplication and special-casing is fine.
    //
    // If at some point we care about the memory here, probably a map TypeKind
    // -> builtin type ItemId would be the best to improve that.
    fn add_builtin_item(&mut self, item: Item) {
        debug!("add_builtin_item: item = {:?}", item);
        debug_assert!(item.kind().is_type());
        self.add_item_to_module(&item);
        let id = item.id();
        let old_item = mem::replace(&mut self.items[id.0], Some(item));
        assert!(old_item.is_none(), "Inserted type twice?");
    }

    fn build_root_module(id: ItemId) -> Item {
        let module = Module::new(Some("root".into()), ModuleKind::Normal);
        Item::new(id, None, None, id, ItemKind::Module(module))
    }

    /// Get the root module.
    pub fn root_module(&self) -> ModuleId {
        self.root_module
    }

    /// Resolve a type with the given id.
    ///
    /// Panics if there is no item for the given `TypeId` or if the resolved
    /// item is not a `Type`.
    pub fn resolve_type(&self, type_id: TypeId) -> &Type {
        self.resolve_item(type_id).kind().expect_type()
    }

    /// Resolve a function with the given id.
    ///
    /// Panics if there is no item for the given `FunctionId` or if the resolved
    /// item is not a `Function`.
    pub fn resolve_func(&self, func_id: FunctionId) -> &Function {
        self.resolve_item(func_id).kind().expect_function()
    }

    /// Resolve the given `ItemId` as a type, or `None` if there is no item with
    /// the given id.
    ///
    /// Panics if the id resolves to an item that is not a type.
    pub fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> {
        self.resolve_item_fallible(type_id)
            .map(|t| t.kind().expect_type())
    }

    /// Resolve the given `ItemId` into an `Item`, or `None` if no such item
    /// exists.
    pub fn resolve_item_fallible<Id: Into<ItemId>>(
        &self,
        id: Id,
    ) -> Option<&Item> {
        self.items.get(id.into().0)?.as_ref()
    }

    /// Resolve the given `ItemId` into an `Item`.
    ///
    /// Panics if the given id does not resolve to any item.
    pub fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item {
        let item_id = item_id.into();
        match self.resolve_item_fallible(item_id) {
            Some(item) => item,
            None => panic!("Not an item: {:?}", item_id),
        }
    }

    /// Get the current module.
    pub fn current_module(&self) -> ModuleId {
        self.current_module
    }

    /// Add a semantic parent for a given type definition.
    ///
    /// We do this from the type declaration, in order to be able to find the
    /// correct type definition afterwards.
    ///
    /// TODO(emilio): We could consider doing this only when
    /// declaration.lexical_parent() != definition.lexical_parent(), but it's
    /// not sure it's worth it.
    pub fn add_semantic_parent(
        &mut self,
        definition: clang::Cursor,
        parent_id: ItemId,
    ) {
        self.semantic_parents.insert(definition, parent_id);
    }

    /// Returns a known semantic parent for a given definition.
    pub fn known_semantic_parent(
        &self,
        definition: clang::Cursor,
    ) -> Option<ItemId> {
        self.semantic_parents.get(&definition).cloned()
    }

    /// Given a cursor pointing to the location of a template instantiation,
    /// return a tuple of the form `(declaration_cursor, declaration_id,
    /// num_expected_template_args)`.
    ///
    /// Note that `declaration_id` is not guaranteed to be in the context's item
    /// set! It is possible that it is a partial type that we are still in the
    /// middle of parsing.
    fn get_declaration_info_for_template_instantiation(
        &self,
        instantiation: &Cursor,
    ) -> Option<(Cursor, ItemId, usize)> {
        instantiation
            .cur_type()
            .canonical_declaration(Some(instantiation))
            .and_then(|canon_decl| {
                self.get_resolved_type(&canon_decl).and_then(
                    |template_decl_id| {
                        let num_params =
                            template_decl_id.num_self_template_params(self);
                        if num_params == 0 {
                            None
                        } else {
                            Some((
                                *canon_decl.cursor(),
                                template_decl_id.into(),
                                num_params,
                            ))
                        }
                    },
                )
            })
            .or_else(|| {
                // If we haven't already parsed the declaration of
                // the template being instantiated, then it *must*
                // be on the stack of types we are currently
                // parsing. If it wasn't then clang would have
                // already errored out before we started
                // constructing our IR because you can't instantiate
                // a template until it is fully defined.
                instantiation
                    .referenced()
                    .and_then(|referenced| {
                        self.currently_parsed_types()
                            .iter()
                            .find(|partial_ty| *partial_ty.decl() == referenced)
                            .cloned()
                    })
                    .and_then(|template_decl| {
                        let num_template_params =
                            template_decl.num_self_template_params(self);
                        if num_template_params == 0 {
                            None
                        } else {
                            Some((
                                *template_decl.decl(),
                                template_decl.id(),
                                num_template_params,
                            ))
                        }
                    })
            })
    }

    /// Parse a template instantiation, eg `Foo<int>`.
    ///
    /// This is surprisingly difficult to do with libclang, due to the fact that
    /// it doesn't provide explicit template argument information, except for
    /// function template declarations(!?!??!).
    ///
    /// The only way to do this is manually inspecting the AST and looking for
    /// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for
    /// more complex cases, see the comment on the assertion below.
    ///
    /// To add insult to injury, the AST itself has structure that doesn't make
    /// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might
    /// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely
    /// flat: `(Foo Bar int)`.
    ///
    /// To see an example of what this method handles:
    ///
    /// ```c++
    /// template<typename T>
    /// class Incomplete {
    ///   T p;
    /// };
    ///
    /// template<typename U>
    /// class Foo {
    ///   Incomplete<U> bar;
    /// };
    /// ```
    ///
    /// Finally, template instantiations are always children of the current
    /// module. They use their template's definition for their name, so the
    /// parent is only useful for ensuring that their layout tests get
    /// codegen'd.
    fn instantiate_template(
        &mut self,
        with_id: ItemId,
        template: TypeId,
        ty: &clang::Type,
        location: clang::Cursor,
    ) -> Option<TypeId> {
        let num_expected_args =
            self.resolve_type(template).num_self_template_params(self);
        if num_expected_args == 0 {
            warn!(
                "Tried to instantiate a template for which we could not \
                 determine any template parameters"
            );
            return None;
        }

        let mut args = vec![];
        let mut found_const_arg = false;
        let mut children = location.collect_children();

        if children.iter().all(|c| !c.has_children()) {
            // This is insanity... If clang isn't giving us a properly nested
            // AST for which template arguments belong to which template we are
            // instantiating, we'll need to construct it ourselves. However,
            // there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef`
            // representing a reference to the outermost template declaration
            // that we need to filter out of the children. We need to do this
            // filtering because we already know which template declaration is
            // being specialized via the `location`'s type, and if we do not
            // filter it out, we'll add an extra layer of template instantiation
            // on accident.
            let idx = children
                .iter()
                .position(|c| c.kind() == clang_sys::CXCursor_TemplateRef);
            if let Some(idx) = idx {
                if children
                    .iter()
                    .take(idx)
                    .all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef)
                {
                    children = children.into_iter().skip(idx + 1).collect();
                }
            }
        }

        for child in children.iter().rev() {
            match child.kind() {
                clang_sys::CXCursor_TypeRef |
                clang_sys::CXCursor_TypedefDecl |
                clang_sys::CXCursor_TypeAliasDecl => {
                    // The `with_id` id will potentially end up unused if we give up
                    // on this type (for example, because it has const value
                    // template args), so if we pass `with_id` as the parent, it is
                    // potentially a dangling reference. Instead, use the canonical
                    // template declaration as the parent. It is already parsed and
                    // has a known-resolvable `ItemId`.
                    let ty = Item::from_ty_or_ref(
                        child.cur_type(),
                        *child,
                        Some(template.into()),
                        self,
                    );
                    args.push(ty);
                }
                clang_sys::CXCursor_TemplateRef => {
                    let (
                        template_decl_cursor,
                        template_decl_id,
                        num_expected_template_args,
                    ) = self.get_declaration_info_for_template_instantiation(
                        child,
                    )?;

                    if num_expected_template_args == 0 ||
                        child.has_at_least_num_children(
                            num_expected_template_args,
                        )
                    {
                        // Do a happy little parse. See comment in the TypeRef
                        // match arm about parent IDs.
                        let ty = Item::from_ty_or_ref(
                            child.cur_type(),
                            *child,
                            Some(template.into()),
                            self,
                        );
                        args.push(ty);
                    } else {
                        // This is the case mentioned in the doc comment where
                        // clang gives us a flattened AST and we have to
                        // reconstruct which template arguments go to which
                        // instantiation :(
                        let args_len = args.len();
                        if args_len < num_expected_template_args {
                            warn!(
                                "Found a template instantiation without \
                                 enough template arguments"
                            );
                            return None;
                        }

                        let mut sub_args: Vec<_> = args
                            .drain(args_len - num_expected_template_args..)
                            .collect();
                        sub_args.reverse();

                        let sub_name = Some(template_decl_cursor.spelling());
                        let sub_inst = TemplateInstantiation::new(
                            // This isn't guaranteed to be a type that we've
                            // already finished parsing yet.
                            template_decl_id.as_type_id_unchecked(),
                            sub_args,
                        );
                        let sub_kind =
                            TypeKind::TemplateInstantiation(sub_inst);
                        let sub_ty = Type::new(
                            sub_name,
                            template_decl_cursor
                                .cur_type()
                                .fallible_layout(self)
                                .ok(),
                            sub_kind,
                            false,
                        );
                        let sub_id = self.next_item_id();
                        let sub_item = Item::new(
                            sub_id,
                            None,
                            None,
                            self.current_module.into(),
                            ItemKind::Type(sub_ty),
                        );

                        // Bypass all the validations in add_item explicitly.
                        debug!(
                            "instantiate_template: inserting nested \
                             instantiation item: {:?}",
                            sub_item
                        );
                        self.add_item_to_module(&sub_item);
                        debug_assert_eq!(sub_id, sub_item.id());
                        self.items[sub_id.0] = Some(sub_item);
                        args.push(sub_id.as_type_id_unchecked());
                    }
                }
                _ => {
                    warn!(
                        "Found template arg cursor we can't handle: {:?}",
                        child
                    );
                    found_const_arg = true;
                }
            }
        }

        if found_const_arg {
            // This is a dependently typed template instantiation. That is, an
            // instantiation of a template with one or more const values as
            // template arguments, rather than only types as template
            // arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`.
            // We can't handle these instantiations, so just punt in this
            // situation...
            warn!(
                "Found template instantiated with a const value; \
                 bindgen can't handle this kind of template instantiation!"
            );
            return None;
        }

        if args.len() != num_expected_args {
            warn!(
                "Found a template with an unexpected number of template \
                 arguments"
            );
            return None;
        }

        args.reverse();
        let type_kind = TypeKind::TemplateInstantiation(
            TemplateInstantiation::new(template, args),
        );
        let name = ty.spelling();
        let name = if name.is_empty() { None } else { Some(name) };
        let ty = Type::new(
            name,
            ty.fallible_layout(self).ok(),
            type_kind,
            ty.is_const(),
        );
        let item = Item::new(
            with_id,
            None,
            None,
            self.current_module.into(),
            ItemKind::Type(ty),
        );

        // Bypass all the validations in add_item explicitly.
        debug!("instantiate_template: inserting item: {:?}", item);
        self.add_item_to_module(&item);
        debug_assert_eq!(with_id, item.id());
        self.items[with_id.0] = Some(item);
        Some(with_id.as_type_id_unchecked())
    }

    /// If we have already resolved the type for the given type declaration,
    /// return its `ItemId`. Otherwise, return `None`.
    pub fn get_resolved_type(
        &self,
        decl: &clang::CanonicalTypeDeclaration,
    ) -> Option<TypeId> {
        self.types
            .get(&TypeKey::Declaration(*decl.cursor()))
            .or_else(|| {
                decl.cursor()
                    .usr()
                    .and_then(|usr| self.types.get(&TypeKey::USR(usr)))
            })
            .cloned()
    }

    /// Looks up for an already resolved type, either because it's builtin, or
    /// because we already have it in the map.
    pub fn builtin_or_resolved_ty(
        &mut self,
        with_id: ItemId,
        parent_id: Option<ItemId>,
        ty: &clang::Type,
        location: Option<clang::Cursor>,
    ) -> Option<TypeId> {
        use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef};
        debug!(
            "builtin_or_resolved_ty: {:?}, {:?}, {:?}",
            ty, location, parent_id
        );

        if let Some(decl) = ty.canonical_declaration(location.as_ref()) {
            if let Some(id) = self.get_resolved_type(&decl) {
                debug!(
                    "Already resolved ty {:?}, {:?}, {:?} {:?}",
                    id, decl, ty, location
                );
                // If the declaration already exists, then either:
                //
                //   * the declaration is a template declaration of some sort,
                //     and we are looking at an instantiation or specialization
                //     of it, or
                //   * we have already parsed and resolved this type, and
                //     there's nothing left to do.
                if decl.cursor().is_template_like() &&
                    *ty != decl.cursor().cur_type() &&
                    location.is_some()
                {
                    let location = location.unwrap();

                    // For specialized type aliases, there's no way to get the
                    // template parameters as of this writing (for a struct
                    // specialization we wouldn't be in this branch anyway).
                    //
                    // Explicitly return `None` if there aren't any
                    // unspecialized parameters (contains any `TypeRef`) so we
                    // resolve the canonical type if there is one and it's
                    // exposed.
                    //
                    // This is _tricky_, I know :(
                    if decl.cursor().kind() == CXCursor_TypeAliasTemplateDecl &&
                        !location.contains_cursor(CXCursor_TypeRef) &&
                        ty.canonical_type().is_valid_and_exposed()
                    {
                        return None;
                    }

                    return self
                        .instantiate_template(with_id, id, ty, location)
                        .or_else(|| Some(id));
                }

                return Some(self.build_ty_wrapper(with_id, id, parent_id, ty));
            }
        }

        debug!("Not resolved, maybe builtin?");
        self.build_builtin_ty(ty)
    }

    /// Make a new item that is a resolved type reference to the `wrapped_id`.
    ///
    /// This is unfortunately a lot of bloat, but is needed to properly track
    /// constness et al.
    ///
    /// We should probably make the constness tracking separate, so it doesn't
    /// bloat that much, but hey, we already bloat the heck out of builtin
    /// types.
    pub fn build_ty_wrapper(
        &mut self,
        with_id: ItemId,
        wrapped_id: TypeId,
        parent_id: Option<ItemId>,
        ty: &clang::Type,
    ) -> TypeId {
        self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const())
    }

    /// A wrapper over a type that adds a const qualifier explicitly.
    ///
    /// Needed to handle const methods in C++, wrapping the type .
    pub fn build_const_wrapper(
        &mut self,
        with_id: ItemId,
        wrapped_id: TypeId,
        parent_id: Option<ItemId>,
        ty: &clang::Type,
    ) -> TypeId {
        self.build_wrapper(
            with_id, wrapped_id, parent_id, ty, /* is_const = */ true,
        )
    }

    fn build_wrapper(
        &mut self,
        with_id: ItemId,
        wrapped_id: TypeId,
        parent_id: Option<ItemId>,
        ty: &clang::Type,
        is_const: bool,
    ) -> TypeId {
        let spelling = ty.spelling();
        let layout = ty.fallible_layout(self).ok();
        let type_kind = TypeKind::ResolvedTypeRef(wrapped_id);
        let ty = Type::new(Some(spelling), layout, type_kind, is_const);
        let item = Item::new(
            with_id,
            None,
            None,
            parent_id.unwrap_or(self.current_module.into()),
            ItemKind::Type(ty),
        );
        self.add_builtin_item(item);
        with_id.as_type_id_unchecked()
    }

    /// Returns the next item id to be used for an item.
    pub fn next_item_id(&mut self) -> ItemId {
        let ret = ItemId(self.items.len());
        self.items.push(None);
        ret
    }

    fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> {
        use clang_sys::*;
        let type_kind = match ty.kind() {
            CXType_NullPtr => TypeKind::NullPtr,
            CXType_Void => TypeKind::Void,
            CXType_Bool => TypeKind::Int(IntKind::Bool),
            CXType_Int => TypeKind::Int(IntKind::Int),
            CXType_UInt => TypeKind::Int(IntKind::UInt),
            CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }),
            CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }),
            CXType_SChar => TypeKind::Int(IntKind::SChar),
            CXType_UChar => TypeKind::Int(IntKind::UChar),
            CXType_Short => TypeKind::Int(IntKind::Short),
            CXType_UShort => TypeKind::Int(IntKind::UShort),
            CXType_WChar => TypeKind::Int(IntKind::WChar),
            CXType_Char16 => TypeKind::Int(IntKind::U16),
            CXType_Char32 => TypeKind::Int(IntKind::U32),
            CXType_Long => TypeKind::Int(IntKind::Long),
            CXType_ULong => TypeKind::Int(IntKind::ULong),
            CXType_LongLong => TypeKind::Int(IntKind::LongLong),
            CXType_ULongLong => TypeKind::Int(IntKind::ULongLong),
            CXType_Int128 => TypeKind::Int(IntKind::I128),
            CXType_UInt128 => TypeKind::Int(IntKind::U128),
            CXType_Float => TypeKind::Float(FloatKind::Float),
            CXType_Double => TypeKind::Float(FloatKind::Double),
            CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble),
            CXType_Float128 => TypeKind::Float(FloatKind::Float128),
            CXType_Complex => {
                let float_type =
                    ty.elem_type().expect("Not able to resolve complex type?");
                let float_kind = match float_type.kind() {
                    CXType_Float => FloatKind::Float,
                    CXType_Double => FloatKind::Double,
                    CXType_LongDouble => FloatKind::LongDouble,
                    CXType_Float128 => FloatKind::Float128,
                    _ => panic!(
                        "Non floating-type complex? {:?}, {:?}",
                        ty, float_type,
                    ),
                };
                TypeKind::Complex(float_kind)
            }
            _ => return None,
        };

        let spelling = ty.spelling();
        let is_const = ty.is_const();
        let layout = ty.fallible_layout(self).ok();
        let ty = Type::new(Some(spelling), layout, type_kind, is_const);
        let id = self.next_item_id();
        let item = Item::new(
            id,
            None,
            None,
            self.root_module.into(),
            ItemKind::Type(ty),
        );
        self.add_builtin_item(item);
        Some(id.as_type_id_unchecked())
    }

    /// Get the current Clang translation unit that is being processed.
    pub fn translation_unit(&self) -> &clang::TranslationUnit {
        &self.translation_unit
    }

    /// Have we parsed the macro named `macro_name` already?
    pub fn parsed_macro(&self, macro_name: &[u8]) -> bool {
        self.parsed_macros.contains_key(macro_name)
    }

    /// Get the currently parsed macros.
    pub fn parsed_macros(
        &self,
    ) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> {
        debug_assert!(!self.in_codegen_phase());
        &self.parsed_macros
    }

    /// Mark the macro named `macro_name` as parsed.
    pub fn note_parsed_macro(
        &mut self,
        id: Vec<u8>,
        value: cexpr::expr::EvalResult,
    ) {
        self.parsed_macros.insert(id, value);
    }

    /// Are we in the codegen phase?
    pub fn in_codegen_phase(&self) -> bool {
        self.in_codegen
    }

    /// Mark the type with the given `name` as replaced by the type with id
    /// `potential_ty`.
    ///
    /// Replacement types are declared using the `replaces="xxx"` annotation,
    /// and implies that the original type is hidden.
    pub fn replace(&mut self, name: &[String], potential_ty: ItemId) {
        match self.replacements.entry(name.into()) {
            Entry::Vacant(entry) => {
                debug!(
                    "Defining replacement for {:?} as {:?}",
                    name, potential_ty
                );
                entry.insert(potential_ty);
            }
            Entry::Occupied(occupied) => {
                warn!(
                    "Replacement for {:?} already defined as {:?}; \
                     ignoring duplicate replacement definition as {:?}",
                    name,
                    occupied.get(),
                    potential_ty
                );
            }
        }
    }

    /// Has the item with the given `name` and `id` been replaced by another
    /// type?
    pub fn is_replaced_type<Id: Into<ItemId>>(
        &self,
        path: &[String],
        id: Id,
    ) -> bool {
        let id = id.into();
        match self.replacements.get(path) {
            Some(replaced_by) if *replaced_by != id => true,
            _ => false,
        }
    }

    /// Is the type with the given `name` marked as opaque?
    pub fn opaque_by_name(&self, path: &[String]) -> bool {
        debug_assert!(
            self.in_codegen_phase(),
            "You're not supposed to call this yet"
        );
        self.options.opaque_types.matches(&path[1..].join("::"))
    }

    /// Get the options used to configure this bindgen context.
    pub(crate) fn options(&self) -> &BindgenOptions {
        &self.options
    }

    /// Tokenizes a namespace cursor in order to get the name and kind of the
    /// namespace.
    fn tokenize_namespace(
        &self,
        cursor: &clang::Cursor,
    ) -> (Option<String>, ModuleKind) {
        assert_eq!(
            cursor.kind(),
            ::clang_sys::CXCursor_Namespace,
            "Be a nice person"
        );

        let mut module_name = None;
        let spelling = cursor.spelling();
        if !spelling.is_empty() {
            module_name = Some(spelling)
        }

        let tokens = cursor.tokens();
        let mut iter = tokens.iter();
        let mut kind = ModuleKind::Normal;
        let mut found_namespace_keyword = false;
        while let Some(token) = iter.next() {
            match token.spelling() {
                b"inline" => {
                    assert!(!found_namespace_keyword);
                    assert!(kind != ModuleKind::Inline);
                    kind = ModuleKind::Inline;
                }
                // The double colon allows us to handle nested namespaces like
                // namespace foo::bar { }
                //
                // libclang still gives us two namespace cursors, which is cool,
                // but the tokenization of the second begins with the double
                // colon. That's ok, so we only need to handle the weird
                // tokenization here.
                //
                // Fortunately enough, inline nested namespace specifiers aren't
                // a thing, and are invalid C++ :)
                b"namespace" | b"::" => {
                    found_namespace_keyword = true;
                }
                b"{" => {
                    assert!(found_namespace_keyword);
                    break;
                }
                name if found_namespace_keyword => {
                    if module_name.is_none() {
                        module_name =
                            Some(String::from_utf8_lossy(name).into_owned());
                    }
                    break;
                }
                spelling if !found_namespace_keyword => {
                    // This is _likely_, but not certainly, a macro that's been placed just before
                    // the namespace keyword. Unfortunately, clang tokens don't let us easily see
                    // through the ifdef tokens, so we don't know what this token should really be.
                    // Instead of panicking though, we warn the user that we assumed the token was
                    // blank, and then move on.
                    //
                    // See also https://github.com/rust-lang/rust-bindgen/issues/1676.
                    warn!(
                        "Ignored unknown namespace prefix '{}' at {:?} in {:?}",
                        String::from_utf8_lossy(spelling),
                        token,
                        cursor
                    );
                }
                spelling => {
                    panic!(
                        "Unknown token '{}' while processing namespace at {:?} in {:?}",
                        String::from_utf8_lossy(spelling),
                        token,
                        cursor
                    );
                }
            }
        }

        (module_name, kind)
    }

    /// Given a CXCursor_Namespace cursor, return the item id of the
    /// corresponding module, or create one on the fly.
    pub fn module(&mut self, cursor: clang::Cursor) -> ModuleId {
        use clang_sys::*;
        assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person");
        let cursor = cursor.canonical();
        if let Some(id) = self.modules.get(&cursor) {
            return *id;
        }

        let (module_name, kind) = self.tokenize_namespace(&cursor);

        let module_id = self.next_item_id();
        let module = Module::new(module_name, kind);
        let module = Item::new(
            module_id,
            None,
            None,
            self.current_module.into(),
            ItemKind::Module(module),
        );

        let module_id = module.id().as_module_id_unchecked();
        self.modules.insert(cursor, module_id);

        self.add_item(module, None, None);

        module_id
    }

    /// Start traversing the module with the given `module_id`, invoke the
    /// callback `cb`, and then return to traversing the original module.
    pub fn with_module<F>(&mut self, module_id: ModuleId, cb: F)
    where
        F: FnOnce(&mut Self),
    {
        debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat");

        let previous_id = self.current_module;
        self.current_module = module_id;

        cb(self);

        self.current_module = previous_id;
    }

    /// Iterate over all (explicitly or transitively) whitelisted items.
    ///
    /// If no items are explicitly whitelisted, then all items are considered
    /// whitelisted.
    pub fn whitelisted_items(&self) -> &ItemSet {
        assert!(self.in_codegen_phase());
        assert!(self.current_module == self.root_module);

        self.whitelisted.as_ref().unwrap()
    }

    /// Get a reference to the set of items we should generate.
    pub fn codegen_items(&self) -> &ItemSet {
        assert!(self.in_codegen_phase());
        assert!(self.current_module == self.root_module);
        self.codegen_items.as_ref().unwrap()
    }

    /// Compute the whitelisted items set and populate `self.whitelisted`.
    fn compute_whitelisted_and_codegen_items(&mut self) {
        assert!(self.in_codegen_phase());
        assert!(self.current_module == self.root_module);
        assert!(self.whitelisted.is_none());
        let _t = self.timer("compute_whitelisted_and_codegen_items");

        let roots = {
            let mut roots = self
                .items()
                // Only consider roots that are enabled for codegen.
                .filter(|&(_, item)| item.is_enabled_for_codegen(self))
                .filter(|&(_, item)| {
                    // If nothing is explicitly whitelisted, then everything is fair
                    // game.
                    if self.options().whitelisted_types.is_empty() &&
                        self.options().whitelisted_functions.is_empty() &&
                        self.options().whitelisted_vars.is_empty()
                    {
                        return true;
                    }

                    // If this is a type that explicitly replaces another, we assume
                    // you know what you're doing.
                    if item.annotations().use_instead_of().is_some() {
                        return true;
                    }

                    let name = item.path_for_whitelisting(self)[1..].join("::");
                    debug!("whitelisted_items: testing {:?}", name);
                    match *item.kind() {
                        ItemKind::Module(..) => true,
                        ItemKind::Function(_) => {
                            self.options().whitelisted_functions.matches(&name)
                        }
                        ItemKind::Var(_) => {
                            self.options().whitelisted_vars.matches(&name)
                        }
                        ItemKind::Type(ref ty) => {
                            if self.options().whitelisted_types.matches(&name) {
                                return true;
                            }

                            // Auto-whitelist types that don't need code
                            // generation if not whitelisting recursively, to
                            // make the #[derive] analysis not be lame.
                            if !self.options().whitelist_recursively {
                                match *ty.kind() {
                                    TypeKind::Void |
                                    TypeKind::NullPtr |
                                    TypeKind::Int(..) |
                                    TypeKind::Float(..) |
                                    TypeKind::Complex(..) |
                                    TypeKind::Array(..) |
                                    TypeKind::Vector(..) |
                                    TypeKind::Pointer(..) |
                                    TypeKind::Reference(..) |
                                    TypeKind::Function(..) |
                                    TypeKind::ResolvedTypeRef(..) |
                                    TypeKind::Opaque |
                                    TypeKind::TypeParam => return true,
                                    _ => {}
                                };
                            }

                            // Unnamed top-level enums are special and we
                            // whitelist them via the `whitelisted_vars` filter,
                            // since they're effectively top-level constants,
                            // and there's no way for them to be referenced
                            // consistently.
                            let parent = self.resolve_item(item.parent_id());
                            if !parent.is_module() {
                                return false;
                            }

                            let enum_ = match *ty.kind() {
                                TypeKind::Enum(ref e) => e,
                                _ => return false,
                            };

                            if ty.name().is_some() {
                                return false;
                            }

                            let mut prefix_path =
                                parent.path_for_whitelisting(self).clone();
                            enum_.variants().iter().any(|variant| {
                                prefix_path.push(variant.name().into());
                                let name = prefix_path[1..].join("::");
                                prefix_path.pop().unwrap();
                                self.options().whitelisted_vars.matches(&name)
                            })
                        }
                    }
                })
                .map(|(id, _)| id)
                .collect::<Vec<_>>();

            // The reversal preserves the expected ordering of traversal,
            // resulting in more stable-ish bindgen-generated names for
            // anonymous types (like unions).
            roots.reverse();
            roots
        };

        let whitelisted_items_predicate =
            if self.options().whitelist_recursively {
                traversal::all_edges
            } else {
                // Only follow InnerType edges from the whitelisted roots.
                // Such inner types (e.g. anonymous structs/unions) are
                // always emitted by codegen, and they need to be whitelisted
                // to make sure they are processed by e.g. the derive analysis.
                traversal::only_inner_type_edges
            };

        let whitelisted = WhitelistedItemsTraversal::new(
            self,
            roots.clone(),
            whitelisted_items_predicate,
        )
        .collect::<ItemSet>();

        let codegen_items = if self.options().whitelist_recursively {
            WhitelistedItemsTraversal::new(
                self,
                roots.clone(),
                traversal::codegen_edges,
            )
            .collect::<ItemSet>()
        } else {
            whitelisted.clone()
        };

        self.whitelisted = Some(whitelisted);
        self.codegen_items = Some(codegen_items);

        for item in self.options().whitelisted_functions.unmatched_items() {
            error!("unused option: --whitelist-function {}", item);
        }

        for item in self.options().whitelisted_vars.unmatched_items() {
            error!("unused option: --whitelist-var {}", item);
        }

        for item in self.options().whitelisted_types.unmatched_items() {
            error!("unused option: --whitelist-type {}", item);
        }
    }

    /// Convenient method for getting the prefix to use for most traits in
    /// codegen depending on the `use_core` option.
    pub fn trait_prefix(&self) -> Ident {
        if self.options().use_core {
            self.rust_ident_raw("core")
        } else {
            self.rust_ident_raw("std")
        }
    }

    /// Call if a bindgen complex is generated
    pub fn generated_bindgen_complex(&self) {
        self.generated_bindgen_complex.set(true)
    }

    /// Whether we need to generate the bindgen complex type
    pub fn need_bindgen_complex_type(&self) -> bool {
        self.generated_bindgen_complex.get()
    }

    /// Compute whether we can derive debug.
    fn compute_cannot_derive_debug(&mut self) {
        let _t = self.timer("compute_cannot_derive_debug");
        assert!(self.cannot_derive_debug.is_none());
        if self.options.derive_debug {
            self.cannot_derive_debug =
                Some(as_cannot_derive_set(analyze::<CannotDerive>((
                    self,
                    DeriveTrait::Debug,
                ))));
        }
    }

    /// Look up whether the item with `id` can
    /// derive debug or not.
    pub fn lookup_can_derive_debug<Id: Into<ItemId>>(&self, id: Id) -> bool {
        let id = id.into();
        assert!(
            self.in_codegen_phase(),
            "We only compute can_derive_debug when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` can
        // derive debug or not.
        !self.cannot_derive_debug.as_ref().unwrap().contains(&id)
    }

    /// Compute whether we can derive default.
    fn compute_cannot_derive_default(&mut self) {
        let _t = self.timer("compute_cannot_derive_default");
        assert!(self.cannot_derive_default.is_none());
        if self.options.derive_default {
            self.cannot_derive_default =
                Some(as_cannot_derive_set(analyze::<CannotDerive>((
                    self,
                    DeriveTrait::Default,
                ))));
        }
    }

    /// Look up whether the item with `id` can
    /// derive default or not.
    pub fn lookup_can_derive_default<Id: Into<ItemId>>(&self, id: Id) -> bool {
        let id = id.into();
        assert!(
            self.in_codegen_phase(),
            "We only compute can_derive_default when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` can
        // derive default or not.
        !self.cannot_derive_default.as_ref().unwrap().contains(&id)
    }

    /// Compute whether we can derive copy.
    fn compute_cannot_derive_copy(&mut self) {
        let _t = self.timer("compute_cannot_derive_copy");
        assert!(self.cannot_derive_copy.is_none());
        self.cannot_derive_copy =
            Some(as_cannot_derive_set(analyze::<CannotDerive>((
                self,
                DeriveTrait::Copy,
            ))));
    }

    /// Compute whether we can derive hash.
    fn compute_cannot_derive_hash(&mut self) {
        let _t = self.timer("compute_cannot_derive_hash");
        assert!(self.cannot_derive_hash.is_none());
        if self.options.derive_hash {
            self.cannot_derive_hash =
                Some(as_cannot_derive_set(analyze::<CannotDerive>((
                    self,
                    DeriveTrait::Hash,
                ))));
        }
    }

    /// Look up whether the item with `id` can
    /// derive hash or not.
    pub fn lookup_can_derive_hash<Id: Into<ItemId>>(&self, id: Id) -> bool {
        let id = id.into();
        assert!(
            self.in_codegen_phase(),
            "We only compute can_derive_debug when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` can
        // derive hash or not.
        !self.cannot_derive_hash.as_ref().unwrap().contains(&id)
    }

    /// Compute whether we can derive PartialOrd, PartialEq or Eq.
    fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) {
        let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq");
        assert!(self.cannot_derive_partialeq_or_partialord.is_none());
        if self.options.derive_partialord ||
            self.options.derive_partialeq ||
            self.options.derive_eq
        {
            self.cannot_derive_partialeq_or_partialord =
                Some(analyze::<CannotDerive>((
                    self,
                    DeriveTrait::PartialEqOrPartialOrd,
                )));
        }
    }

    /// Look up whether the item with `id` can derive `Partial{Eq,Ord}`.
    pub fn lookup_can_derive_partialeq_or_partialord<Id: Into<ItemId>>(
        &self,
        id: Id,
    ) -> CanDerive {
        let id = id.into();
        assert!(
            self.in_codegen_phase(),
            "We only compute can_derive_partialeq_or_partialord when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` can
        // derive partialeq or not.
        self.cannot_derive_partialeq_or_partialord
            .as_ref()
            .unwrap()
            .get(&id)
            .cloned()
            .unwrap_or(CanDerive::Yes)
    }

    /// Look up whether the item with `id` can derive `Copy` or not.
    pub fn lookup_can_derive_copy<Id: Into<ItemId>>(&self, id: Id) -> bool {
        assert!(
            self.in_codegen_phase(),
            "We only compute can_derive_debug when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` can
        // derive `Copy` or not.
        let id = id.into();

        !self.lookup_has_type_param_in_array(id) &&
            !self.cannot_derive_copy.as_ref().unwrap().contains(&id)
    }

    /// Compute whether the type has type parameter in array.
    fn compute_has_type_param_in_array(&mut self) {
        let _t = self.timer("compute_has_type_param_in_array");
        assert!(self.has_type_param_in_array.is_none());
        self.has_type_param_in_array =
            Some(analyze::<HasTypeParameterInArray>(self));
    }

    /// Look up whether the item with `id` has type parameter in array or not.
    pub fn lookup_has_type_param_in_array<Id: Into<ItemId>>(
        &self,
        id: Id,
    ) -> bool {
        assert!(
            self.in_codegen_phase(),
            "We only compute has array when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` has
        // type parameter in array or not.
        self.has_type_param_in_array
            .as_ref()
            .unwrap()
            .contains(&id.into())
    }

    /// Compute whether the type has float.
    fn compute_has_float(&mut self) {
        let _t = self.timer("compute_has_float");
        assert!(self.has_float.is_none());
        if self.options.derive_eq || self.options.derive_ord {
            self.has_float = Some(analyze::<HasFloat>(self));
        }
    }

    /// Look up whether the item with `id` has array or not.
    pub fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool {
        assert!(
            self.in_codegen_phase(),
            "We only compute has float when we enter codegen"
        );

        // Look up the computed value for whether the item with `id` has
        // float or not.
        self.has_float.as_ref().unwrap().contains(&id.into())
    }

    /// Check if `--no-partialeq` flag is enabled for this item.
    pub fn no_partialeq_by_name(&self, item: &Item) -> bool {
        let name = item.path_for_whitelisting(self)[1..].join("::");
        self.options().no_partialeq_types.matches(&name)
    }

    /// Check if `--no-copy` flag is enabled for this item.
    pub fn no_copy_by_name(&self, item: &Item) -> bool {
        let name = item.path_for_whitelisting(self)[1..].join("::");
        self.options().no_copy_types.matches(&name)
    }

    /// Check if `--no-hash` flag is enabled for this item.
    pub fn no_hash_by_name(&self, item: &Item) -> bool {
        let name = item.path_for_whitelisting(self)[1..].join("::");
        self.options().no_hash_types.matches(&name)
    }
}

/// A builder struct for configuring item resolution options.
#[derive(Debug, Copy, Clone)]
pub struct ItemResolver {
    id: ItemId,
    through_type_refs: bool,
    through_type_aliases: bool,
}

impl ItemId {
    /// Create an `ItemResolver` from this item id.
    pub fn into_resolver(self) -> ItemResolver {
        self.into()
    }
}

impl<T> From<T> for ItemResolver
where
    T: Into<ItemId>,
{
    fn from(id: T) -> ItemResolver {
        ItemResolver::new(id)
    }
}

impl ItemResolver {
    /// Construct a new `ItemResolver` from the given id.
    pub fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver {
        let id = id.into();
        ItemResolver {
            id: id,
            through_type_refs: false,
            through_type_aliases: false,
        }
    }

    /// Keep resolving through `Type::TypeRef` items.
    pub fn through_type_refs(mut self) -> ItemResolver {
        self.through_type_refs = true;
        self
    }

    /// Keep resolving through `Type::Alias` items.
    pub fn through_type_aliases(mut self) -> ItemResolver {
        self.through_type_aliases = true;
        self
    }

    /// Finish configuring and perform the actual item resolution.
    pub fn resolve(self, ctx: &BindgenContext) -> &Item {
        assert!(ctx.collected_typerefs());

        let mut id = self.id;
        loop {
            let item = ctx.resolve_item(id);
            let ty_kind = item.as_type().map(|t| t.kind());
            match ty_kind {
                Some(&TypeKind::ResolvedTypeRef(next_id))
                    if self.through_type_refs =>
                {
                    id = next_id.into();
                }
                // We intentionally ignore template aliases here, as they are
                // more complicated, and don't represent a simple renaming of
                // some type.
                Some(&TypeKind::Alias(next_id))
                    if self.through_type_aliases =>
                {
                    id = next_id.into();
                }
                _ => return item,
            }
        }
    }
}

/// A type that we are in the middle of parsing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PartialType {
    decl: Cursor,
    // Just an ItemId, and not a TypeId, because we haven't finished this type
    // yet, so there's still time for things to go wrong.
    id: ItemId,
}

impl PartialType {
    /// Construct a new `PartialType`.
    pub fn new(decl: Cursor, id: ItemId) -> PartialType {
        // assert!(decl == decl.canonical());
        PartialType { decl: decl, id: id }
    }

    /// The cursor pointing to this partial type's declaration location.
    pub fn decl(&self) -> &Cursor {
        &self.decl
    }

    /// The item ID allocated for this type. This is *NOT* a key for an entry in
    /// the context's item set yet!
    pub fn id(&self) -> ItemId {
        self.id
    }
}

impl TemplateParameters for PartialType {
    fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> {
        // Maybe at some point we will eagerly parse named types, but for now we
        // don't and this information is unavailable.
        vec![]
    }

    fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize {
        // Wouldn't it be nice if libclang would reliably give us this
        // information‽
        match self.decl().kind() {
            clang_sys::CXCursor_ClassTemplate |
            clang_sys::CXCursor_FunctionTemplate |
            clang_sys::CXCursor_TypeAliasTemplateDecl => {
                let mut num_params = 0;
                self.decl().visit(|c| {
                    match c.kind() {
                        clang_sys::CXCursor_TemplateTypeParameter |
                        clang_sys::CXCursor_TemplateTemplateParameter |
                        clang_sys::CXCursor_NonTypeTemplateParameter => {
                            num_params += 1;
                        }
                        _ => {}
                    };
                    clang_sys::CXChildVisit_Continue
                });
                num_params
            }
            _ => 0,
        }
    }
}